1- planeación gsm

Upload: luuiisxxx

Post on 07-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 1- Planeacin GSM

    1/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    1

    Purpose:

    Definition of technical parameters

    Check for balanced up- and downlink

    Fast overview of required BTS

    Input for Coarse Planning with TORNADO

    Method:

    Max. possible pathloss calculation with input datas

    Cell radius calculation using Okumura-Hata propagation model

    Link Budget

  • 8/6/2019 1- Planeacin GSM

    2/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    2

    Downlink (BTS ---> MS):

    Balanced Up- and Downlink

    BTS

    MS

    TX-Power

    RX-Sensitivity

    Uplink (MS ---> BTS):

    BTS

    MS

    TX-Power

    RX-Sensitivity

    Balance Condition: Luplink = Ldownlink

  • 8/6/2019 1- Planeacin GSM

    3/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    3

    1. Definition:

    Maximum allowed attenuation between transmitter (TX) and receiver (RX) to obtainthe specified grade of quality

    2. Calculation

    Lmax = TX_Power - RX_SensitivityExample: Lmax = 40dBm - (-100dBm)

    Lmax = 140dB

    TX_Power = EiRP (effective isotropic radiated power)

    2.1.Downlink

    TRX

    Back off

    Combiner CableTX-Antenna

    Example: EiRP = 46dBm - 1dB - 3dB - 3dB + 15dBi = 54dBm = 251,2W

    Maximum Pathloss

    EiRP= BS_Power_Output - PA_Back Off - Total_Combiner_and_Duplex_Loss - TX_Antenna_Cable_Loss + TX_Antenna_Gain

    P[dBm]= 10*log(P[mW])

  • 8/6/2019 1- Planeacin GSM

    4/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    4

    RX_Sensitivity = Min_RX_Level_50%_loc._prob.

    Maximum Pathloss

    Min_RX_Level_50%_loc._prob. = Sensitivity_Level + RX_Antenna_Cable_Loss - Frequency_Hopping_Gain -

    RX_Antenna_Gain + Interference_degradation_margin + Body_Loss

    MS Cable

    RX-Antenna

    Interferer

    Carrier

    Example: Min_RX_Level_50%_loc._prob. = -102dBm + 0dB - 0dB - 0dBi + 3dB + 3dB = -96dBm

  • 8/6/2019 1- Planeacin GSM

    5/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    5

    Maximum Pathloss

    2.1.Uplink

    MS CableTX-Antenna

    EiRP= MS_Power_Output - TX_Antenna_Cable_Loss + TX_Antenna_Gain

    Min_RX_Level_50%_loc._prob. = Sensitivity_Level - Frequency_Hopping_Gain + RX_Antenna_Cable_Loss -

    Tower_Mounted_Pre-Ampliufier_Gain - RX_Antenna_Gain - Antenna_Diversity_Gain +

    Interference_degradation_margin + Body_Loss

    BTS

    Cable

    RX1-Antenna

    Interferer

    Carrier

    Cable

    RX2-Antenna

    TMPA

    TMPA

    Example: EiRP = 33dBm - 0dB + 0dBi = 33dBm = 2W

    Example: Min_RX_Level_50%_loc._prob. = -107dBm - 0dB + 3dB - 0dB - 15dBi - 4dB + 3dB + 3dB = -117dBm

  • 8/6/2019 1- Planeacin GSM

    6/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    6

    Example:

    Lmaxdownlink = 54dBm - 96dBm = 150dB

    Lmaxuplink = 33dBm - 117dBm = 150dB

    Balanced System

    Untill now we always have calculated with a 50% location probability for coverage. But a

    customer will not be satisfied with only 50% probability for a successfull call. Typical values for

    an acceptable grade of service are location probabilities above 90%. How to calculate the

    necessary receiving level for a given location probability will be shown on the next sheets. To

    understand this calculation we have to look at the two main fading mechanisms.

    Maximum Pathloss

    Lmax = EiRP - Min_RX_Level_50%_loc._prob.

  • 8/6/2019 1- Planeacin GSM

    7/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    7

    Fading:

    Long term fading due to shadowing

    Short term fading (Rayleigh fading) due to reflexions

    Location Probability

    Receiving Level

    distanceVariations dueto shadowing

    Global mean

    Variations due

    to Rayleigh fading

    Long and short term fading

  • 8/6/2019 1- Planeacin GSM

    8/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    8

    Location Probability

    Rayleigh Distribution

    A) Short-term fading

    Receiving Level P

    Pmedian

    Pm in

    P

    Fading margin

    area r

    pr

    ti

    the probability P(P < Pmin)

  • 8/6/2019 1- Planeacin GSM

    9/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    9

    Location Probability

    B) Long-term fading

    ormal Distribution

    area rpr

    ti

    the probability P(Pr < Prmin)

    Re c eiv i g Le ve l r

    r mi

    ( )r

    r

    Fa i g margi

    r mea

  • 8/6/2019 1- Planeacin GSM

    10/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    10

    Min_Rx_Level_x%_loc._prob. = Min_Rx_Level_50%_loc._prob. + z * standard deviation

    Max_Pathloss_x%_loc.prob. = Max_Pathloss_50%_loc._prob. - z * standard deviation

    Location Probability

    z is taken from tables for the normal distribution function

    The percentage value in the normal distribution table is the probability at the cell border.

    To obtain the cell coverage probability the value must be converted with the curves given by

    Jakes: "Microwave Mobile Communication",1974.

    75% at cell border ~ 90% cell coverage

    90% at cell border ~ 98% cell coverage

  • 8/6/2019 1- Planeacin GSM

    11/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    11

    Example: Min_Rx_Level_75%_loc._prob. = -96dBm + 0,675 * 6dB = -92dBm

    Max_Pathloss_75%_loc._prob. = 150dB - 0,675 * 6dB = 146dBm

    Location Probability

    (urban)

    Dense urban : 10dB

    Urban : 8dB

    Suburban : 6dB

    Rural / open : 5dB

    Forest : 5dB

    Standard deviation

  • 8/6/2019 1- Planeacin GSM

    12/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    12

    To obtain indoor coverage the Min_Rx_Level_x%_loc._prob. must be available

    inside the building. For estimation of an appropriate outdoor level the average

    indoor loss has to be determined. The average indoor loss depends on

    morphologie of course. Typical values are:

    Indoor coverage

    Average Indoor Loss

    Dense urban : 20dB (10-25dB)

    Urban : 15dB (10-15dB)

    Suburban : 10dB (5-10dB)

    Rural / open : 8dB (5-10dB)

    Incar : 7dB (5-8dB)

    Min_Rx_Levelindoor= Min_Rx_Leveloutdoor+ Average_Indoor_Loss

  • 8/6/2019 1- Planeacin GSM

    13/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    13

    Free Space Path Loss

    Propagation Prediction

    L0 = 32,4 + 20 * log (f[MHz]) + 20 * log (d[km])

    L0 = 91,72 + 20 * log (d[km]) fr f = 925MHz

    Hata for urban area

    L = 69,55 + 26,16 * log (f[MHz]) - 13,82 * log (HBS) - a(HMS) + (44,9 - 6,55 * log (HBS)) * log(d[km])

    L = 147,14 -13,82 * log (HBS) - a(HMS) + (44,9 - 6,55 * log (HBS)) * log (d[km]) for f = 925MHz

    a(HMS) = 0 for HMS = 1,5m

    General L = A + B * log (d [km])

    L: Loss in dB B: propagation index (loss per decade)

    A: unit loss (at 1km) d: distance MS - BS [km]

    For other morphologic classes correction factors for this formula are used.

    (see the macro of the link budget calculation program)

  • 8/6/2019 1- Planeacin GSM

    14/14

    Siemens AG, 08/09/00Manfred Petzendorfer N MN VN 11

    s

    14

    With L=Lmax it is possible to calculate the cell radius d

    Cell Radius Calculation

    d[km] = 10(Lmax - 147,14 +13,82 * log (HBS) + a(HMS) ) / (44,9 - 6,55 * log (HBS))

    Example:

    d[km] = 10(146dB - 147,14 +13,82 * log (30) + 0) / (44,9 - 6,55 * log (30))

    d = 3,52km

    The formula is valid in the following area: HBS = 30 ... 200m, HMS = 1 ... 10m, d >1km

    The cell coverage area is calculated by:

    Cell_Coverage = Pi * r2

    for omni cell