young cat2e ssm ch5

38
241 CHAPTER 5 Section 5.1 Solutions -------------------------------------------------------------------------------- 1. 16 3. 2 1 1 25 5 = 5. ( ) 2 3 2 2 3 8 8 2 4 = = = 7. () ( ) 3 3 2 2 3 3 1 9 9 9 3 27 = = = = 9. 0 5 1 =− 11. 5.2780 13. 9.7385 15. 7.3891 17. 0.0432 19. 3 (3) 3 27 f = = 21. ( ) 1 1 16 ( 1) 16 g = = 23. ( ) ( ) 1 1 2 2 1 1 2 16 16 4 g = = = 25. () 3 19.81 e fe = 27. f ( ) 1 5 5 x y = Rising a factor of 5 slower than 5 x 29. e ( ) 5 x y =− The reflection of 5 x over the x-axis 31. b ( ) 5 1 x y = + The reflection of 5 x over the x-axis and then shifted up 1 unit. 33. y-intercept : 0 (0) 6 1 f = = , so (0,1). HA : 0 y = Domain : ( ) , −∞ ∞ Range : ( ) 0, Other points : (-1,1/6), (1,6) 35. y-intercept : 0 (0) 10 1 f = = , so (0,1). HA : 0 y = Reflect graph of 10 x y = over y-axis. Domain : ( ) , ∞∞ Range : ( ) 0, Other points : (1, 0.1), (-1,10)

Upload: aelle00

Post on 12-Dec-2015

230 views

Category:

Documents


5 download

DESCRIPTION

Young Solution Manual Chapter 5

TRANSCRIPT

241

CHAPTER 5 Section 5.1 Solutions -------------------------------------------------------------------------------- 1. 16 3. 2

1 1255

=

5. ( )23

2238 8 2 4= = = 7. ( ) ( )3 32 2

331

9 9 9 3 27−= = = =

9. 05 1− = − 11. 5.2780 13. 9.7385 15. 7.3891 17. 0.0432 19. 3(3) 3 27f = =

21. ( ) 1116( 1) 16g −

− = = 23. ( ) ( )1 12 21 1

2 16 16 4g −− = = =

25. ( ) 3 19.81ef e = ≈ 27. f ( )1

5 5xy =

Rising a factor of 5 slower than 5x

29. e ( )5xy = −

The reflection of5x over the x-axis

31. b ( )5 1xy −= − +

The reflection of 5 x− over the x-axis and then shifted up 1 unit.

33. y-intercept: 0(0) 6 1f = = , so (0,1). HA: 0y = Domain: ( ),−∞ ∞ Range: ( )0,∞ Other points: (-1,1/6), (1,6)

35. y-intercept: 0(0) 10 1f = = , so (0,1). HA: 0y = Reflect graph of 10xy = over y-axis. Domain: ( ),−∞ ∞ Range: ( )0,∞ Other points: (1, 0.1), (-1,10)

Chapter 5

242

37. y-intercept: 0(0) 1f e= = , so (0,1). HA: 0y = Reflect graph of xy e= over y-axis. Domain: ( ),−∞ ∞ Range: ( )0,∞ Other points: (1,1/e), (-1, e)

39. y-intercept: 0(0) 2 1 0f = − = , so (0,0). HA: 1y = − Shift graph of 2xy = down 1 unit Domain: ( ),−∞ ∞ Range: ( )1,− ∞ Other points: (2,3), (1,1)

41. y-intercept: 0(0) 2 1f e= − = , so (0,1) . HA: 2y = Reflect graph of xe over the x-axis, then shift up 2 units. Domain: ( ),−∞ ∞ Range: ( ), 2−∞ Other points: (1, 2-e), (-1, 2 – 1/e)

43. y-intercept: 0 1(0) 4 4f e e+= − = − , so (0, 4)e − . HA: 4y = − Shift the graph of xe left 1 unit, then down 4 units. Domain: ( ),−∞ ∞ Range:

( )4,− ∞

Other points: (-1,-3), (1, 2 4e − )

Section 5.1

243

45. y-intercept: 0(0) 3 3f e= ⋅ = , so (0,3) . HA: 0y = Expand the graph of xy e= horizon- tally by a factor of 2, then expand vertically by a factor of 3. Domain: ( ),−∞ ∞ Range: ( )0,∞

Other points: (2,3e), (1, 3 e )

47. y-intercept: ( )0 2 212(0) 1 1 2 5f −

= + = + = , so (0,5) . HA: 1y =

Shift the graph of ( )12

xy = right 2 units, then up 1 unit. Domain: ( ),−∞ ∞ Range: ( )1,∞

Other points: (0,5), ( )2,2

49. Use ( )0( ) 2

tdP t P= .

Here, 0 7.1, 88, 48 (2090 2002)P d t= = = − .

Thus, ( )4888(48) 7.1 2 10.4P = ≅ .

So, the expected population in 2090 is approximately 10.4 million.

51. Use ( )0( ) 2tdP t P= .

Here, 0 1500, 5 (doubling time), 30P d t= = = .

Thus, ( )305(30) 1500 2 96,000P = ≅ .

53. Use ( )10 2( )

thA t A=

Here, 0119.77 days, 200 , 30 daysh A mg t= = =

Thus, ( )30

119.7712(30) 200 168A = ≅ .

So, 168 mg remain after 30 days.

55. Use ( )10 2( )

thA t A=

Here, 010 years, 8000, 14 yearsh A t= = =

Thus, ( )14

1012(14) 8000 3031A = ≅ .

So, the value after 14 years is $3031.

Chapter 5

244

57. Use ( )( ) 1 ntrnA t P= + . Here,

3200, 0.025, 4, 3 yearsP r n t= = = = .

Thus, ( )4(3)0.0254(4) 3200 1 3448.42A = + ≅ .

So, the amount in the account after 4 years is $3,448.42.

59. Use ( )( ) 1 ntrnA t P= + . Here,

(18) 32,000, 0.05, 365, 18A r n t= = = = Thus, solving the above formula for P, we

have( )365(18)0.05

365

32,000 13,011.031

P = ≅+

.

So, the initial investment should be $13,011.03.

61. Use ( ) r tA t Pe= . Here,

3200, 0.02, 15P r t= = = . Thus, (0.02)(15)(15) 3200 4319.55A e= ≅ . So, the amount in the account after 15 years is $4319.55.

63. Use ( ) r tA t Pe= . Here, (20) 38,000, 0.05, 20A r t= = = .

Thus, solving the above formula for P, we

have (0.05)(20)

38,000 13,979.42Pe

= ≅ .

So, the initial investment should be $13,979.42.

65. The mistake is that 12 24 4− ≠ . Rather,

12

12

1 1424

− = = . 67. 0.025r = rather than 2.5

69. False. (0, 1)− is the y-intercept. 71. True. ( )1 133 (3 ) xx x− −= =

73.

Note on Graphs: Solid curve is 3xy = and the dashed curve is 3logy x= .

75.

77. y-intercept: 0 1(0)f be a be a− += − = − So, ( )0,be a− .

Horizontal asymptote: For x very large, 1 0xbe− + ≈ , so y a= − is the horizontal asymptote.

Section 5.1

245

79. The domain and range for ( ) xf x b= , where 1b > , are: Domain: ( ),−∞ ∞ Range: [ )1,∞ . Indeed, note that ( )f x is defined piecewise, as follows:

, 0, 0

xx

x

b xb

b x−

⎧ ≥⎪= ⎨<⎪⎩

Recall that the graph of xb− is the reflection of the graph of xb over the y-axis.

81.

Note on Graphs: Solid curve is 1(1 )x

xy = + and dashed curve (the horizontal asymptote) is y e= .

83. The graphs are close on the interval ( )3,3− .

Note on Graphs: Solid curve is xy e= and thin curve is 2 3 4

2 6 241 x x xy x= + + + + .

85. The graphs of f, g, and h are as follows:

The horizontal asymptotes for f, g, and h are 2 4, ,y e y e y e= = = . As x increases,

2 4( ) , ( ) , ( )f x e g x e h x e→ → → .

Chapter 5

246

Section 5.2 Solutions -------------------------------------------------------------------------------- 1. 35 125= 3.

1481 3=

5. 5 1322− = 7. 210 0.01− =

9. 410 10,000= 11. ( ) 3 314 4 64−

= =

13. 1 1ee− = 15. 0 1e =

17. 5xe = 19. zx y= 21. 8log (512) 3= 23. log(0.00001) 5= − 25. 1

225 2log (15) = 27. 25

8125log ( ) 3=

29. 127

13log (3) = − 31. ln 6 x=

33. log y x z= 35. 2log (1) 0=

37. 5log (3125) 5 3125 5xx x= ⇒ = ⇒ =

39. 710log (10 ) 7=

41. ( )14

14log (4096) 4096 4 4096 6x xx x−= ⇒ = ⇒ = ⇒ = −

43. undefined 45. undefined 47. 1.46 49. 5.94 51. undefined 53. 8.11− 55. Must have 5 0x + > , so that the domain is ( )5,− ∞ .

57. Must have 5 2 0x− > , so that the domain is ( )52,−∞ .

59. Must have 7 2 0x− > , so that the domain is ( )72,−∞ .

61. Must have 0x > , so that the domain is ( ) ( ),0 0,−∞ ∪ ∞ .

63. Must have 2 1 0x + > (which always occurs), so that the domain is . 65. b 67. c Reflect the graph of 5logy x= over the x-axis. 69. d Since

5 5log (1 ) 2 log ( ( 1)) 2x x− − = − − − , Reflect the graph of 5logy x= over the y-axis, then shift right 1 unit, and then shift down 5 units.

Section 5.2

247

71. Shift the graph of logy x= right 1 unit. Domain: ( )1,∞ Range: ( ),−∞ ∞

73. Shift the graph of lny x= up 2 units. Domain: ( )0,∞ Range: ( ),−∞ ∞

75. Shift the graph of 3logy x= left 2 units, then down 1 unit. Domain: ( )2,− ∞ Range: ( ),−∞ ∞

77. Reflect the graph of logy x= over the x-axis, then shift up 1 unit. Domain: ( )0,∞ Range: ( ),−∞ ∞

79. Shift the graph of lny x= left 4 units. Domain: ( )4,− ∞ Range: ( ),−∞ ∞

81. Compress the graph of logy x= horizontally by a factor of 2. Domain: ( )0,∞ Range: ( ),−∞ ∞

Chapter 5

248

83. Use 1210log1 10

ID −⎛ ⎞= ⎜ ⎟×⎝ ⎠

.

Here, 6

612

1 1010log 10log(10 )1 10

60log(10) 60

D

dB

⎛ ⎞×= =⎜ ⎟×⎝ ⎠= =

85. Use 1210log1 10

ID −

⎛ ⎞= ⎜ ⎟×⎝ ⎠.

Here, 0.3

11.712

1

1 1010log 10log(10 )1 10

117 log(10) 117

D

dB

=

⎛ ⎞×= =⎜ ⎟×⎝ ⎠= =

87. Use ( )4.423 10log EM = .

Here,

( ) ( )

[ ]

17

4.412.62 2

3 310

12.62103

23

1.41 10log log 1.41 10

log(1.41) log (10 )

log(1.41) 12.6 8.5

M ×= = ×

⎡ ⎤= +⎣ ⎦= + ≅

89. Use ( )4.423 10log EM = .

Here,

( ) ( )

[ ]

14

4.49.62 2

3 310

9.62103

23

2 10log log 2 10

log(2) log (10 )

log(2) 9.6 6.6

M ×= = ×

⎡ ⎤= +⎣ ⎦= + ≅

91. Use 10logpH H +⎡ ⎤= − ⎣ ⎦ . Here,

[ ]

410

4

log (5.01 10 )

log(5.01) log(10 )

log(5.01) 4 3.3

pH −

= − ×

⎡ ⎤= − +⎣ ⎦=− − ≅

93. Use 10logpH H +⎡ ⎤= − ⎣ ⎦ . Normal Rainwater:

5.610log (10 ) 5.6pH −= − =

Acid rain/tomato juice: 4

10log (10 ) 4pH −= − =

95. Use 10logpH H +⎡ ⎤= − ⎣ ⎦ . Here,

3.610

10

log (10 )( 3.6) log 10 3.6

pH −= −= − − =

97. Use ln

5000.0001216

C

t

⎛ ⎞⎜ ⎟⎝ ⎠= − .

Here, 100 1ln ln500 5 13,236

0.0001216 0.0001216t

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠= − = − ≅

99. ( )3

3

3

3 1010log 10 log 3 log(10 ) 30 10log(3) 251

dB dB−

=−

⎡ ⎤⎛ ⎞× ⎢ ⎥= = + = − + ≅ −⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦

.

So, the result is approximately a 25 dB loss. 101. 2log 4 x= is equivalent to 2 4x = (not 42x = ). 103. The domain is the set of all real numbers such that 5 0x + > , which is written as ( )5,− ∞ . 105. False. The domain is all positive real numbers. 107. True.

Section 5.2

249

109. Consider ( ) ln( )f x x a b= − − + , where a, b are real numbers. Domain: Must have 0x a− > , so that the domain is ( ),a ∞ . Range: The graph of ( )f x is the graph of ln x shifted a units to the right, then reflected over the x-axis, and then shifted up b units. Through all of this movement, the range of y-values remains the same as that of ln x , namely ( ),−∞ ∞ . x-intercept: Solve ln( ) 0x a b− − + = :

ln( ) 0ln( )

b

b

x a bx a bx a e

x a e

− − + =− =

− =

= +

So, the x-intercept is ( ),0ba e+ .

111.

113. The graphs are symmetric about the line y x= .

Note on Graphs: Solid curve is xy e= and dashed curve is lny x= .

Chapter 5

250

115. The common characteristics are: o x-intercept for both is (1,0). o y-axis is the vertical asymptote for

both. o Range is ( , )−∞ ∞ for both. o Domain is (0, )∞ for both.

Note on Graphs: Solid curve is logy x= and dashed curve is lny x=

117. The graphs of f, g, and h are below. We note that f and g have the same graph with domain ( )0,∞ .

Section 5.3 Solutions -------------------------------------------------------------------------------- 1.

9log 1

9 10

x

x

x

=

==

3. ( )

( )12

12

1 12 2

log

1

x

x

x

=

=

=

5. 8

108

log 10

10 108

x

x

x

=

==

Section 5.3

251

7. 10

3

log 0.001

10 0.001 103

x

x

x

=

= == −

9.

32

2

32

log 8

2 8 2x

x

x

=

= ==

11. 8log 58 5=

13. ln( 5) 5xe x+ = +

15. 3

5 53log 2 log 2 35 5 2 8= = = 17.

27 72log 3 log 3 2 1

97 7 3−− −= = =

19. ( ) ( ) ( )

( ) ( )

3 5 3 5log log log

3log 5logb b b

b b

x y x y

x y

= +

= +

21.

( ) ( ) ( )( ) ( )

1 11 13 32 2

1 12 3

log log log

log log

b b b

b b

x y x y

x y

= +

= +

23.

( ) ( )( ) ( )

13 1 1

3 212

1 13 2

log log log

log log

b b b

b b

r r ss

r s

⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠= −

25.

( ) ( )

( ) ( ) ( )( ) ( ) ( )

log log log

log log log

log log log

b b b

b b b

b b b

x x yzyz

x y z

x y z

⎛ ⎞= −⎜ ⎟

⎝ ⎠= − +⎡ ⎤⎣ ⎦= − −

27.

( ) ( ) ( ) ( ) ( ) ( )122 2 2 1

2log 5 log log 5 log log 5 2log log 5x x x x x x x x+ = + + = + + = + +

29.

( ) ( )( ) ( ) ( )

( )

12

3 23 2 2

2

3 2 2

212

( 2)ln ln ( 2) ln 55

ln ln ( 2) ln 5

3ln( ) 2 ln( 2) ln 5

x x x x xx

x x x

x x x

⎛ ⎞−= − − +⎜ ⎟

+⎝ ⎠

= + − − +

= + − − +

31.

( ) ( )[ ]

2 2

2

2

2 1 ( 1)log log9 ( 3)( 3)

log ( 1) log ( 3)( 3)

2 log( 1) log( 3) log( 3)2 log( 1) log( 3) log( 3)

x x xx x x

x x x

x x xx x x

⎛ ⎞ ⎛ ⎞− + −=⎜ ⎟ ⎜ ⎟− − +⎝ ⎠ ⎝ ⎠

= − − − +

= − − − + +

= − − − − +

Chapter 5

252

33. ( )( )

3 5

3 5

3log 5log log log

log

b b b b

b

x y x y

x y

+ = +

=

35. 5 2

5

2

5log 2log log log

log

b b b b

b

u v u v

uv

− = −

⎛ ⎞= ⎜ ⎟

⎝ ⎠

37. ( )2 21 13 32 21 2

2 3log log log log logb b b b bx y x y x y+ = + =

39.

( )

2 3 2

2 3 2

2

3 2

2 log 3log 2log log log log

log log

log

u v z u v z

u v z

uv z

⎡ ⎤− − = − +⎣ ⎦

= −

⎛ ⎞= ⎜ ⎟

⎝ ⎠

41.

[ ]

2 2 2

2 2

2

2 2

ln( 1) ln( 1) 2ln( 3) ln( 1) ln( 1) ln( 3)ln ( 1)( 1) ln( 3)

1ln( 3)

x x x x x xx x x

xx

+ + − − + = + + − − +

= + − − +

⎛ ⎞−= ⎜ ⎟+⎝ ⎠

43.

( )

1132

1132

12

13

1 12 3ln( 3) ln( 2) ln ln( 3) ln( 2) ln

ln( 3) ln ( 2)

( 3)ln( 2)

x x x x x x

x x x

xx x

⎡ ⎤+ − + − = + − + +⎣ ⎦⎡ ⎤= + − +⎣ ⎦

⎛ ⎞+= ⎜ ⎟⎜ ⎟+⎝ ⎠

45. 5log 7log 7 1.2091log5

= ≅ 47. 12 1

2

log5log 5 2.3219log

= ≅ −

49. 2.7log5.2log 5.2 1.6599log 2.7

= ≅ 51. log10log 10 2.0115logπ π

= ≅

53. 3

log8log 8 3.7856log 3

= ≅

Section 5.3

253

55. Use 1210 log1 10

ID −

⎛ ⎞= ⎜ ⎟×⎝ ⎠

.

In this case, ( )2 2 21 6 1

From music From conversation

(1 10 ) (1 10 ) 1.00001 10W W Wm m mI − − −= × + × = × .

So, 1

12

1.00001 1010log 1101 10

D dB−

⎛ ⎞×= ≅⎜ ⎟×⎝ ⎠

that you are exposed to.

57. Use 23 4.4log

10EM ⎛ ⎞= ⎜ ⎟

⎝ ⎠.

Here, the combined energy is 12 8(4.5 10 ) (7.8 10 )× + × joules. The corresponding

magnitude on the Richter scale is 12 8

23 4.4

(4.5 10 ) (7.8 10 )log 5.510

M⎛ ⎞× + ×

= ≅⎜ ⎟⎝ ⎠

.

59. Cannot apply the quotient property directly. Observe that 23log5 log5 3log5 2log5 log5− = − = .

61. Cannot apply the product and quotient properties to logarithms with different bases. So, you cannot reduce the given expression further without using the change of base formula.

63. True. ln 1logln10 ln10

ee = =

65. False. 3ln( ) 3ln( ) 3(ln ln )xy xy x y= = + , which does not equal 3(ln ln )x y+ , in general. 67. Claim: ( )log log logM

b b bN M N= −

Proof: Let log , logb bu M v N= = . Then, ,u vb M b N= = .

Observe that ( ) ( ) ( )log log log log logu

vu vbM

b b b b bN bb u v M N−= = = − = − . ▪

69.

( ) ( )( ) ( ) ( )

6 32 2 6

3 5 3 5 9 15

6 9 15

6 9 15

log log log

log log

log log log

6log 9log 15log

b b b

b b

b b b

b b b

x x xy z y z y z

x y z

x y z

x y z

− − −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= −

⎡ ⎤= − +⎣ ⎦= − +

Chapter 5

254

71. Yes, they are the same graph.

73. No, they are not the same graph.

Note on Graphs: Solid curve is log

log 2xy = and

dashed curve is log log 2y x= − . 75. No, they are not the same graph, even though the property is true.

Note on Graphs: The thin curve plus the dashed curve is 2ln( )y x= (domain all real numbers except 0) and the dashed curve only is 2 lny x= (domain is (0, )∞ ).

77. The graphs of lny x= and loglog

xye

=

do coincide, and are as follows:

Section 5.4 Solutions --------------------------------------------------------------------------------

1.

4

3 813 3

4

x

x

x

=

==

3.

2

1749

7 72

x

x

x

=

== −

5. 2

2 4

2

2 16

2 24

2

x

x

xx

=

=

== ±

Section 5.4

255

7. ( )( ) ( ) ( )

1 2723 8

1 3 332 23 2 3

1 34

x

x

xx

+

+ −

=

= =

+ = −= −

9. 2 3 0

32

12 3 0

xe ex

x

+ = =+ =

= −

11. 2 5 3 47 7

2 5 3 4

1

x x

x x

x

− −=− = −

= −

13. 2 12 7

2

2

2 212 7

7 12 0( 4)( 3) 0

3,4

x x

x xx xx x

x

+ =

+ =

− + =− − =

=

15.

( )

2

2

4

2 2 4

2

2

9 3

3 3 3

2 46 0

( 6) 0

0,6

x x x

xx x x

x x xx x

x x

x

=

= =

= −

− =− =

=

17. 25 1 3

2

2

5 1 35 4 0

( 4)( 1) 0

1,4

x xe ex x

x xx x

x

− +=

− = +

− + =− − =

=

19.

( )2 3

2 3

3 log(81)2

10 81

log 10 log(81)

2 3 log(81)2 3 log(81)

2.454

x

x

xx

x

+

=

=

− == +

= ≅

21. 1

3

3

3 5log (5) 1

log (5) 1 0.465

x

x

x

+ == +

= − ≈

23.

[ ]

3 1

2

123

27 2log (27) 3 1

log (27) 1 1.918

x

x

x

−== −

= + ≈

25. 3 8 7

3 155

ln 5 1.609

x

x

x

eee

x

− =

=

=

= ≈

27. 0.1

0.1

0.1

9 2 12 8

40.1 ln 4

13.863

x

x

x

eee

x

x

− =

=

==

Chapter 5

256

29. ( )

( )

3

2 3 11 9

2 3 20

3 10

log (10) 2.096

x

x

x

x

− =

=

=

= ≈

31.

( )3 4

3 4

4 ln(22)3

22

ln ln(22)

3 4 ln(22)3 4 ln(22)

0.303

x

x

e

e

xx

x

+

+

− +

=

=

+ == − +

= ≅ −

33.

( )

2

2

2

ln 62

3 186

ln ln(6)

2 ln(6)0.896

x

x

x

ee

e

xx

=

=

=

== ≅

35. Note that 2 7 3 0x xe e+ − = is equivalent to ( ) ( )27 3 0x xe e+ − = . Let xy e= and

solve 2 7 3 0y y+ − = using the quadratic formula: 27 7 4(1)( 3) 7 612 2

y− ± − − − ±

= =

So, substituting back in for y, the following two equations must be solved for x: 7 61

2xe − += and 7 61

2xe − −=

Since 7 61 02

− −< , the second equation has no real solution. Solving the first one

yields 7 61ln 0.9042

x⎛ ⎞− +

= ≅ −⎜ ⎟⎜ ⎟⎝ ⎠

.

37.

( )23 3 0

3 3 03 3

0

x x

x x

x x

x xx

− =

− =

== −=

39. 2 1

52 5

7ln(7) 1.946

x

x

x

ee

ex

=−

= −

== ≈

41.

2

2

2

2

20 46

20 24 44 4

12 0

x

x

x

x

ee

ee

x

=−

= −

=

==

Section 5.4

257

43.

( )2

2

2

10

4 210 7

4 2 10 14

10 92 log (9)

0.477

x

x

x

xx

=−

= −

==≈

45.

2

log(2 ) 210 2100 250

xxx

x

=

===

47. 3

4

log (2 1) 4

2 1 32 80

40

x

xxx

+ =

+ ===

49. 2

3

189

32

log (4 1) 3

2 4 14 1

x

xxx

− = −

= −= +

=

51. 2

2

2

ln ln 9 0ln ln 9

93

xxxx

− =

=

== ±

53.

( )5 5

5

2

log ( 4) log 1log ( 4) 1

( 4) 54 5 0

( 5)( 1) 0

5, 1

x xx xx x

x xx x

x

− + =

− =

− =

− − =− + =

= −

55.

2

2

log( 3) log( 2) log(4 )log( 3)( 2) log(4 )

( 3)( 2) 46 4

5 6 0( 6)( 1) 0

6, 1

x x xx x xx x x

x x xx x

x x

x

− + + =− + =− + =

− − =

− − =− + =

= −

57. ( )4 4 4

44

4

log (4 ) log 3

4log 3

log (16) 3

x

x

x

x

− =

⎛ ⎞=⎜ ⎟

⎝ ⎠=

Since the last line is a false statement, this equation has no solution.

61. 2

2 5

5

ln 5

12.182

xx e

x e

=

=

= ± ≈ ±

59.

258

log(2 5) log( 3) 12 5log 1

32 5 10

32 5 10 30

8 25

x xx

xx

xx x

xx

− − − =

−⎛ ⎞ =⎜ ⎟−⎝ ⎠−

=−− = −

==

63.

2

log(2 5) 22 5 10

2 9547.5

xx

xx

+ =

+ ===

Chapter 5

258

65. ( )2

2 4

2 4

4

ln 1 4

11

1 7.321

x

x ex e

x e

+ =

+ =

= −

= ± − ≈ ±

67.

2

212

ln(2 3) 22 3

3 1.432

xx e

x e

+ = −

+ =

⎡ ⎤= − + ≈ −⎣ ⎦

69. ( )( )( )( ) 1.5

2

2

log(2 3 ) log 3 2 1.5

log (2 3 ) 3 2 1.5

(2 3 ) 3 2 10 31.622

6 13 6 31.6226 13 25.622 0

x x

x x

x x

x xx x

− + − =

− − =

− − = ≅

− + ≅

− − ≅

Now, use the quadratic formula: 13 783.93 , so that 3.42

12x x±= ≅ , 1.25−

71.

4

2 4

4

ln ln( 2) 4ln ( 2) 4

( 2)2 0

2 4 4(1)( )2

6.456

x xx xx x e

x x e

ex

+ − =− =

− =

− − =

± − −=

≈ − , 8.456

73. 7 7 7

7 7

2

log (1 ) log ( 2) log ( )1log log ( )

21

21 ( 2)

3 1 0

x x xx x

xx x

xx x x

x x

− − + =

−⎛ ⎞ =⎜ ⎟+⎝ ⎠−

=+− = +

+ − =

There are no rational solutions since neither 1 nor 1− work. So, graph to find the real roots:

So, the solution is approximately 0.3028.

Section 5.4

259

75.

1 1 12 2 2

2

2

ln 4 ln 2 ln 1ln( 4) ln( 2) ln( 1)

4ln ln( 1)24 124 2

2 6 0

2 4 4(1)( 6)1 7

21.646

x x xx x x

x xxx xxx x x

x x

x

+ − − = ++ − − = +

+⎛ ⎞ = +⎜ ⎟−⎝ ⎠+

= +−+ = − −

− − =

± − −= = ±

≈ − , 3.646

77. Use ( )( ) 1 ntrnA t P= + .

Here, 0.035, 1r n= = .

In order to triple, if P is the initial investment, then we seek the time t such that ( ) 3A t P= . So, we solve the following equation:

( )1( )0.0351

1.035

3 1

3 (1.035)log 3

t

t

P P

t

= +

==

So, it takes approximately 31.9 years to triple.

79. Use ( )( ) 1 ntrnA t P= + .

Here, 20,000, 0.05, 4, 7500A r n P= = = = .

So, we solve the following equation: ( )4( )0.05

4

4

1.0125

11.01254

20,000 7500 1

2.667 (1.0125)log 2.667 4log 2.667

t

t

tt

= +

==

=

So, it takes approximately 19.74 years.

81. Use 23 4.4log

10EM ⎛ ⎞= ⎜ ⎟

⎝ ⎠.

Here, 7.4M = . So, substituting in, we can solve for E:

15.5

23 4.4

4.4

11.14.4

11.1 4.4 15

10

7.4 log10

11.1 log10

1010

10 10 3.16 10

E

E

E

E=

⎛ ⎞= ⎜ ⎟⎝ ⎠

⎛ ⎞= ⎜ ⎟⎝ ⎠

=

× ≈ × =

So, it would generate 153.16 10× joules of energy.

83. Use 1210log10

ID −⎛ ⎞= ⎜ ⎟⎝ ⎠

. Here, 120D = . So, substituting in, we can solve for I:

12

12

1212

12 12

120 10log10

12 log10

1010

1 10 10

I

I

I

I

⎛ ⎞= ⎜ ⎟⎝ ⎠

⎛ ⎞= ⎜ ⎟⎝ ⎠

=

= × =

So, the intensity is 21Wm .

Chapter 5

260

85. Use 0.50

tA A e−= . Here, 00.10A A= , where 0A is the initial amount of anesthesia. So, substituting into the above equation, we can solve for t:

0.50 0

0.5

10.5

0.10

0.10ln(0.10) 0.5ln(0.10)

t

t

A A e

et

t

=

== −

− =

So, it takes about 4.61 hours until 10% of the anesthesia remains in the bloodstream.

87. Use 0.2

2001 24 tN

e−=+

. Here, 100N = . So, substituting into the above equation, we

can solve for t:

( )

( )( )

0.2

0.2

0.2

0.2

0.2 124

124

1 10.2 24

2001001 24

100 1 24 200

1 24 224 1

0.2 ln

ln 15.89

t

t

t

t

t

ee

eee

t

t

=+

+ =

+ =

=

=

− =

= − ≈

So, it takes about 15.9 years.

89. Use 23 4.4log

10EM ⎛ ⎞= ⎜ ⎟

⎝ ⎠.

For P waves: Here, 6.2M = . So, substituting in, we can solve for E:

13.7

23 4.4

4.4

9.34.4

9.3 4.4

10

6.2 log10

9.3 log10

1010

10 10

E

E

E

E=

⎛ ⎞= ⎜ ⎟⎝ ⎠

⎛ ⎞= ⎜ ⎟⎝ ⎠

=

× =

For S waves: Here, 3.3M = . So, substituting in, we can solve for E:

9.35

23 4.4

4.4

4.954.4

4.95 4.4

10

3.3 log10

4.95 log10

1010

10 10

E

E

E

E=

⎛ ⎞= ⎜ ⎟⎝ ⎠

⎛ ⎞= ⎜ ⎟⎝ ⎠

=

× =

So, the combined energy is ( )13.7 9.3510 10+ joules. Hence, the reading on the Richter

scale is: 9.35 13.7

23 4.4

10 10log 6.210

M⎛ ⎞+

= ≈⎜ ⎟⎝ ⎠

Section 5.4

261

93. 5x = − is not a solution since log( 5)− is not defined.

91. ln(4 ) 4xe x≠ . Should first divide both sides by 4, then take the natural log:

94

9494

4 9

ln( ) ln( )ln( )

x

x

x

ee

ex

=

=

=

=

95. True.

97. False. Since lnln10log xx = , ( )

1ln 1ln10ln10 ln10log lnxx xe e e x x= = = ≠ .

99.

2

1 13 2

3 21 13 2

( 1)

23

2

2 2

log ( ) log ( 2 1) 2

log ( ) log ( 1) 2log log ( 1) 2

log ( ( 1)) 2

( 1)0

b bx

b b

b b

b

x x x

x xx x

x x

b x xx x b

= −

+ − + =

+ − =+ − =

− =

= −

− − =

Now, use the quadratic formula to find the solutions:

2

2 2

1 1 4( )2

1 1 4 1 1 4,2 2

bx

b b

± − −=

+ + − +=

This is negative, for any valueof . So, it cannot be a solution.b

101.

( )

( )( )

0.2

0.2

0.2

0.2

30000.22

30002

30002

30001 2

1 2 3000

2 30002 3000

0.2 ln

5ln

t

t

t

t

yty

yy

yy

ye

y e

y yeye y

e

t

t

−−

=+

+ =

+ =

= −

=

− =

= −

Chapter 5

262

103. Consider the function 2

x xe ey−+

= , for 0, 1x y≥ ≥ . (Need this restriction in order

for the function to be one-to-one, and hence have an inverse.) Solve 2

x xe ey−+

= for x.

( )

2

2

( ) 11

( ) 1

2

2

2

2 22

2 ( ) 1

( ) 2 1 0

x

x x

x

x

x x

exe e

ee

x x

x x

e ey

ey

y

ye e

e y e

+

+

+=

+= =

=

= +

− + =

Now, solve using the quadratic formula:

2 2

2

2 ( 2 ) 4 2 4 42 2

2 2 1 22 1

y y y yx

y y

e

y y

± − − ± −

± −

= =

= = ± −

Since 1( ) (0, ) ( )dom f rng f −= ∞ = , we

use only 2 1y y+ − here. Now to solve for x, take natural log of both sides:

( )2

2

1

ln 1

xe y y

x y y

= + −

= + −

Thus, inverse function is given by

( )1 2( ) ln 1f x x x− = + − .

105. Observe that 2

2

2

3 9 4 3 52 2

ln(3 ) ln( 1)3 1

3 1 0

x xx x

x x

x ± − ±

= +

= +

− + =

= =

These solutions agree with the graphical solution seen to the right. Note on Graphs: Solid curve is ln(3 )y x= and the thin curve is 2ln( 1)y x= + .

Section 5.5

263

107.

Note on Graphs: Solid curve is 3xy = and the thin curve is 5 2y x= + .

109. The graph of ( )2

x xe ef x−+

= is given

below:

The domain is ( ),−∞ ∞ , and the graph is symmetric about the y-axis. There are no asymptotes.

Section 5.5 Solutions--------------------------------------------------------------------------------- 1. c (iv) 3. a (iii) 5. f (i) 7. Use 0

r tN N e= . Here, 0 80, 0.0236.N r= = Determine N when 7t = (determined by 2010 – 2003): 0.0236(7)80 94N e= ≈ million. 9. Use 0

r tN N e= . Here, 0 103,800, 0.12.N r= = Determine t such that 200,000N = :

( )0.12 0.12200,000 200,0001103,800 0.12 103,800200,000 103,800 ln 5.5t te e t= ⇒ = ⇒ = ≈

So, the population would hit 200,000 sometime in the year 2008. 11. Use 0

r tN N e= . Here, 0 487.4, 0.165.N r= = Determine N when 3t = (corresponds to the number of cell phone subscribers in 2010): 0.165(3)487.4 799.6N e= ≈ There are approximately 799.6 subscribers in 2010. 13. Use 0

r tN N e= . Here, 0 185,000, 0.30.N r= = Determine N when 3t = : 0.30(3)185,000 455,027N e= ≈

The amount is approximately $455,000. 15. Use 0

r tN N e= (t measured in months). Here, 0 100 (million), 0.20.N r= =

Determine N when 6t = : ( )0.20 6100 332 millionN e= ≈ . 17. Use 0

r tN N e= (t measured in months). Here, 0 1 (million), 0.025.N r= =

Determine N when 7t = : ( )0.025 71 1.19 millionN e= ≈ . 19. Use 0.5100 tA e−= . Observe that 0.5 (4)(4) 100 13.53 mlA e−= ≈

Chapter 5

264

21. Use 0r tN N e= (1). We know that

102(5,730)N N= (2). If 0 5N = (grams),

find t such that ( ) 2N t = . To do so, we must first find r. To this end, substitute (2) into (1) to obtain:

( )(5,730)1 1 12 5,730 2lnre r= ⇒ =

Now, solve for t: ( )

( ) ( )( )( )

1 15,730 2ln

2 1 15 5,730 2

25

1 15,730 2

2 5ln ln

ln7575 years

ln

tet

t

=

=

= ≈

23. Use 0r tN N e= (1). We know that

9 102(4.5 10 )N N× = (2). Find t such that

0( ) 0.98N t N= . To do so, we must first find r. To this end, substitute (2) into (1) to obtain:

( )9

9(4.5 10 )1 1 1

2 24.5 10lnre r×

×= ⇒ =

Now, solve for t:

00.98 N 0N=( )

( )( )

1 19 24.5 10

9

ln

1 124.5 10

ln 0.98131,158,556 years old

ln

te

t

×

×

= ≈

25. Use ( )0k t

s sT T T T e−= + − . Here, 0 325, 72, and (10) 200sT T T= = = . Find (30)T . To do so, we must first find k. Observe

( )

( )

(10)

10

128110 253

200 72 325 72

128 253ln

k

k

e

ek

= + −

=

= −

Now, ( )( )128110 253ln 30(30) 72 253 105 FT e− − ⋅

= + ≈ . 27. Use ( )0

k ts sT T T T e−= + − (1).

Assume 0t = corresponds to 7am. We know that (0) 85, (1.5) 82, 74sT T T= = = . (2)

Find t such that ( ) 98.6T t = . We first use (2) in (1) to find k and 0T . ( )( )

( )

00 0 0

1.5 1.5

811.5 11

85 74 74 85

82 74 85 74 8 11

ln

k k

T e T T

e e

k

− −

= + − = ⇒ =

= + − ⇒ =

⇒ = −

Now, solve for t: ( )( )

( )

( )( )

811.5 11

811.5 11

ln

ln

24.611

811.5 11

98.6 74 (85 74)

24.6 11ln

3.8ln

t

t

e

e

t

− −= + −

=

− ≈ =

So, the victim died approximately 3.8 hours before 7am. So, by 8:30am, the victim has been dead for about 5.29 hours.

Section 5.5

265

29. Use 0r tN N e−= (1).

We have 0(0) 38,000

(1) 32,000N NN

= ==

(2)

In order to determine (4)N , we need to first determine r. To this end, substitute (2) into (1) to obtain:

( )32,00038,00032,000 38,000 lnre r−= ⇒ = −

Thus, ( )( )32,00038,000ln 4

(4) 38,000 19,100N e− − ⋅

= ≈ . The book value after 4 years is approximately $19,100.

31. Use 2

100,0001 10 tN

e−=+

.

a. 2(2)

100,000(2) 84,5201 10

Ne−= ≈

+

b. 2(30)

100,000(30) 100,0001 10

Ne−= ≈

+

c. The highest number of new convertibles that will be sold is 100,000 since the smallest that 21 10 te−+ can be is 1.

33. Use 0r tN N e−= (1).

Assuming that 0t = corresponds to 1997, we have

0(0) 2,422(6) 7,684

N NN

= ==

(2)

In order to determine (13)N , we need to first determine r. To this end, substitute (2) into (1) to obtain:

( )(6) 7.68416 2,4227,684 2,422 lnre r−= ⇒ = −

Thus, ( )( )7.6841

6 2,422ln 13(13) 2,422 29,551N e

− − ⋅= ≈ cases.

35. Find t such that 1.56

10,000 50001 19 te− =+

.

( )

( )

1.56

1.56

1.56

1.56 119

1 11.56 19

10,000 5000 1 19

2 1 191 19

ln 1.89 years

t

t

t

t

e

ee

e

t

= +

= +

=

=

= − ≈

37. Consider 2

( ) rI r e−= , whose graph is below. Note that the beam is brightest when 0r = .

Chapter 5

266

39. Consider 2

2( 75)25( ) 10

x

N x e−−

= . a. The graph of N is as follows:

b. Average grade is 75.

c. 2

2(50 75)25 1(50) 10 10 4N e e−

−−= = ≈

d. 2

2(100 75)25 1(100) 10 10 4N e e−

−−= = ≈

41. Use ( )( )

ln 1ln 1

PrnR

rn

tn

−= −

+.

a. Here, 80,000, 0.09, 12, 750P r n R= = = = . So, ( )

( )

80,000(0.09)12(750)

0.0912

ln 118 years

12ln 1t

−= − ≈

+.

b. Here, 80,000, 0.09, 12, 1000P r n R= = = = . So, ( )

( )

80,000(0.09)12(1000)

0.0912

ln 110 years

12ln 1t

−= − ≈

+.

43. r = 0.07, not 7 45. True 47. False (Since there is a finite number of students at the school to which the lice can spread.) 49. Take a look at a couple of graphs for increasing values of c. For definiteness, let a = k = 1, and take c = 1 and c = 5, respectively. The graphs are:

As c increases, the model reaches the carrying capacity in less time.

Chapter 5 Review

267

51. a. The graphs are below: For the same periodic payment, it will take Wing Shan fewer years to pay off the loan if she can afford to pay biweekly.

b. 11.58 years c. 10.33 years d. 8.54 years, 7.69 years, respectively. Chapter 5 Review Solutions ----------------------------------------------------------------------- 1. 17,559.94 3. 5.52 5. 24.53 7. 5.89

9. 4 ( 2.2) 6.22 2 73.52− − = ≅ 11. ( ) ( )121 6( ) 22 2

5 5 6.25− −= =

13. b y-intercept 14(0, ) 15. c y-intercept (0,11)

17. y-intercept: (0, 1)− HA: 0y =

Reflect the graph of ( )16

x over the x- axis.

19. y-intercept: (0, 2) . HA: 1y =

Shift the graph of ( )1100

x up 1 unit.

Chapter 5

268

21. y-intercept: (0,1) . HA: 0y =

23. y-intercept: (0,3.2) . HA: 0y =

25. Use ( )( ) 1 ntrnA t P= +

Here, 4500, 0.045, 2, 7P r n t= = = = .

Thus, ( )2(7)0.0452(7) 4500 1 6144.68A = + ≅ .

So, the amount in the account after 7 years is $6144.68.

27. Use ( ) r tA t Pe= . Here, 13,450, 0.036, 15P r t= = = . Thus,

(0.036)(15)(15) 13,450 23,080.29A e= ≅ . So, the amount in the account after 15 years is $23,080.29.

29. 34 64= 31. 2 110010− =

33. 6log 216 3= 35. ( )213

4169log 2=

41. 1.51 37.

7log 1

7 10

x

x

x

=

==

39.

( )16

416

log 1296

1296 64

x

x

x

=

= =

= −

43. 2.08−

45. Must have 2 0x + > , so that the domain is ( 2, )− ∞ . 47. Since 2 3 0x + > , for all values of x, the domain is ( , )−∞ ∞ .

49. b 51. d Shift the graph of 7log x left 1 unit, then down 3 units. Also, VA is

1x = − .

Chapter 5 Review

269

53. Shift the graph of 4log x right 4 units, then up 2 units.

55. Reflect the graph of 4log x over the x-axis, then shift down 6 units.

57. Use 10logpH H +⎡ ⎤= − ⎣ ⎦ . Here,

[ ]

710

7

log (3.16 10 )

log(3.16) log(10 )

log(3.16) 76.5

pH −

= − ×

⎡ ⎤= − +⎣ ⎦=− −

59. Use 1210log1 10

ID −

⎛ ⎞= ⎜ ⎟×⎝ ⎠.

Here, 7

512

1 1010log 10log(10 )1 10

50log(10) 50

D

dB

⎛ ⎞×= =⎜ ⎟×⎝ ⎠= =

61. 1 63. 6

65. ( ) ( ) ( )

( ) ( )log log log

log log

a b a bc c c

c c

x y x y

a x b y

= +

= +

67.

( ) ( )( ) ( ) ( )

33log log log

log log 3log

j j j

j j j

rs rs tt

r s t

⎛ ⎞ = −⎜ ⎟⎝ ⎠

= + −

69.

( ) ( )( ) ( ) ( )( ) ( ) ( )

12 3 21

52 23 2

52

3 2152 2

31 22 2 5

log log log

log log log

log log log

a a b cb c

a b c

a b c

⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠⎡ ⎤= − +⎣ ⎦

= − −

71.

8log 3log 3log80.5283

=

73. log1.4log 1.4log

0.2939

π π=

75.

4

14256

4 44

x

x

x

=

== −

77. 3 4 0

43

13 4 0

xe ex

x

− = =− =

=

Chapter 5

270

79. ( )

( )

213

21 4

2 4

81

3 3

3 32 4

6

x

x

x

xx

+

+−

− −

=

=

=− − =

= −

81. 2 3

2 3

3 ln132

3 1013

2 3 ln130.218

x

x

eex

x

+

+

− +

− =

=+ =

= ≈ −

83. Note that 2 6 5 0x xe e+ + = is equivalent to ( ) ( ) ( )( )26 5 5 1 0x x x xe e e e+ + = + + = .

Neither No solution No solution

5 0 or 1 0x xe e+ = + = has a real solution. So, the original equation has no

solution. 85.

( )( )( ) ( )2 2

2 2

2 2

2 2 2 2 0

2 2 0

2 2 02 22 2

0

x x x x

x x

x x

x x

x xx

− −

− + =

− =

− =

== −=

87.

2

1003

log(3 ) 210 3100 3

xxx

x

=

===

89.

( )

( )( )

4 4

24

2 8

2 812

412

log ( ) log 2 8

log 2 8

2 4

4

4

128 2 , 128 2

x x

x

x

x

x

x

+ =

=

=

=

= ±

= −

91. 2

2 2.2

2.2

ln 2.2

3.004

xx e

x e

=

=

= ± ≈ ±

Chapter 5 Review

271

93.

( )3 3 3

23 33

23

2

4 16 82

log (2 ) log ( 3) log ( )log log ( )

2 ( 3)4 2 0

2 6, 2 6

xx

xx

x x xx

xx x x

x x

x

x

−+

−+

− ± +

− − + =

=

=

− = +

+ − =

=

= − + − −0.449≈

95. Use ( ) r tA t Pe= . Here,

30,000, 0.05, 1A r t= = = Substituting into the above equation, we can solve for P:

0.05

0.05(1)

30,000

30,00028,536.88

e

PeP

=

≅ =

So, the initial investment in 1 year CD should be approximately $28,536.88.

97. Use ( )( ) 1 ntrnA t P= +

Here, we know that 0.042, 4, 2r n A P= = = . We can substitute these in to find t.

( )( )

4( )0.0424

4

1.0105

11.01054

2 1

2 1.0105log 2 4

16.6 log 2

t

t

P P

tt

= +

=

=

≅ =

So, it takes approximately 16.6 years until the initial investment doubles. 99. Use 0

r tN N e= . Here, 0 2.62, 0.035.N r= = Determine N when 6t = : 0.035(6)2.62 3.23 millionN e= ≈

The population in 2010 is about 3.23 million. 101. Use 0

r tN N e= (1). We have

0(0) 1000(3) 2500

N NN

= ==

(2)

In order to determine (6)N , we need to first determine r. To this end, substitute (2) into (1) to obtain ( )(3) 25001

3 10002500 1000 lnre r= ⇒ = .

Thus, ( )250013 1000ln 6(6) 1000 6250 bacteriaN e ⋅= ≈ .

Chapter 5

272

103. Use 0r tN N e−= .

We know that 102(28)N N= . Assuming

that 0 20N = , determine t such that 5N = . To do so, we first find r:

( )(28)1 1 10 02 28 2lnrN N e r−= ⇒ = −

Now, solve: ( )( )

( )

( )( )

1 128 2

1 128 2

14

1 128 2

ln

ln14

ln

ln

5 20

56 years

t

t

e

e

t

− −=

=

= ≈

105. Use 0r tN N e−= .

Assuming that 2003 occurs at 0t = , we know that

0 5600, (1) 2420N N= = . Find (7)N . To do so, we first find r:

( )(1) 242056002420 5600 lnre r−= ⇒ = −

Now, solve: ( )( )2420

5600ln (7)(7) 5600 16 fishN e− −= ≈

107. Use ( )0.0351000 1 tM e−= − . Since 0t = corresponds to 1998, we have

( )0.035 (12)(12) 1000 1 343 miceM e−= − ≈ .

109. The graph is as follows:

Using the calculator to compute the functional values for large values of x suggests that the HA is about 4.11y = . (Note: The exact equation of the HA is

2y e= .)

111. Let 2.4 0.81 log (3 1), 2 log ( 1) 3.5y x y x= − = − + .

The graphs are as follows:

The coordinates of the point of intersection are about (2.376, 2.071).

113. The graphs agree on ( )0,∞ , as seen below.

Chapter 5 Practice Test

273

115. The graph is below. Domain: ( , )−∞ ∞ . Symmetric about the origin. Horizontal asymptotes:

1 (as )y x= − → −∞ , 1 (as )y x= →∞

117. a. Using 0r tN N e= with (0,4) and

(18,2), we need to find r: ( )18 1 1

18 22 4 ln 0.35508re r= ⇒ = ≈ − So, the equation of dosage is given by

0.0385084 4(0.9622)t tN e−= ≈ . b. 4(0.9622)tN = c. Yes, they are the same.

Chapter 5 Practice Test----------------------------------------------------------------------------- 1.

3 3 3log10 log10x x x= = 3.

( )1

3

4 13

log 81

3 34

x x

x

x

=

= =

− =

5. 2 1

2

2

421 ln 42

1 ln 42

1 ln 42 2.177

xex

x

x

− =

− =

= +

= ± + ≈ ±

7.

30027

0.2 1

0.2 1 30027

30027

30027

1 ln( )0.2

27 300

0.2 1 ln( )0.2 1 ln( )

7.04

x

x

ee

xx

x

+

+

− +

=

=

+ =

= − +

= ≅

9.

2

2

3ln( 4) 6ln( 4) 2

44 11.389

xxx e

x e

− =− =

− =

= + ≈

11. ln(ln ) 1

ln15.154e

xx ex e

==

= ≈

Chapter 5

274

13.

( )6 6

6

2

2

log log ( 5) 2log ( 5) 2

5 365 36 0

( 9)( 4) 0

4

x xx x

x xx xx x

x

+ − =

− =

− =

− − =− + =

= − ,9

15.

( )2

2

ln ln( 3) 1ln ( 3) 1

33 0

3 9 4( )2

0.729, 3.729

x xx x

x x ex x e

ex

+ + =

+ =

+ =

+ − =

− ± − −=

≈ −

17.

( )12

12 61 2

12 6 126 12

ln 0.693

x

x

x

ee

ex

=+

= +

=

= ≈ −

19. Must have 2 10x

x −> and 2 1 0x − ≠

CPs 1,0,1−

| | |1 0 1

− + − +

So, the domain is ( ) ( )1,0 1,− ∪ ∞ .

21. y-intercept: 0(0) 3 1 2f −= + = . So, (0,2). x-intercept: None Domain: ( , )−∞ ∞ Range: (1, )∞ Horizontal Asymptote: y = 1 The graph is as follows:

23. y-intercept: None x-intercept: Must solve ln(2 3) 1 0.x − + =

11 3ln(2 3) 1 2 3

2e

ex x x +− = − ⇒ − = ⇒ =

So, 13 ,02

e+⎛ ⎞⎜ ⎟⎝ ⎠

.

Domain: 32( , )∞ Range: ( , )−∞ ∞

Vertical Asymptote: 32x =

The graph is as follows:

25. Use ( )( ) 1 ntr

nA t P= + . Here, 5000, 0.06, 4, 8P r n t= = = = . Thus, (8)A =

( )4(8)0.0645000 1 8051.62+ ≅ . So, the amount in the account after 8 years is $8051.62.

27. Use 1210log1 10

ID −

⎛ ⎞= ⎜ ⎟×⎝ ⎠. Here, 3

912

1 1010log 10log(10 ) 90log(10) 901 10

D dB−

⎛ ⎞×= = = =⎜ ⎟×⎝ ⎠

.

Chapter 5 Practice Test

275

29. Use ( )4.423 10log EM = . Here,

For 5M = :

( )( )

11.9

4.4

4.4

4.4

23 10

10

7.510

7.5 4.4

10

5 log

7.5 log

10

10 10

E

E

E

E=

=

=

=

× =

So, the energy here is 11.9 1110 7.9 10≈ × joules.

For 6M = :

( )( )

13.4

4.4

4.4

4.4

23 10

10

910

9 4.4

10

6 log

9 log

10

10 10

E

E

E

E=

=

=

=

× =

So, the energy here is 13.4 1310 2.5 10≈ × joules.

Thus, the range of energy is 11 137.9 10 2.5 10E× < < × joules. 31. Use 0

r tN N e= (1). We have

0(0) 200(2) 500

N NN

= ==

(2)

In order to determine (8)N , we need to first determine r. To this end, substitute (2) into (1) to obtain:

( )(2) 50012 200500 200 lnre r= ⇒ =

Thus, ( )50012 200ln 8(8) 200 7800 bacteriaN e ⋅= ≈ .

33. Solve 0.4

200010001 3 te−=+

.

( )( )

0.4

0.4

0.4

0.4 13

13

1 10.4 3

1000(1 3 ) 20001 3 2

3 1

0.4 ln

ln 3 days

t

t

t

t

eeee

t

t

+ =

+ =

=

=

− =

= − ≈

35. The graph is below. Domain: ( , )−∞ ∞ . Symmetric about the origin. No asymptotes

Chapter 5

276

Chapter 5 Cumulative Review --------------------------------------------------------------------

1. 1 2

3 58 51 21

3 5 5 6281

52

2x y x x y y x yx y−− = =

3. 25 4 3 0

4 16 4(5)( 3)2(5)

2 195

x x

x

− − =

± − −=

±=

5.

( ]

4 35

4 1519

, 19

x

xx

+≤ −

+ ≤ −≤ −

−∞ −

7. The line 4 3 6x y+ = is equivalent to 43 2y x= − + and so, has slope 4

3− . A line perpendicular to it must have slope 3

4 . Since the desired line must pass through (7,6), we have

3 3 34 4 46 ( 7)y x y x− = − ⇒ = +

9. a. 1 b. 5 c. 1 d. undefined e. Domain: ( 2, )− ∞ Range: (0, )∞ f. Increasing on (4, )∞ Decreasing on (0,4) Constant on (-2,0) 11. Yes, f is one-to-one since

( ) ( ) 4 44 4

f x f y x yx yx y

= ⇒ − = −

⇒ − = −⇒ =

13.

( )( )

2

2

2

2

( ) 4 8 5

4 2 5

4 2 1 5 4

4( 1) 1

f x x x

x x

x x

x

= − + −

= − − −

= − − + − +

= − − −

So, the vertex is (1,-1). 15. Rewrite as: ( )4 3 24 3 7 20 ( ( 4))x x x x x− − + + − ÷ − − Synthetic division then gives

4 1 4 3 7 204 0 12 20

1 0 3 5 0

− − − −−

− −

So, 3( ) 3 5, ( ) 0Q x x x r x= − + − = . 17. Vertical asymptote: x = 3 Horizontal asymptote: None Slant asymptote: 3y x= + since

( )

2

2

33 0 7

0 9

16

xx x x

x x

+− + +

− + −

Chapter 5 Cumulative Review

277

19. ( )3 32 2 31

25 25 5 125−= = = 21. ( )5

3 3log 243 log 3 5= =

23.

( )

22log(4 9) log(4 9) 2

14

10 10 (4 9) 1214 9 11

4 9 11

9 11 5

x x xx

x

x

+ += = + =+ = ±

= − ±

= − ± = − , 0.5

25. Use r tA Pe= . We know that 8500P = and 0.04r = . Determine t such that 12,000A = .

( )0.04

12,00010.04 8,500

12,000 8500

ln 8.62 years

te

t

=

= ≈

27. a. Using 0r tN N e= with (0,6) and (28,3), we need to find r:

( )28 1 128 23 6 ln 0.247553re r= ⇒ = ≈ −

So, the equation of dosage is given by 0.2475536 6(0.9755486421)t tN e−= ≈ .

b. (32) 2.72 gramsN ≈