yacine ikhlef lpthe, cnrs/sorbonne universit e

60
Connectivity operators of 2d loop models Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit´ e collaborators: B. Estienne, Th. Dupic, J. Jacobsen, A. Morin-Duchesne, H. Saleur September 2021 Saclay

Upload: others

Post on 12-Apr-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Connectivity operators of 2d loop models

Yacine IkhlefLPTHE, CNRS/Sorbonne Universite

collaborators:B. Estienne, Th. Dupic, J. Jacobsen,

A. Morin-Duchesne, H. Saleur

September 2021Saclay

Page 2: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

This talk is dedicated toThe 130 cleaners of the Jussieu campus

On strike since 14th September!

Donate to the support fund:https://www.leetchi.com/c/solidarite-avec-les-grevistes

-du-nettoyage-de-jussieu

Page 3: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Outline

1. Introduction

2. OPE structure constants

3. Fusion on the lattice

Page 4: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

1. Introduction

Page 5: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Critical random curves

I Classical 2d critical system → random fractal curves

I Examples: domain walls of a ferromagnet, contours ofpercolation clusters, configuration of a self-avoiding walk

SAW in plane - 1,000,000 steps

pictures courtesy of Tom Kennedy (University of Arizona)

I Non-trivial fractal dimensionsdIsing DW = 11/8 dperco contour = 7/4 dSAW = 4/3

[# disks of radius ε needed to cover the curve = N(ε) ∝ 1/εdf ]

Page 6: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Critical random curves

I Classical 2d critical system → random fractal curves

I Examples: domain walls of a ferromagnet, contours ofpercolation clusters, configuration of a self-avoiding walk

SAW in plane - 1,000,000 steps

pictures courtesy of Tom Kennedy (University of Arizona)

I Non-trivial fractal dimensionsdIsing DW = 11/8 dperco contour = 7/4 dSAW = 4/3

[# disks of radius ε needed to cover the curve = N(ε) ∝ 1/εdf ]

Page 7: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Critical random curves

I Classical 2d critical system → random fractal curves

I Examples: domain walls of a ferromagnet, contours ofpercolation clusters, configuration of a self-avoiding walk

SAW in plane - 1,000,000 steps

pictures courtesy of Tom Kennedy (University of Arizona)

I Non-trivial fractal dimensionsdIsing DW = 11/8 dperco contour = 7/4 dSAW = 4/3

[# disks of radius ε needed to cover the curve = N(ε) ∝ 1/εdf ]

Page 8: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

The dense O(n) loop model

I Dense loops configurations on the square lattice:

Z =∑

config

n# closed loops

I Loops ≡ cluster contours of critical FK model with qFK = n2

[Example: at n = 1, loops ≡ percolation cluster contours]

I There exists a dilute variant ⇒ critical polymers, domainwalls, . . .

Page 9: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

The dense O(n) loop model

I Dense loops configurations on the square lattice:

Z =∑

config

n# closed loops

I Loops ≡ cluster contours of critical FK model with qFK = n2

[Example: at n = 1, loops ≡ percolation cluster contours]

I There exists a dilute variant ⇒ critical polymers, domainwalls, . . .

Page 10: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

The dense O(n) loop model

I Dense loops configurations on the square lattice:

Z =∑

config

n# closed loops

I Loops ≡ cluster contours of critical FK model with qFK = n2

[Example: at n = 1, loops ≡ percolation cluster contours]

I There exists a dilute variant ⇒ critical polymers, domainwalls, . . .

Page 11: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Connectivity operators

I Examples of correlation functions:

I P[r1, . . . rp sit on the same loop] =

I P[r1, . . . rp sit on the same FK cluster], etc.

I “Local operator” = insertion of a marker (like •)

Page 12: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Connectivity operators

I Examples of correlation functions:

I P[r1, . . . rp sit on the same loop] =

I P[r1, . . . rp sit on the same FK cluster], etc.

I “Local operator” = insertion of a marker (like •)

Page 13: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Theories for loop correlations

I Description of the operator spectrum

generating alg. operator contentlattice periodic TL (quotients of)

standard modules

continuum Vir⊗Vir discrete set ofprimary ops.

I Rules of the operator algebra? φa × φb →∑c

Ncab φc

I Structure constants of the operator product expansion?

φa(r ′).φb(r) ∼r ′→r

∑c

C cab|r ′ − r |−xa−xb+xc φc(r)

I Universal correlation functions? 〈φ1(r1) . . . φp(rp)〉

Page 14: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Theories for loop correlations

I Description of the operator spectrum

generating alg. operator contentlattice periodic TL (quotients of)

standard modules

continuum Vir⊗Vir discrete set ofprimary ops.

I Rules of the operator algebra? φa × φb →∑c

Ncab φc

I Structure constants of the operator product expansion?

φa(r ′).φb(r) ∼r ′→r

∑c

C cab|r ′ − r |−xa−xb+xc φc(r)

I Universal correlation functions? 〈φ1(r1) . . . φp(rp)〉

Page 15: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Theories for loop correlations

I Description of the operator spectrum

generating alg. operator contentlattice periodic TL (quotients of)

standard modules

continuum Vir⊗Vir discrete set ofprimary ops.

I Rules of the operator algebra? φa × φb →∑c

Ncab φc

I Structure constants of the operator product expansion?

φa(r ′).φb(r) ∼r ′→r

∑c

C cab|r ′ − r |−xa−xb+xc φc(r)

I Universal correlation functions? 〈φ1(r1) . . . φp(rp)〉

Page 16: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Theories for loop correlations

I Description of the operator spectrum

generating alg. operator contentlattice periodic TL (quotients of)

standard modules

continuum Vir⊗Vir discrete set ofprimary ops.

I Rules of the operator algebra? φa × φb →∑c

Ncab φc

I Structure constants of the operator product expansion?

φa(r ′).φb(r) ∼r ′→r

∑c

C cab|r ′ − r |−xa−xb+xc φc(r)

I Universal correlation functions? 〈φ1(r1) . . . φp(rp)〉

Page 17: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

2. OPE structure constants

Page 18: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Scaling theory of the O(n) loop model[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

I “Coulomb-Gas” = Imaginary Liouville action, compact field

A[φ] =

∫d2r

√g

(∂µφ∂

µφ+ iQRφ+ κ e iφ/b), φ ≡ φ+2πb

I Parameters: n = −2 cosπb2, 0 < b ≤ 1, Q = b−1−b2

I Central charge: c = 1− 6Q2

I Compactification ⇒

discretisation of vertex charges

existence of defects with δφ ∈ 2πbZ

I Zero-defect sector: εk with h = h = hk+1,1 for k = 0, 1, 2, . . .

I Sector of defect charge δφ = 2πbm, with m ∈ Z× :Φem with (h, h) = (hem, he,−m) for e ∈ Z/m

[Kac notation: hrs = (r/b−sb)2−(1/b−b)2

4 ]

Page 19: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Scaling theory of the O(n) loop model[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

I “Coulomb-Gas” = Imaginary Liouville action, compact field

A[φ] =

∫d2r

√g

(∂µφ∂

µφ+ iQRφ+ κ e iφ/b), φ ≡ φ+2πb

I Parameters: n = −2 cosπb2, 0 < b ≤ 1, Q = b−1−b2

I Central charge: c = 1− 6Q2

I Compactification ⇒

discretisation of vertex charges

existence of defects with δφ ∈ 2πbZ

I Zero-defect sector: εk with h = h = hk+1,1 for k = 0, 1, 2, . . .

I Sector of defect charge δφ = 2πbm, with m ∈ Z× :Φem with (h, h) = (hem, he,−m) for e ∈ Z/m

[Kac notation: hrs = (r/b−sb)2−(1/b−b)2

4 ]

Page 20: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Scaling theory of the O(n) loop model[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

I “Coulomb-Gas” = Imaginary Liouville action, compact field

A[φ] =

∫d2r

√g

(∂µφ∂

µφ+ iQRφ+ κ e iφ/b), φ ≡ φ+2πb

I Parameters: n = −2 cosπb2, 0 < b ≤ 1, Q = b−1−b2

I Central charge: c = 1− 6Q2

I Compactification ⇒

discretisation of vertex charges

existence of defects with δφ ∈ 2πbZ

I Zero-defect sector: εk with h = h = hk+1,1 for k = 0, 1, 2, . . .

I Sector of defect charge δφ = 2πbm, with m ∈ Z× :Φem with (h, h) = (hem, he,−m) for e ∈ Z/m

[Kac notation: hrs = (r/b−sb)2−(1/b−b)2

4 ]

Page 21: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Scaling theory of the O(n) loop model[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

I “Coulomb-Gas” = Imaginary Liouville action, compact field

A[φ] =

∫d2r

√g

(∂µφ∂

µφ+ iQRφ+ κ e iφ/b), φ ≡ φ+2πb

I Parameters: n = −2 cosπb2, 0 < b ≤ 1, Q = b−1−b2

I Central charge: c = 1− 6Q2

I Compactification ⇒

discretisation of vertex charges

existence of defects with δφ ∈ 2πbZ

I Zero-defect sector: εk with h = h = hk+1,1 for k = 0, 1, 2, . . .

I Sector of defect charge δφ = 2πbm, with m ∈ Z× :Φem with (h, h) = (hem, he,−m) for e ∈ Z/m

[Kac notation: hrs = (r/b−sb)2−(1/b−b)2

4 ]

Page 22: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Scaling theory of the O(n) loop model[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

I “Coulomb-Gas” = Imaginary Liouville action, compact field

A[φ] =

∫d2r

√g

(∂µφ∂

µφ+ iQRφ+ κ e iφ/b), φ ≡ φ+2πb

I Parameters: n = −2 cosπb2, 0 < b ≤ 1, Q = b−1−b2

I Central charge: c = 1− 6Q2

I Compactification ⇒

discretisation of vertex charges

existence of defects with δφ ∈ 2πbZ

I Zero-defect sector: εk with h = h = hk+1,1 for k = 0, 1, 2, . . .

I Sector of defect charge δφ = 2πbm, with m ∈ Z× :Φem with (h, h) = (hem, he,−m) for e ∈ Z/m

[Kac notation: hrs = (r/b−sb)2−(1/b−b)2

4 ]

Page 23: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Scaling theory of the O(n) loop model[Nienhuis 84, Dotsenko-Fateev 84, Di Francesco-Saleur-Zuber 87, Nienhuis-Foda 89]

I “Coulomb-Gas” = Imaginary Liouville action, compact field

A[φ] =

∫d2r

√g

(∂µφ∂

µφ+ iQRφ+ κ e iφ/b), φ ≡ φ+2πb

I Parameters: n = −2 cosπb2, 0 < b ≤ 1, Q = b−1−b2

I Central charge: c = 1− 6Q2

I Compactification ⇒

discretisation of vertex charges

existence of defects with δφ ∈ 2πbZ

I Zero-defect sector: εk with h = h = hk+1,1 for k = 0, 1, 2, . . .

I Sector of defect charge δφ = 2πbm, with m ∈ Z× :Φem with (h, h) = (hem, he,−m) for e ∈ Z/m

[Kac notation: hrs = (r/b−sb)2−(1/b−b)2

4 ]

Page 24: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

OPEs for operators in the discrete spectrum[B. Estienne and YI, Correlation functions in loop models, arXiv:1505.00585]

I The εk ’s are degenerate under Vir⊗Vir

I The Φem’s are only degenerate under Vir or Vir

I Fusion rules (for generic c):

εj × εk → ε|j−k| + · · ·+ εj+k

Φem × εk → Φe−k,m + · · ·+ Φe+k,m

Φem × Φe′m′ → ???

I Results from conformal bootstrap on 4-pt functions:

C (εj , εj , ε2k) = cj+1,0,k

C (Φem, Φe,−m, ε2k) =√ce,m,k ce,−m,k

with: cj,m,k =∏k`=1

γ(ρ`−m)γ(ρ`+m)√γ[2−ρ(2`−1)]γ[2−ρ(2`+1)]

γ[2−ρ(j+`)]γ[ρ(j−`)]γ[ρ(2`−1)]

ρ = b−2 , γ(x) = Γ(x)/Γ(1− x) .

Page 25: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

OPEs for operators in the discrete spectrum[B. Estienne and YI, Correlation functions in loop models, arXiv:1505.00585]

I The εk ’s are degenerate under Vir⊗Vir

I The Φem’s are only degenerate under Vir or Vir

I Fusion rules (for generic c):

εj × εk → ε|j−k| + · · ·+ εj+k

Φem × εk → Φe−k,m + · · ·+ Φe+k,m

Φem × Φe′m′ → ???

I Results from conformal bootstrap on 4-pt functions:

C (εj , εj , ε2k) = cj+1,0,k

C (Φem, Φe,−m, ε2k) =√ce,m,k ce,−m,k

with: cj,m,k =∏k`=1

γ(ρ`−m)γ(ρ`+m)√γ[2−ρ(2`−1)]γ[2−ρ(2`+1)]

γ[2−ρ(j+`)]γ[ρ(j−`)]γ[ρ(2`−1)]

ρ = b−2 , γ(x) = Γ(x)/Γ(1− x) .

Page 26: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

OPEs for operators in the discrete spectrum[B. Estienne and YI, Correlation functions in loop models, arXiv:1505.00585]

I The εk ’s are degenerate under Vir⊗Vir

I The Φem’s are only degenerate under Vir or Vir

I Fusion rules (for generic c):

εj × εk → ε|j−k| + · · ·+ εj+k

Φem × εk → Φe−k,m + · · ·+ Φe+k,m

Φem × Φe′m′ → ???

I Results from conformal bootstrap on 4-pt functions:

C (εj , εj , ε2k) = cj+1,0,k

C (Φem, Φe,−m, ε2k) =√ce,m,k ce,−m,k

with: cj,m,k =∏k`=1

γ(ρ`−m)γ(ρ`+m)√γ[2−ρ(2`−1)]γ[2−ρ(2`+1)]

γ[2−ρ(j+`)]γ[ρ(j−`)]γ[ρ(2`−1)]

ρ = b−2 , γ(x) = Γ(x)/Γ(1− x) .

Page 27: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

OPEs for operators in the discrete spectrum[B. Estienne and YI, Correlation functions in loop models, arXiv:1505.00585]

I The εk ’s are degenerate under Vir⊗Vir

I The Φem’s are only degenerate under Vir or Vir

I Fusion rules (for generic c):

εj × εk → ε|j−k| + · · ·+ εj+k

Φem × εk → Φe−k,m + · · ·+ Φe+k,m

Φem × Φe′m′ → ???

I Results from conformal bootstrap on 4-pt functions:

C (εj , εj , ε2k) = cj+1,0,k

C (Φem, Φe,−m, ε2k) =√ce,m,k ce,−m,k

with: cj,m,k =∏k`=1

γ(ρ`−m)γ(ρ`+m)√γ[2−ρ(2`−1)]γ[2−ρ(2`+1)]

γ[2−ρ(j+`)]γ[ρ(j−`)]γ[ρ(2`−1)]

ρ = b−2 , γ(x) = Γ(x)/Γ(1− x) .

Page 28: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

The case of loop-weighting operators[Delfino and Viti, J. Phys. A 44, 032001 (2011)]

I FK cluster connectivity:

r1, r2, r3 sit on the same cluster⇔

no loop separates r1 from r2, r3 [+ permutations of 1,2,3]

I Loop-weighting operators in O(n) model:〈. . .Vα(rj) . . .〉 gives weight nα = 2 cos 2πb(Q − α) to loopsencircling only rj .Conformal dimensions h = h = hα = α(α− Q)FK “Spin” operator : Vασ with ασ = Q + b−1/4

I DV’s argument, supported by Monte-Carlo on percolation:

Pcluster[r1, r2, r3] = 〈Vασ(r1)Vασ(r2)Vασ(r3)〉O(n)

=CIL(ασ, ασ, ασ)

|r1 − r2|2hσ |r2 − r3|2hσ |r1 − r3|2hσ

CIL(α1, α2, α3) = OPE constants for imaginary Liouville CFT[Zamolodchikov ’05, Kostov-Petkova ’06]

Page 29: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

The case of loop-weighting operators[Delfino and Viti, J. Phys. A 44, 032001 (2011)]

I FK cluster connectivity:

r1, r2, r3 sit on the same cluster⇔

no loop separates r1 from r2, r3 [+ permutations of 1,2,3]

I Loop-weighting operators in O(n) model:〈. . .Vα(rj) . . .〉 gives weight nα = 2 cos 2πb(Q − α) to loopsencircling only rj .Conformal dimensions h = h = hα = α(α− Q)FK “Spin” operator : Vασ with ασ = Q + b−1/4

I DV’s argument, supported by Monte-Carlo on percolation:

Pcluster[r1, r2, r3] = 〈Vασ(r1)Vασ(r2)Vασ(r3)〉O(n)

=CIL(ασ, ασ, ασ)

|r1 − r2|2hσ |r2 − r3|2hσ |r1 − r3|2hσ

CIL(α1, α2, α3) = OPE constants for imaginary Liouville CFT[Zamolodchikov ’05, Kostov-Petkova ’06]

Page 30: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

The case of loop-weighting operators[Delfino and Viti, J. Phys. A 44, 032001 (2011)]

I FK cluster connectivity:

r1, r2, r3 sit on the same cluster⇔

no loop separates r1 from r2, r3 [+ permutations of 1,2,3]

I Loop-weighting operators in O(n) model:〈. . .Vα(rj) . . .〉 gives weight nα = 2 cos 2πb(Q − α) to loopsencircling only rj .Conformal dimensions h = h = hα = α(α− Q)FK “Spin” operator : Vασ with ασ = Q + b−1/4

I DV’s argument, supported by Monte-Carlo on percolation:

Pcluster[r1, r2, r3] = 〈Vασ(r1)Vασ(r2)Vασ(r3)〉O(n)

=CIL(ασ, ασ, ασ)

|r1 − r2|2hσ |r2 − r3|2hσ |r1 − r3|2hσ

CIL(α1, α2, α3) = OPE constants for imaginary Liouville CFT[Zamolodchikov ’05, Kostov-Petkova ’06]

Page 31: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Extension of the Delfino-Viti result[YI, J. L. Jacobsen, and H. Saleur, PRL 116, 130601 (2016)]

I Define three-point function Zn1,n2,n3 (r1,r2,r3)=∑

configsn`0 n

`11 n

`22 n

`33

`0 = # trivial loops`1 = # loops encircling only r1`2 = # loops encircling only r2`3 = # loops encircling only r3

I Numerics on the cylinder: Zn1,n2,n3 matches CIL(α1, α2, α3)on large range of b and αj ’s.

-1 0 1 2 3 4ni

-1

-0.5

0

0.5

1

C(α

,α,α

)

L=4L=5L=6L=7L=8L=9L=10Exact

Dense O(n) model

-1 0 1 2 3 4ni

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Dilute O(n) model

Page 32: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Extension of the Delfino-Viti result[YI, J. L. Jacobsen, and H. Saleur, PRL 116, 130601 (2016)]

I Define three-point function Zn1,n2,n3 (r1,r2,r3)=∑

configsn`0 n

`11 n

`22 n

`33

`0 = # trivial loops`1 = # loops encircling only r1`2 = # loops encircling only r2`3 = # loops encircling only r3

I Numerics on the cylinder: Zn1,n2,n3 matches CIL(α1, α2, α3)on large range of b and αj ’s.

-1 0 1 2 3 4ni

-1

-0.5

0

0.5

1

C(α

,α,α

)

L=4L=5L=6L=7L=8L=9L=10Exact

Dense O(n) model

-1 0 1 2 3 4ni

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Dilute O(n) model

Page 33: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

3. Fusion on the lattice

Page 34: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (1/3)Basic facts

I Generators of PTLN(n)

I Relationse2j = n ej , ejej±1ej = ej , eiej = ejei |i − j | > 1 ,

ΩejΩ−1 = ej−1 , Ω Ω−1 = Ω−1 Ω = 1 , eN−1 . . . e2e1 = Ω2e1

I Loop weight n = −q − q−1

I Braid operators bj =1 j j+1 N

:= q1/21 + q−1/2ej

I Central elementsF = F =

Page 35: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (1/3)Basic facts

I Generators of PTLN(n)

I Relationse2j = n ej , ejej±1ej = ej , eiej = ejei |i − j | > 1 ,

ΩejΩ−1 = ej−1 , Ω Ω−1 = Ω−1 Ω = 1 , eN−1 . . . e2e1 = Ω2e1

I Loop weight n = −q − q−1

I Braid operators bj =1 j j+1 N

:= q1/21 + q−1/2ej

I Central elementsF = F =

Page 36: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (1/3)Basic facts

I Generators of PTLN(n)

I Relationse2j = n ej , ejej±1ej = ej , eiej = ejei |i − j | > 1 ,

ΩejΩ−1 = ej−1 , Ω Ω−1 = Ω−1 Ω = 1 , eN−1 . . . e2e1 = Ω2e1

I Loop weight n = −q − q−1

I Braid operators bj =1 j j+1 N

:= q1/21 + q−1/2ej

I Central elementsF = F =

Page 37: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (1/3)Basic facts

I Generators of PTLN(n)

I Relationse2j = n ej , ejej±1ej = ej , eiej = ejei |i − j | > 1 ,

ΩejΩ−1 = ej−1 , Ω Ω−1 = Ω−1 Ω = 1 , eN−1 . . . e2e1 = Ω2e1

I Loop weight n = −q − q−1

I Braid operators bj =1 j j+1 N

:= q1/21 + q−1/2ej

I Central elementsF = F =

Page 38: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (2/3)Link-state representations

I Vacuum module V (N): simple link states

[Ex: ]

I Standard module Wk,z(N): link states with 2k defects and atwist line, all attached to a marked point

[Ex: , ]

I Action of PTLN(n): graphical, weight n for closed loops,preserves defectsk = 0 : weight z + z−1 for loops encircling marked point

k > 0 : twist factors z±1 when a defect crosses twist line

I Bilinear form 〈u, v〉 respecting graphical rules

Page 39: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (2/3)Link-state representations

I Vacuum module V (N): simple link states

[Ex: ]

I Standard module Wk,z(N): link states with 2k defects and atwist line, all attached to a marked point

[Ex: , ]

I Action of PTLN(n): graphical, weight n for closed loops,preserves defectsk = 0 : weight z + z−1 for loops encircling marked point

k > 0 : twist factors z±1 when a defect crosses twist line

I Bilinear form 〈u, v〉 respecting graphical rules

Page 40: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (2/3)Link-state representations

I Vacuum module V (N): simple link states

[Ex: ]

I Standard module Wk,z(N): link states with 2k defects and atwist line, all attached to a marked point

[Ex: , ]

I Action of PTLN(n): graphical, weight n for closed loops,preserves defectsk = 0 : weight z + z−1 for loops encircling marked point

k > 0 : twist factors z±1 when a defect crosses twist line

I Bilinear form 〈u, v〉 respecting graphical rules

Page 41: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (2/3)Link-state representations

I Vacuum module V (N): simple link states

[Ex: ]

I Standard module Wk,z(N): link states with 2k defects and atwist line, all attached to a marked point

[Ex: , ]

I Action of PTLN(n): graphical, weight n for closed loops,preserves defectsk = 0 : weight z + z−1 for loops encircling marked point

k > 0 : twist factors z±1 when a defect crosses twist line

I Bilinear form 〈u, v〉 respecting graphical rules

Page 42: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (3/3)Properties of standard modules

I Wk,z(N) is irreducible for “generic” z [Graham-Lehrer 98]

I There is a nonzero homomorphism: W`,±qk (N)→Wk,±q`(N)for ` > k . [same for q → q−1] [Graham-Lehrer 98]

I F ≡ [zqk + (zqk)−1]1 and F ≡ [z/qk + (z/qk)−1]1 on Wk,z

I Action of connectivity op on vacuum:PTLN(n).Ok,z(j).V (N) = Wk,z(N)

Ok,z(j) =

I How to define the fusion Wk,x ×W`,y ?[Gainutdinov-Jacobsen-Saleur 16-18][Belletete–Saint-Aubin 18]

Page 43: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (3/3)Properties of standard modules

I Wk,z(N) is irreducible for “generic” z [Graham-Lehrer 98]

I There is a nonzero homomorphism: W`,±qk (N)→Wk,±q`(N)for ` > k . [same for q → q−1] [Graham-Lehrer 98]

I F ≡ [zqk + (zqk)−1]1 and F ≡ [z/qk + (z/qk)−1]1 on Wk,z

I Action of connectivity op on vacuum:PTLN(n).Ok,z(j).V (N) = Wk,z(N)

Ok,z(j) =

I How to define the fusion Wk,x ×W`,y ?[Gainutdinov-Jacobsen-Saleur 16-18][Belletete–Saint-Aubin 18]

Page 44: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (3/3)Properties of standard modules

I Wk,z(N) is irreducible for “generic” z [Graham-Lehrer 98]

I There is a nonzero homomorphism: W`,±qk (N)→Wk,±q`(N)for ` > k . [same for q → q−1] [Graham-Lehrer 98]

I F ≡ [zqk + (zqk)−1]1 and F ≡ [z/qk + (z/qk)−1]1 on Wk,z

I Action of connectivity op on vacuum:PTLN(n).Ok,z(j).V (N) = Wk,z(N)

Ok,z(j) =

I How to define the fusion Wk,x ×W`,y ?[Gainutdinov-Jacobsen-Saleur 16-18][Belletete–Saint-Aubin 18]

Page 45: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (3/3)Properties of standard modules

I Wk,z(N) is irreducible for “generic” z [Graham-Lehrer 98]

I There is a nonzero homomorphism: W`,±qk (N)→Wk,±q`(N)for ` > k . [same for q → q−1] [Graham-Lehrer 98]

I F ≡ [zqk + (zqk)−1]1 and F ≡ [z/qk + (z/qk)−1]1 on Wk,z

I Action of connectivity op on vacuum:PTLN(n).Ok,z(j).V (N) = Wk,z(N)

Ok,z(j) =

I How to define the fusion Wk,x ×W`,y ?[Gainutdinov-Jacobsen-Saleur 16-18][Belletete–Saint-Aubin 18]

Page 46: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Background on the periodic Temperley-Lieb algebra (3/3)Properties of standard modules

I Wk,z(N) is irreducible for “generic” z [Graham-Lehrer 98]

I There is a nonzero homomorphism: W`,±qk (N)→Wk,±q`(N)for ` > k . [same for q → q−1] [Graham-Lehrer 98]

I F ≡ [zqk + (zqk)−1]1 and F ≡ [z/qk + (z/qk)−1]1 on Wk,z

I Action of connectivity op on vacuum:PTLN(n).Ok,z(j).V (N) = Wk,z(N)

Ok,z(j) =

I How to define the fusion Wk,x ×W`,y ?[Gainutdinov-Jacobsen-Saleur 16-18][Belletete–Saint-Aubin 18]

Page 47: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Link states with two marked points[YI–Morin-Duchesne 21]

I Xk,`,x ,y ,z(N): link states with 2k defects attached to a, and 2`defects attached to b

[Ex: ]

I Twist parameters x , y , z for loop segments wrapped aroundonly a, only b, both a and b.

I Action of ej can connect defects attached to distinct markedpoints.

I Result 1: The Xk,`,x ,y ,z(N)’s are PTLN(n) representations.

I Result 2: For z generic [and q not a root of unity]:

Xk,`,x ,y ,z(N) 'Wk−`,z(N)⊕N/2⊕

m=k−`+1

2m−1⊕r=0

Wm,z(k−`)/me iπr/m(N)

for k ≥ `. [Proof based on the properties of F , F .]

Page 48: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Link states with two marked points[YI–Morin-Duchesne 21]

I Xk,`,x ,y ,z(N): link states with 2k defects attached to a, and 2`defects attached to b

[Ex: ]

I Twist parameters x , y , z for loop segments wrapped aroundonly a, only b, both a and b.

I Action of ej can connect defects attached to distinct markedpoints.

I Result 1: The Xk,`,x ,y ,z(N)’s are PTLN(n) representations.

I Result 2: For z generic [and q not a root of unity]:

Xk,`,x ,y ,z(N) 'Wk−`,z(N)⊕N/2⊕

m=k−`+1

2m−1⊕r=0

Wm,z(k−`)/me iπr/m(N)

for k ≥ `. [Proof based on the properties of F , F .]

Page 49: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Link states with two marked points[YI–Morin-Duchesne 21]

I Xk,`,x ,y ,z(N): link states with 2k defects attached to a, and 2`defects attached to b

[Ex: ]

I Twist parameters x , y , z for loop segments wrapped aroundonly a, only b, both a and b.

I Action of ej can connect defects attached to distinct markedpoints.

I Result 1: The Xk,`,x ,y ,z(N)’s are PTLN(n) representations.

I Result 2: For z generic [and q not a root of unity]:

Xk,`,x ,y ,z(N) 'Wk−`,z(N)⊕N/2⊕

m=k−`+1

2m−1⊕r=0

Wm,z(k−`)/me iπr/m(N)

for k ≥ `. [Proof based on the properties of F , F .]

Page 50: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Link states with two marked points[YI–Morin-Duchesne 21]

I Xk,`,x ,y ,z(N): link states with 2k defects attached to a, and 2`defects attached to b

[Ex: ]

I Twist parameters x , y , z for loop segments wrapped aroundonly a, only b, both a and b.

I Action of ej can connect defects attached to distinct markedpoints.

I Result 1: The Xk,`,x ,y ,z(N)’s are PTLN(n) representations.

I Result 2: For z generic [and q not a root of unity]:

Xk,`,x ,y ,z(N) 'Wk−`,z(N)⊕N/2⊕

m=k−`+1

2m−1⊕r=0

Wm,z(k−`)/me iπr/m(N)

for k ≥ `. [Proof based on the properties of F , F .]

Page 51: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Link states with two marked points[YI–Morin-Duchesne 21]

I Xk,`,x ,y ,z(N): link states with 2k defects attached to a, and 2`defects attached to b

[Ex: ]

I Twist parameters x , y , z for loop segments wrapped aroundonly a, only b, both a and b.

I Action of ej can connect defects attached to distinct markedpoints.

I Result 1: The Xk,`,x ,y ,z(N)’s are PTLN(n) representations.

I Result 2: For z generic [and q not a root of unity]:

Xk,`,x ,y ,z(N) 'Wk−`,z(N)⊕N/2⊕

m=k−`+1

2m−1⊕r=0

Wm,z(k−`)/me iπr/m(N)

for k ≥ `. [Proof based on the properties of F , F .]

Page 52: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Correlation functionsI Example four-point function of connectivity operators on an

infinite cylinder of circumference N with k 6= `:

G = 〈Ok,x(r1)O`,y (r2)O`,y (r3)Ok,x(r4)〉cyl

[Twist factors around r1, r2 or r3, r4 are set to one in G ].

I By construction: G = 〈O`,y (r2)Ok,x(r1)v ,O`,y (r3)Ok,x(r4)v〉v : ground state of V (N)

I “PTL block” decomposition [from structure of Xk,`,x ,y ,1(N)]:

G = G|k−`|,1 +

N/2∑m=|k−`|+1

2m−1∑r=0

Gm,e iπr/m

Gm,ω =∑j

〈O`,y (r2)Ok,x(r1)v , um,ω,j〉〈um,ω,j ,O`,y (r3)Ok,x(r4)v〉

um,ω,j : orthonormal basis of Wm,ω ⊂ Xk,`,x ,y ,1.

Page 53: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Correlation functionsI Example four-point function of connectivity operators on an

infinite cylinder of circumference N with k 6= `:

G = 〈Ok,x(r1)O`,y (r2)O`,y (r3)Ok,x(r4)〉cyl

[Twist factors around r1, r2 or r3, r4 are set to one in G ].

I By construction: G = 〈O`,y (r2)Ok,x(r1)v ,O`,y (r3)Ok,x(r4)v〉v : ground state of V (N)

I “PTL block” decomposition [from structure of Xk,`,x ,y ,1(N)]:

G = G|k−`|,1 +

N/2∑m=|k−`|+1

2m−1∑r=0

Gm,e iπr/m

Gm,ω =∑j

〈O`,y (r2)Ok,x(r1)v , um,ω,j〉〈um,ω,j ,O`,y (r3)Ok,x(r4)v〉

um,ω,j : orthonormal basis of Wm,ω ⊂ Xk,`,x ,y ,1.

Page 54: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Correlation functionsI Example four-point function of connectivity operators on an

infinite cylinder of circumference N with k 6= `:

G = 〈Ok,x(r1)O`,y (r2)O`,y (r3)Ok,x(r4)〉cyl

[Twist factors around r1, r2 or r3, r4 are set to one in G ].

I By construction: G = 〈O`,y (r2)Ok,x(r1)v ,O`,y (r3)Ok,x(r4)v〉v : ground state of V (N)

I “PTL block” decomposition [from structure of Xk,`,x ,y ,1(N)]:

G = G|k−`|,1 +

N/2∑m=|k−`|+1

2m−1∑r=0

Gm,e iπr/m

Gm,ω =∑j

〈O`,y (r2)Ok,x(r1)v , um,ω,j〉〈um,ω,j ,O`,y (r3)Ok,x(r4)v〉

um,ω,j : orthonormal basis of Wm,ω ⊂ Xk,`,x ,y ,1.

Page 55: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Summary and Perspectives

I Analytical solution of (non-diagonal) conformal bootstrap ⇒determined large family of OPE constants in the discretespectrum of O(n) model

I Numerical transfer-matrix diagonalisation ⇒ confirmed andextended Delfino-Viti’s proposal for OPE constants ofloop-weighting operators

I Definition of family of PTL modules Xk,`,x ,y ,z , decompositionof Xk,`,x ,y ,z over standard modules Wm,ω ⇒ described fusionWk,x ×W`,y inside correlation functions

I Complete set of fusion rules for O(n) CFT (especially defectoperators Φe,m) ?

I Generalise lattice fusion to any modules M ×M ′ ?Associativity ? Non-generic z ?

Page 56: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Summary and Perspectives

I Analytical solution of (non-diagonal) conformal bootstrap ⇒determined large family of OPE constants in the discretespectrum of O(n) model

I Numerical transfer-matrix diagonalisation ⇒ confirmed andextended Delfino-Viti’s proposal for OPE constants ofloop-weighting operators

I Definition of family of PTL modules Xk,`,x ,y ,z , decompositionof Xk,`,x ,y ,z over standard modules Wm,ω ⇒ described fusionWk,x ×W`,y inside correlation functions

I Complete set of fusion rules for O(n) CFT (especially defectoperators Φe,m) ?

I Generalise lattice fusion to any modules M ×M ′ ?Associativity ? Non-generic z ?

Page 57: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Summary and Perspectives

I Analytical solution of (non-diagonal) conformal bootstrap ⇒determined large family of OPE constants in the discretespectrum of O(n) model

I Numerical transfer-matrix diagonalisation ⇒ confirmed andextended Delfino-Viti’s proposal for OPE constants ofloop-weighting operators

I Definition of family of PTL modules Xk,`,x ,y ,z , decompositionof Xk,`,x ,y ,z over standard modules Wm,ω ⇒ described fusionWk,x ×W`,y inside correlation functions

I Complete set of fusion rules for O(n) CFT (especially defectoperators Φe,m) ?

I Generalise lattice fusion to any modules M ×M ′ ?Associativity ? Non-generic z ?

Page 58: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Summary and Perspectives

I Analytical solution of (non-diagonal) conformal bootstrap ⇒determined large family of OPE constants in the discretespectrum of O(n) model

I Numerical transfer-matrix diagonalisation ⇒ confirmed andextended Delfino-Viti’s proposal for OPE constants ofloop-weighting operators

I Definition of family of PTL modules Xk,`,x ,y ,z , decompositionof Xk,`,x ,y ,z over standard modules Wm,ω ⇒ described fusionWk,x ×W`,y inside correlation functions

I Complete set of fusion rules for O(n) CFT (especially defectoperators Φe,m) ?

I Generalise lattice fusion to any modules M ×M ′ ?Associativity ? Non-generic z ?

Page 59: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Summary and Perspectives

I Analytical solution of (non-diagonal) conformal bootstrap ⇒determined large family of OPE constants in the discretespectrum of O(n) model

I Numerical transfer-matrix diagonalisation ⇒ confirmed andextended Delfino-Viti’s proposal for OPE constants ofloop-weighting operators

I Definition of family of PTL modules Xk,`,x ,y ,z , decompositionof Xk,`,x ,y ,z over standard modules Wm,ω ⇒ described fusionWk,x ×W`,y inside correlation functions

I Complete set of fusion rules for O(n) CFT (especially defectoperators Φe,m) ?

I Generalise lattice fusion to any modules M ×M ′ ?Associativity ? Non-generic z ?

Page 60: Yacine Ikhlef LPTHE, CNRS/Sorbonne Universit e

Thank you for your attention!