where does particulate matter come from?

20
PM Lesson 1 1 PARTICULATE MATTER - LESSON ONE Where Does Particulate Matter Come From? LESSON SUMMARY This lesson provides an introduction to the sources and some of the basic characteristics of airborne particulate matter (PM). By testing different types of samples with an air monitor, students begin to conceptualize that PM is emitted from a variety of sources, both indoors and outdoors. Students also have the opportunity to explore how PM can form through spontaneous chemical reactions in the air. CORE UNDERSTANDING/OBJECTIVES By the end of this lesson, students should be able to identify common sources and characteristics of PM. They should also be able to identify their own primary sources of exposure to PM, both indoors and out. For specific learning objectives and standards addressed, see pages 19 & 20. MATERIALS/INCORPORATION OF TECHNOLOGY Dylos Air Quality Monitor PM Testing samples (see p. 2) Solutions of BCG, KNO2,H2SO4, and NH3 Petri dishes & pipettes INDIAN EDUCATION FOR ALL At 12%, asthma levels in Native American communities are nearly double that of the national average. A number of Native American scientists currently study air quality and respiratory health. For example, Northern Arizona University has developed a program called Indoor Air Quality in Tribal Communities (http://bit.ly/1H3OybG) in which they seek to raise awareness of indoor air quality issues among tribes in order to assist individuals in improving their living environments and managing their health risks. ENGAGE OPTION 1: Using a large piece of paper, create a “Know, Want to Know, Learned” (KWL) chart for particulate matter. Students should have at least some background knowledge from the CAHHP introduction presentation provided by either a member of the CAHHP team or yourself. To help get students thinking in terms of what they already know about sources of PM, you can project the images from the following link: http://bit.ly/1zGOgnD . Using these images (if desired) as a source of inspiration, complete the “Know” column first. Next ask students what questions they would like answered throughout their studies of PM. Record these answers in the “Want to Know” column. This may also help students start thinking about what they may want to do for their air quality project/experiment. Complete the “Learned” column at the end of the lesson or unit. Grade Level: 9 – 12 Subject(s) Addressed: General Science, Chemistry Class Time: 2 Periods Inquiry Category: Guided :

Upload: others

Post on 17-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Where Does Particulate Matter Come From?

 PM  Lesson  1    

  1  

PARTICULATE MATTER - LESSON ONE    

Where Does Particulate Matter Come From? LESSON  SUMMARY  This  lesson  provides  an  introduction  to  the  sources  and  some  of  the  basic  characteristics  of  airborne  particulate  matter  (PM).    By  testing  different  types  of  samples  with  an  air  monitor,  students  begin  to  conceptualize  that  PM  is  emitted  from  a  variety  of  sources,  both  indoors  and  outdoors.    Students  also  have  the  opportunity  to  explore  how  PM  can  form  through  spontaneous  chemical  reactions  in  the  air.  

CORE  UNDERSTANDING/OBJECTIVES  By  the  end  of  this  lesson,  students  should  be  able  to  identify  common  sources  and  characteristics  of  PM.    They  should  also  be  able  to  identify  their  own  primary  sources  of  exposure  to  PM,  both  indoors  and  out.    For  specific  learning  objectives  and  standards  addressed,  see  pages  19  &  20.  

MATERIALS/INCORPORATION  OF  TECHNOLOGY   Dylos  Air  Quality  Monitor       PM  Testing  samples  (see  p.  2)   Solutions  of  BCG,  KNO2,  H2SO4,  and  NH3   Petri  dishes  &  pipettes    

INDIAN  EDUCATION  FOR  ALL  At  12%,  asthma  levels  in  Native  American  communities  are  nearly  double  that  of  the  national  average.    A  number  of  Native  American  scientists  currently  study  air  quality  and  respiratory  health.    For  example,  Northern  Arizona  University  has  developed  a  program  called  Indoor  Air  Quality  in  Tribal  Communities    (http://bit.ly/1H3OybG)  in  which  they  seek  to  raise  awareness  of  indoor  air  quality  issues  among  tribes  in  order  to  assist  individuals  in  improving  their  living  environments  and  managing  their  health  risks.        

ENGAGE  OPTION  1:  Using  a  large  piece  of  paper,  create  a  “Know,  Want  to  Know,  Learned”  (KWL)  chart  for  particulate  matter.    Students  should  have  at  least  some  background  knowledge  from  the  CAHHP  introduction  presentation  provided  by  either  a  member  of  the  CAHHP  team  or  yourself.    To  help  get  students  thinking  in  terms  of  what  they  already  know  about  sources  of  PM,  you  can  project  the  images  from  the  following  link:  http://bit.ly/1zGOgnD  .    Using  these  images  (if  desired)  as  a  source  of  inspiration,  complete  the  “Know”  column  first.    Next  ask  students  what  questions  they  would  like  answered  throughout  their  studies  of  PM.    Record  these  answers  in  the  “Want  to  Know”  column.    This  may  also  help  students  start  thinking  about  what  they  may  want  to  do  for  their  air  quality  project/experiment.    Complete  the  “Learned”  column  at  the  end  of  the  lesson  or  unit.  

Grade  Level:  9  –  12    

Subject(s)  Addressed:  General  Science,  Chemistry    Class  Time:  2  Periods  

Inquiry  Category:  Guided  

:    

                         

Page 2: Where Does Particulate Matter Come From?

PM  Lesson  1  

 2  

 OPTION  2:  Divide  students  into  groups  of  3  or  4  and  provide  a  large  sheet  of  paper  to  each.    Have  the  groups  create  a  basic  concept  map  of  what  they  know  about  PM.    Again,  the  images  of  PM  sources  from  the  following  link  can  be  used  to  provide  inspiration:  http://bit.ly/1zGOgnD  .    Give  students  5-­‐10  minutes  in  their  small  groups.    Then  have  them  rotate  around  the  room  to  look  at  the  different  maps  that  were  created.    Students  should  note  if  they  see  any  ideas  that  may  be  misconceptions.    A  list  of  questions  regarding  PM  can  then  be  generated  on  the  board.      EXPLORE    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

         For  a  good  overview  of  particle  air  pollution,  visit:  air  pollution,  visit:  http://1.usa.gov/1DOeqph      

Prior  to  class  starting,  gather  a  variety  of  PM  source  samples  to  test  with  the  Dylos  DC1700.    You  should  have  some  samples  that  create  airborne  PM,  as  well  as  some  samples  that  do  not  create  PM.    Some  suggestions  include:  

Samples  that  create  airborne  PM:  • candle  • burning  match  • anything  that  produces  dust  (banging  old  carpet,  sweeping,  fanning  the  

pages  of  an  old  book,  stomping  on  the  carpet,  etc.)  • microwave  popcorn  (if  microwave  is  available)  • hairspray  • aerosol  air  fresheners  and  cleaners  (such  as  Lysol)  

 Samples  that  don’t  create  airborne  PM:  

• pure  gas  such  as  methane,  which  has  odor,  but  is  not  PM  • propane  • acetone  • water  vapor**  • Dry  ice  • perfume/cologne    • Windex  (or  similar)  spray  

Provide  students  with  “LAB  1:  Exploring  Particulate  Matter”  (pages  6  and  7).    Explain  to  students  that  you  will  be  looking  at  a  variety  of  samples  to  see  if  they  create  airborne  PM.    Familiarize  students  with  the  Dylos  monitor  and  how  to  read  measurements  of  the  two  particles  sizes.    (A  Dylos  instructional  video  is  available  at  http://bit.ly/1KHmgrv    while  written  directions  can  be  found  at  http://bit.ly/1gjMbce  .)  Gather  students  around  the  Dylos  and  turn  it  on.  Ask  students  to  note  the  resting  (baseline)  PM  readings  on  the  instrument  (Note:  this  should  be  conducted  between  each  sample  as  prior  samples  may  not  have  completely  dissipated  before  testing  the  next  sample).    Keeping  the  samples  the  same  distance  from  the  Dylos,  preferably  a  few  feet  away  to  protect  the  instrument  from  any  moisture  or  spills,  begin  testing  samples.    Students  should  record  both  PM2.5  and  PM10  levels.      

**Please  note  that  water  droplets  rising  off  of  boiling  water  will  increase  particle  count  readings  on  the  Dylos  if  very  close  to  the  machine.    However,  

Page 3: Where Does Particulate Matter Come From?

 PM  Lesson  1    

  3  

unlike  PM  aerosols,  the  pure  water  droplets  quickly  dissipate  as  they  evaporate.  

EXPLAIN  Using  questions  1-­‐4  from  the  Lab  1  student  sheet  as  a  framework,  discuss  the  results  with  students.    They  should  note  that  PM10  often  comes  from  natural  sources  (dust,  etc.),  while  PM2.5  is  often  associated  with  human  activity  (combustion  sources,  etc.).    See  Comprehension  1  (pages  13  &  14)  for  more  detail  on  PM  characteristics  and  sources.    Try  to  engage  students  with  leading  questions,  allowing  them  to  form  their  own  ideas.    Contribute  your  expertise  where  it  will  allow  their  observations  to  grow.    

ELABORATE  At  this  point,  students  should  be  familiar  with  PM  and  some  of  its  sources.  They  can  now  explore  how  PM  can  form  from  chemical  reactions  in  the  air.  In  LAB  2:  “How  do  Secondary  Particles  Form?”,  students  observe  the  formation  of  nitric  oxide,  a  product  of  fossil  fuel  combustion  and  a  common  component  of  airborne  PM.    

Note:  If  you  have  50-­‐minute  class  periods,  you  will  need  to  do  this  activity  on  a  different  day.    If  you  run  on  a  block  schedule,  you  may  be  able  to  complete  this  lab  in  the  same  class  period  as  Lab  1.    

Note:  this  lab  does  require  the  mixing  of  a  number  of  chemical  solutions  in  advance  for  student  use.    For  a  complete  list  of  materials  and  teacher  procedures,  see  pages  10  and  11.    For  student  instructions  and  lab  sheet,  see  pages  8  and  9.    

EVALUATE    There  are  a  number  of  opportunities  to  evaluate  student  understanding  throughout  this  lesson.    The  “Engage”  activities  provide  opportunity  to  assess  students’  prior  knowledge.    The  formal  labs  and  discussions  described  in  the  “Explain”  section  provide  opportunities  to  assess  student  learning  during  the  lesson.    Additionally,  the  class  should  revisit  the  KWL  chart  to  fill  in  the  “Learned”  column.    This  may  be  a  good  focus  activity  for  starting  the  next  day’s  class.    Any  number  of  homework  assignments  are  also  possible.  For  example,  students  can  create  a  flyer  for  the  community  about  PM  and  indoor  sources/exposures.    This  provides  an  opportunity  for  students  to  do  some  extra  research,  which  may  also  inspire  a  topic  for  their  project.    The  EPA  website  is  an  excellent  resource  with  information  such  as  PM  air  quality  standards  as  well  as  the  health  effects  related  to  long-­‐term,  elevated  PM  exposure.    Equally  there  are  comprehension  guiding  questions  on  page  16.    VOCABULARY  Copies  of  blank  student  vocabulary  banks  (page  4)  can  be  distributed  for  completion  as  either  a  classroom  or  homework  assignment.  

   

To  learn  more  about  EPA  standards  and  PM,  visit:      http://www.epa.gov/pm/                    

               Montana  DEQ  monitors  air  quality  conditions  in  a  number  of  areas  around  the  state.    To  check  the  air  quality  in  your  area  visit:    http://svc.mt.gov/deq/todaysair/                                            

Notes:                                                                

Page 4: Where Does Particulate Matter Come From?

PM  Lesson  1  

 4  

Name:  

What  is  Particulate  Matter  –  Vocabulary      

Define  the  terms  below  and  provide  an  example  of  each.  

particulate  matter:                                                                                  

PM2.5:                                                          

PM10:                                                          

coarse  particles:                                                      

fine  particles:                                                        

aerosols:                                                          

primary  particles:                                                      

secondary  particles                                                    

 

 

 

   

Page 5: Where Does Particulate Matter Come From?

 PM  Lesson  1    

  5  

What  is  Particulate  Matter  –  Vocabulary      

Define  the  terms  below  and  provide  an  example  of  each.  

particulate  matter:  solid  and  liquid  particles  found  in  the  air.    Examples  include  dust,  smoke,  by-­‐products  of  industry,  pollen,  etc.              

PM2.5:  particles  that  are  2.5  microns  or  less  in  diameter.    Examples  include  car  emissions,  smoke,  etc.                        

PM10:  particles  that  are  10  microns  or  less  in  diameter.    Examples  include  dust  and  pollen.                            

coarse  particles:  particles  that  are  between  2.5  and  10  microns  in  diameter.  Examples:  dust  and  pollen                      

fine  particles:  particles  that  are  2.5  microns  or  below.    Examples  include  car  emissions,  smoke,  etc.  

aerosols:  mixtures  of  fine  solid  particles  or  liquid  droplets  found  the  air  or  other  gases.    Examples:  haze,  smoke,  fog                    

primary  particles:  particles  emitted  directly  from  a  source.  Example:  wood  smoke                                

secondary  particles:  particles  that  form  through  chemical  reactions  in  the  air.  Example:  particles  that  form  from  car  emissions                

 

 

   

Page 6: Where Does Particulate Matter Come From?

PM  Lesson  1  

 6  

  LAB  1:  Exploring  Particulate  Matter      

In  this  activity,  you  will  be  exploring  a  variety  of  possible  air  pollution  sources,  including  ones  that  generate  particulate  matter.    Using  the  Dylos  monitor,  observe  the  particle  numbers  created  as  different  substances  are  released  in  the  air.    Remember  that  there  are  two  particle  readings,  PM2.5  and  PM2.5-­‐10  -­‐  be  sure  to  record  both.  Using  the  table  below,  record  your  observations.  

 

Drawing  Conclusions:  

1. Which  samples  did  not  increase  particle  count?      ___________________________________________________________________________________________________________________________________      

2. Do  these  samples  have  anything  in  common?  

               ___________________________________________________________________________________________________________________________________  

               ___________________________________________________________________________________________________________________________________  

3. Using  the  table  below,  fill  in  which  samples  increased  PM2.5  particle  counts  and  which  increased  PM2.5-­‐10  particle  counts.  

 

 

 

 

   

     “Resting”  PM  Levels              PM2.5                                  PM2.5-­‐10  

Sample/Substance   PM2.5  Particle  Count   PM2.5-­‐10  Particle  Count  

         

         

         

         

         

         

         

         

         

         

 PM2.5  Particle  Count   PM2.5-­‐10  Particle  Count                      

Page 7: Where Does Particulate Matter Come From?

 PM  Lesson  1    

  7  

4. Looking  at  your  lists  above,  what  observations  can  you  make  about  the  characteristics  of  PM2.5  vs.  PM2.5-­‐10  particles?      

               _____________________________________________________________________________________________________________________________  

               _____________________________________________________________________________________________________________________________  

               _____________________________________________________________________________________________________________________________  

 

5. Which  of  the  samples  would  be  found  indoors,  outdoors,  or  both?              

 6. What  other  possible  sources  of  particulate  matter  can  you  think  of?  

 

   

 

7. Now  that  you  are  more  aware  of  some  of  the  sources  of  particulate  matter,  identify  the  sources  of  PM  within  your  own  home.    ________________________________________________________________________________________________________________________________  

               _________________________________________________________________________________________________________________________________    

 

8. What  other  indoor  environments  do  you  frequently  find  yourself  in  and  what  sources  of  PM  might  exist  in  these  environments?  

             _________________________________________________________________________________________________________________________________  

             _________________________________________________________________________________________________________________________________  

             _________________________________________________________________________________________________________________________________  

 

9. Indoor  air  quality  is  a  rapidly  growing  branch  of  scientific  research.    Why  do  you  think  this  is?                _________________________________________________________________________________________________________________________________              

             _________________________________________________________________________________________________________________________________  

10. As  a  class,  take  a  24-­‐hour  Dylos  sample  in  your  classroom.    Once  the  data  has  been  collected,  again  as  a  class,  

download  the  data  to  a  computer.    Copy  the  data  to  a  thumb  drive  and  use  the  conversion  Excel  spreadsheet  to  

convert  the  data  from  number  of  particles  to  microgram/cubic  meter,  and  to  generate  a  graph.    Print  graph  and  

attach  it  here.    What  trends  do  you  see  over  the  24-­‐hour  period?      

________________________________________________________________________________________________________________________________              

               ________________________________________________________________________________________________________________________________  

             What  do  you  think  may  have  caused  these  trends?    ______________________________________________________________________  

             _________________________________________________________________________________________________________________________________    

Indoors   Outdoors   Both            

   

Indoor   Outdoor          

 

Page 8: Where Does Particulate Matter Come From?

PM  Lesson  1  

 8  

  LAB  2:  How  do  Secondary  Particles  Form?  Student  Lab  Sheet  

 

In  this  lab  you  will  be  exploring  how  emissions  can  affect  air  quality  by  simulating  chemical  reactions  that  occur  in  the  atmosphere.    You  will  be  synthesizing  nitric  oxide  (NO)  gas,  a  by-­‐product  of  fossil  fuel  combustion.    Nitric  oxide,  though  a  gas,  can  contribute  to  particle  pollution,  particularly  in  the  winter  months.    In  this  lab,  you  will  explore  how  and  why  NO  forms  and  the  potential  impact(s)  that  occur  from  this  reaction.    You  will  be  using  a  lidded  petri  dish  as  a  contained  environmental  chamber.  

Complete  the  following  steps:  

1. Place  a  clean,  dry  petri  dish  onto  the  circular  grid  of  the  labtop.  2. Using  a  pipette,  put  one  drop  of  distilled  water  into  the  petri  dish  in  the  positions  shown  in  the  diagram.  Then  

drop  a  single  drop  of  bromocresol  green  (BCG  )  solution  into  each  drop  of  distilled  water.  (See  diagram  on  next  page  for  a  visual  of  this.)    BCG  is  an  indicator  for  acids  and  bases;  any  color  changes  indicate  chemical  changes  in  the  petri  dish.    Observing  these  changes  will  help  you  understand  what  is  produced  in  the  following  chemical  reactions.  

3. Now  it’s  time  to  create  one  of  the  by-­‐products  formed  from  the  burning  of  fossils  fuels:  • Use  a  pipette  to  dispense  10  drops  of  0.5  M  KNO2  (potassium  nitrate)  into  the  center  of  the  dish.    • Get  the  lid  of  the  petri  dish  ready  (Note:  you’ll  want  to  cap  the  petri  dish  right  away  after  the  next  step).    • Use  a  clean  pipette  to  measure  and  add  20  drops  of  H2SO4  (sulfuric  acid)  to  the  KNO2  in  your  dish.    Cap  the  

petri  dish  immediately.  • Watch  carefully  and  record  your  observations:  

__________________________________________________________________________________________________________________________  

__________________________________________________________________________________________________________________________  

• Though  the  fluids  never  touched,  the  acidity  changed.    How  is  this  possible?  (Hint:  consider  the  phases  of  matter)  __________________________________________________________________________________________________________________________  

__________________________________________________________________________________________________________________________  

• What  gas  is  in  your  chamber  at  the  moment  (use  the  introduction  paragraph  to  answer  this)?  _______________    

4. You  will  now  simulate  another  reaction:  • Lift  the  lid  slightly  at  an  angle.  Using  a  clean  pipette,  add  a  few  of  drops  of  2  M  ammonia  (NH3)  in  four  or  

five  places  around  the  petri  dish  and  replace  the  lid.  • Carefully  slide  the  petri  dish  off  the  grid  and  onto  an  all-­‐black  background.  Watch  carefully  for  a  moment  

and  record  your  observations.                      ___________________________________________________________________________________________________________________________  

___________________________________________________________________________________________________________________________  

___________________________________________________________________________________________________________________________  

• You  can  now  test  the  substance  in  your  petri  dish  by  releasing  it  near  the  Dylos.    To  do  this,  set  the  dish  one  inch  behind  the  machine.    Record  the  particle  levels  before  you  open  the  lid,  then  open  it  and  record  the  levels  after.    (Note:  you  will  want  to  do  this  all  relatively  quickly  for  best  results)    

Before:    PM2.5-­‐                                        PM2.5-­‐10-­‐                                                                                                                        After:      PM2.5-­‐                                        PM2.5-­‐10-­‐                                                                                                                                  

Page 9: Where Does Particulate Matter Come From?

 PM  Lesson  1    

  9  

5. Did  each  particle  count  change  after  opening  the  lid?  Using  what  you  know  about  particulate  matter  formation,  explain  why  or  why  not.            ____________________________________________________________________________________________________________________________  

       ____________________________________________________________________________________________________________________________  

       ____________________________________________________________________________________________________________________________  

 6.        In  research  studies  done  on  seasonal  levels  of  particle  pollution,  it  has  been  found  that  secondary  particles  have  

much  higher  concentrations  in  the  summer  months.    Consider  factors  that  affect  the  rates  of  chemical  reactions.    Why  do  you  think  there  are  more  secondary  particles  in  the  summer  months?  Be  sure  to  explain  your  answer.    ____________________________________________________________________________________________________________________________  

       ____________________________________________________________________________________________________________________________  

       ____________________________________________________________________________________________________________________________  

 7. Finish  the  experiment  by  rinsing  your  petri  dish  in  a  lab  sink,  washing  it  with  soap  and  water,  and  dabbing  dry  

with  a  cotton  cloth  (to  avoid  scratching).  

 

   

 

     

 

 

 

 

 

 

   

Distilled  H2O  w/BCG  

 1  ml  of  0.5  M  KNO2  

 

 2  ml  of  2  M  H2SO4  added  to  the  0.5  M  KNO2  

 A  few  drops  of  2  M  NH3  

Page 10: Where Does Particulate Matter Come From?

PM  Lesson  1  

 10  

  LAB  2:  Formation  of  Secondary  Particles  -­‐  Teacher  Resources    

Small  scale  chemistry  (SSC)  involves  conducting  chemical  experiments  using  smaller  pieces  of  equipment  and  much  reduced  amounts  of  chemicals  that  are  usually  used  in  chemistry  classes.  SSC  strives  to  get  the  most  amount  of  information,  in  the  simplest  way,  at  the  lowest  cost,  with  the  least  amount  of  waste,  and  in  the  safest  manner.  

There  are  some  tremendous  advantages  to  working  with  small  amounts  of  matter:  

• SAFER:  SSC  uses  fewer  quantities  of  chemicals  and  durable  containers  whereas  traditional  teaching  uses  sharp  glassware  as  well  as  large  quantities  of  chemicals.  Three  most  common  injuries  are  cuts  from  broken  glassware,  burns  from  Bunsen  burners,  and  chemical  burns  from  concentrated  acid  spills.  

• ENVIRONMENTALLY  FRIENDLY:  the  disposal  of  wastes  is  cut  to  an  absolute  minimum.    • ECONOMICAL:  experiments  can  be  conducted  in  a  regular  classroom;  you  don’t  need  a  chemistry  lab.  

In  SSC,  the  laboratory  is  an  8  ½  "  x  11"  laminated  sheet  called  a  labtop.  The  labtop  contains  a  grid,  white  space  and  black  space.    It  allows  chemistry  to  be  carried  out  in  virtually  any  location  and  environment.    

• HANDS-­‐ON:  because  of  the  type  of  equipment  and  the  smaller  amounts  of  chemicals,  each  student  can  easily  conduct  his/her  own  experiments.    

 

Chemical  Recipes  

You  will  need  to  make  up  four  solutions  in  order  to  conduct  this  lab  experiment  with  your  class.  You’ll  need  to  use  a  measuring  pipet  (found  in  chemistry  labs)  to  draw  the  solutions  from  their  containers.  Never  use  your  mouth  to  draw  the  solutions.  Either  use  an  automatic  pipet  or  a  rubber  bulb  pipet  aid.      

For  your  own  safety,  please  follow  the  instructions  as  written  and  wear  a  lab  coat,  safety  glasses,  and  hand  protection  to  prepare  these  solutions.  

0.5  M  potassium  nitrite  (KNO2)  

Weigh  out  1  gram  of  KNO2  and  mix  it  with  25  ml  of  water  until  dissolved.    

2  M  sulfuric  acid  (H2SO4)  

  Take  5.6  ml  of  concentrated  H2SO4  and  add  it  slowly  to  44.4  ml  of  water  and  stir  frequently.      

Note:  It  is  important  to  add  the  acid  to  the  water.  If  you  add  water  to  the  acid,  the  solution  could  cause  a  violent  reaction.  

2  M  ammonia  (NH3)  

  Take  3.4  ml  concentrated  NH3  and  add  it  slowly  to  21.6  ml  of  water  and  stir  frequently.      

0.03%  bromocresol  green  

  Weigh  out  0.03  grams  of  bromocresol  green  and  mix  with  100  ml  of  water  until  dissolved.    If  you  have  an  accurate  balance  you  can  weigh  out  half  the  amount  and  mix  with  50  ml  of  water.    

Page 11: Where Does Particulate Matter Come From?

 PM  Lesson  1    

  11  

 

The  amounts  are  designed  to  make  25  ml  each  of  potassium  nitrate  and  ammonia,  45  ml  of  sulfuric  acid,  and  100  ml  of  the  bromocresol  green.    The  first  three  solutions  can  be  made  up  well  in  advance,  but  the  bromocresol  green  solution  should  be  made  within  a  couple  days  of  when  you  intend  to  run  the  experiment.          This  will  be  sufficient  for  approximately  24  students  working  in  pairs.    Remember  to  always  add  an  acid  or  base  to  water  slowly  with  mixing  to  prevent  heat  buildup  and  potential  splashing.  

Material  List  

• Student  experiment  sheet    • Printed,  laminated  labtop  (pg.  11)  • Chemicals  (Teachers  pour  small  amounts  of  each  needed  chemical  into  plastic  cups.  Teachers  –  or  students  –  draw  chemical  from  cup  into  correspondingly  labeled  pipet  -­‐  also  called  a  microburet.      

• Each  pair  of  student  gets  their  own  set  of  chemicals:  o 0.5  M  KNO2  potassium  nitrite    o 2  M  H2SO4  sulfuric  acid  o 2  M  NH3  ammonia  o BCG  bromocresol  green  

• Small  Scale  Chemistry  Equipment  (1  for  each  pair  of  students):    o plastic  Petri  dishes  o labtops    

 • Clean  up    

o detergent  for  washing  Petri  dishes      o cotton  cloth  for  drying  (to  avoid  scratching)  

 

Notes:                                                                                                                                                                            

   

Page 12: Where Does Particulate Matter Come From?

PM  Lesson  1  

 12  

Labtop  

   

                   

Page 13: Where Does Particulate Matter Come From?

 PM  Lesson  1    

  13  

  LAB  2:  How  do  Secondary  Particles  Form?  Teacher  Key  

 

In  this  lab  you  will  be  exploring  how  emissions  can  affect  air  quality  by  simulating  chemical  reactions  that  occur  in  the  atmosphere.    You  will  be  synthesizing  nitric  oxide  (NO)  gas,  a  by-­‐product  of  fossil  fuel  combustion.    Nitric  oxide,  though  a  gas,  can  contribute  to  particle  pollution,  particularly  in  the  winter  months.    In  this  lab,  you  will  explore  how  and  why  NO  forms  and  the  potential  impact(s)  that  occur  from  this  reaction.    You  will  be  using  a  lidded  petri  dish  as  a  contained  environmental  chamber.  

Complete  the  following  steps:  

1. Place  a  clean,  dry  petri  dish  onto  the  circular  grid  of  the  labtop.  2. Using  a  pipette,  put  one  drop  of  distilled  water  into  the  petri  dish  in  the  positions  shown  in  the  diagram.  Then  

drop  a  single  drop  of  bromocresol  green  (BCG  )  solution  into  each  drop  of  distilled  water.  (See  diagram  on  next  page  for  a  visual  of  this.)    BCG  is  an  indicator  for  acids  and  bases;  any  color  changes  indicate  chemical  changes  in  the  petri  dish.    Observing  these  changes  will  help  you  understand  what  is  produced  in  the  following  chemical  reactions.  

3. Now  it’s  time  to  create  one  of  the  by-­‐products  formed  from  the  burning  of  fossils  fuels:  • Use  a  pipette  to  dispense  8  drops  of  0.5  M  KNO2  (potassium  nitrate)  into  the  center  of  the  dish.    • Get  the  lid  of  the  petri  dish  ready  (Note:  you’ll  want  to  cap  the  petri  dish  right  away  after  the  next  step).    • Use  a  clean  pipette  to  measure  and  add  16  drops  of  H2SO4  (sulfuric  acid)  to  the  KNO2  in  your  dish.    Cap  the  

petri  dish  immediately.  • Watch  carefully  and  record  your  observations:  

Students  should  observe  color  changes  in  the  drops  of  distilled  water  &  BCG  

Though  the  fluids  never  touched,  the  acidity  changed.    How  is  this  possible?  (Hint:  consider  the  phases  of  matter)  There  must  be  a  phase  change  in  one  or  more  the  chemicals  which  turn  to  gas  and  circulate  around  the  petri  dish,  changing  the  acidity  of  the  environment.  

• What  gas  is  in  your  chamber  at  the  moment  (use  the  introduction  paragraph  to  answer  this)?  Nitric  Oxide    

4. You  will  now  simulate  another  reaction:  

• Lift  the  lid  slightly  at  an  angle.  Using  a  clean  pipette,  add  a  couple  of  drops  of  2  M  ammonia  (NH3)  in  four  or  five  places  around  the  petri  dish  and  replace  the  lid.  

• Carefully  slide  the  petri  dish  off  the  grid  and  onto  an  all  black  background.  Watch  carefully  and  record  your  observations.    

                 Students  should  see  particles  forming  in  the  petri  dish.    Wispy  white  vapors  will  appear.  

 

• You  can  now  test  the  substance  in  your  petri  dish  by  releasing  it  near  the  Dylos.    To  do  this,  set  the  dish  6  inches  behind  the  machine.    Be  sure  to  record  the  particle  levels  before  you  open  the  lid  to  the  petri  dish,  as  well  as  after.    Before:    PM2.5-­‐  Varies                  PM2.5-­‐10-­‐  Varies                                                                          After:      PM2.5-­‐  Varies                PM2.5-­‐10-­‐      Varies  

                                                                                                                 

Page 14: Where Does Particulate Matter Come From?

PM  Lesson  1  

 14  

5. Did  each  particle  count  change  after  opening  the  lid?  Using  what  you  know  about  particulate  matter  formation,  explain  why  or  why  not.    Students  should  see  the  particle  count  go  up,  and  should  draw  the  conclusion  that  the  spontaneous  chemical  reaction  in  the  petri  dish  created  secondary  particles.            

 6. In  research  studies  done  on  seasonal  levels  of  particle  pollution,  it  has  been  found  that  secondary  particles  have  

much  higher  concentrations  in  the  summer  months.    Consider  factors  that  effect  the  rates  of  chemical  reactions.    Why  do  you  think  there  are  more  secondary  particles  in  the  summer  months?    Be  sure  to  explain  your  answer.  When  temperature  increases,  so  does  the  rate  of  chemical  reactions.    Therefore,  in  the  summer  months  when  air  temperatures  are  higher,  the  chemical  reactions  that  create  secondary  particles  are  happening  at  an  increased  rate.    

7. Finish  the  experiment  by  rinsing  your  petri  dish  in  a  lab  sink,  washing  it  with  soap  and  water,  and  dabbing  dry  with  a  cotton  cloth  (to  avoid  scratching).  

 

   

 

     

 

 

 

 

 

 

   

Distilled  H2O  w/BCG  

 1  ml  of  0.5  M  KNO2  

 

 2  ml  of  2  M  H2SO4  added  to  the  0.5  M  KNO2  

 A  few  drops  of  2  M  NH3  

Page 15: Where Does Particulate Matter Come From?

 PM  Lesson  1    

  15  

COMPREHENSION 1

 What  are  the  Sources  of  Particulate  Matter?    

WHAT  IS  PARTICULATE  MATTER?  The  term  "particulate  matter"  (PM)  includes  both  solid  particles  and  liquid  droplets  found  in  air.  Many  manmade  and  natural  sources  emit  PM,  both  indoors  and  out,  including  wildland  fires,  fossil  fuel  emissions,  road  dust,  wood  stove  and  fireplace  emissions,  volcanoes,  cigarette  smoke,  and  cooking.    All  forms  of  particulate  matter  belong  to  one  of  two  groups:  primary  (emitted  directly  from  a  source)  or  secondary  (formed  through  chemical  reactions  in  the  air).    Secondary  particles  make  up  most  of  the  fine  particle  pollution  in  the  country.    Particles  can  be  further  categorized  based  on  their  chemical  composition.  For  instance,  the  composition  of  diesel  PM  would  contain  more  elemental  carbons  while  PM  from  wood  smoke  would  have  more  organic  carbons.  

Below  are  the  common  components  of  PM  and  some  of  their  sources:  

• sulfates,  often  associated  with  emissions  from  industry  • nitrates,  from  fossil  fuel  emission  and  agriculture  • organic  compounds,  from  all  types  of  combustion,  industry,  agriculture  • water,  vapor  from  the  water  cycle  • trace  elements  (including  metals),  some  are  naturally  occurring  from      crustal  sources  (aka  from  the  Earth’s  crust),  others  from  industry      and  burning  of  fossil  fuels    

It  is  important  to  note  that  the  possible  human  health  effects  vary  greatly  depending  on  the  source  and  composition  of  particles.    For  example,  particles  formed  from  car  and  industry  emissions  are  known  to  be  much  more  hazardous  than  dust  particles.  Particulate  matter  is  also  categorized  by  size.    PM10  particles  include  those  with  a  diameter  of  10  microns  and  less.  A  micron  is  one  millionth  of  a  meter  (1/1,000,000  m).  Many  of  these  can  be  seen  with  the  naked  eye,  such  as  dust  and  pollen.    PM2.5  is  2.5  microns  or  less  in  diameter.      You  may  equally  hear  people  discuss  “coarse”  vs.  “fine”  particles.    Fine  particles  are  2.5  microns  or  less  in  diameter.    Coarse  particles  are  those  that  measure  between  2.5  microns  and  10  microns.    The  distinction  between  PM10  and  coarse  particles  is  subtle  but  significant;  PM10  includes  all  particles  between  0.1  and  10  microns,  while  coarse  particles  only  account  for  those  between  2.5  and  10  microns.    When  looking  at  a  PM10  reading,  you  are  seeing  the  total  number  of  coarse  and  fine  particles.    By  subtracting  the  corresponding  PM2.5  reading,  you  get  your  “coarse  particle  fraction”.  

 

 

 

 

     There  are  many  informational  There  are  many  informational  resources  available  for  particulate  matter.    Start  by  exploring  the  EPAs  website:  exploring  the  EPAs  website:  

http://1.usa.gov/1DOeqph                  

Page 16: Where Does Particulate Matter Come From?

PM  Lesson  1  

 16  

Below  is  a  chart  that  shows  common  particulate  matter  pollutants  and  their    respective  size  ranges:    

 

 

 

 

 

 

WHAT  ARE  THE  HEALTH  EFFECTS  OF  PARTICULATE  MATTER?  There  are  a  number  of  known  health  concerns  associated  with  particulate  matter,  though  it  is  still  not  fully  understood  and  it  is  the  focus  of  many  scientific  studies.    As  mention  above,  the  possible  health  effects  depend  on  the  source  and  composition  of  the  PM.    Wood  smoke  is  known  to  increase  susceptibility  to  respiratory  infections,  while  fossil  fuel  emissions  are  associated  with  cardiovascular  problems,  such  as  non-­‐fatal  heart  attacks  and  cardiac  arrhythmia  (irregular  heartbeat),  and  lung  cancer.    Many  scientists  focus  on  PM2.5    as  it  is  so  small  that  it  can  bypass  the  body’s  natural  defenses  –  nose  hairs  and  cilia  –  and  make  it  down  through  the  larynx  into  the  respiratory  system,  and  penetrate  deep  into  the  lungs.  For  individuals  with  heart  or  lung  disease  it  can  even  cause  premature  death.    Other  individuals  who  are  particularly  at  risk  to  particle  matter  exposure  include  sensitive  populations  such  as  older  adults,  people  with  compromised  immune  systems,  and  children.      It  is  important  to  consider  that  length  of  exposure  to  PM  is  a  critical  factor  in  what  health  effects  are  seen.      Short-­‐term  exposure  may  result  in  respiratory  difficulty,  while  long-­‐term  can  cause  more  severe  health  issues  such  as  cardiovascular  disease  and  premature  death.      

Regulation  of  Particulate  Matter  With  the  number  of  health  concerns  associated  with  particulate  matter,  as  well  as  its  broader  environmental  effects,  the  Environmental  Protection  Agency  (EPA)  enforces  strict  regulations  on  emissions  as  a  part  of  the  Clean  Air  Act.      Levels  are  based  on  outdoor  24  hour  averages  measured  in  micrometers  per  m3  (µ/m3).      Daily  levels  for  PM2.5  is  35  µ/m3  and  is  not  to  exceed  an  overall  annual  average  of  15µ/m3.    For  PM10  it  is  150  µ/m3  with  an  annual  average  level  at  or  below  50.    Communities  that  exceed  these  levels  are  considered  “non-­‐attainment”  areas  and  are  required  to  create  state  implementation  plans  addressing  how  to  improve  pollutant  levels.  

Notes:                                                                                    

   Read  the  EPAs  “Fast  Facts”  for  more  interesting  facts  on  PM:    http://1.usa.gov/1KpvHJi      

Page 17: Where Does Particulate Matter Come From?

 PM  Lesson  1    

  17  

PM  LESSON  1:  Comprehension  Guiding  Questions    

1. What  is  the  difference  between  PM2.5  and  PM10?      

2. Why  are  scientists  so  concerned  about  PM2.5?        

3. What  is  the  distinction  between  coarse  particles  and  PM10?      

4. The  EPA  (Environmental  Protection  Agency)  has  set  acceptable  average  levels  of  particulate  matter  pollution  in  a  24-­‐hour  period.    What  is  the  acceptable  average  24-­‐hour  ambient  (outdoor)  level  for  PM2.5?    For  PM10?              

5. What  is  the  difference  between  primary  and  secondary  particles?  Provide  at  least  one  example  of  each.        

6. What  type  of  particles  (primary  or  secondary)  make  up  the  majority  of  particle  pollution  in  the  US?      

7. Match  the  PM2.5  species  with  the  sources  in  the  second  column.    Note,  more  than  one  source  may  match  a  species,  and  sources  can  match  multiple  species:    __________  a)  nitrate  __________  b)  carbon  __________  c)  crustal  __________  d)  sulfate      

1. dust  2. car  exhaust  3. agriculture  4. ash  5. smoke/fire  6. industry  

 8. What  are  some  of  the  health  effects  of  particulate  matter  exposure  and  with  which  source  are  each  associated?  

   

9. Select  your  state  on  the  map  at  the  following  link.    There  you  will  be  able  to  explore  the  primary  sources  of  particulate  matter  pollution  by  county  in  your  state.    Select  your  own  county  first.    Then  explore  at  least  5  other  counties  in  your  state.    Summarize  and  explain  your  findings.    http://1.usa.gov/16AGO39        

Page 18: Where Does Particulate Matter Come From?

PM  Lesson  1  

 18  

PM  Lesson  1:  Guiding  Questions  -­‐  Teacher  Key    

1. What  is  the  difference  between  PM2.5  and  PM10?    PM10,  is  10  microns  or  less  in  diameter,  while  PM2.5,  measures  2.5  microns  or  less  in  diameter.    

2. Why  are  scientists  so  concerned  about  PM2.5?    At  such  a  small  size,  PM2.5  can  bypass  the  body’s  natural  defenses  and  can  embed  themselves  deep  in  the  lungs,  causing  a  number  of  health  issues.    

3. What  is  the  distinction  between  coarse  particles  and  PM10?    Coarse  particles  do  not  include  particles  below  2.5  microns,  while  PM10  does.    

4. The  EPA  (Environmental  Protection  Agency)  has  set  acceptable  average  levels  of  particulate  matter  pollution  in  a  24-­‐hour  period.    What  is  the  acceptable  average  24-­‐hour  ambient  (outdoor)  level  for  PM2.5?    For  PM10?          PM2.5:  35  micrograms/m3  or  less                                    PM10:  150  micrograms/m3  less    

5. What  is  the  difference  between  primary  and  secondary  particles?  Provide  at  least  one  example  of  each.  Primary  particles  are  emitted  directly  from  a  source,  such  as  wood  smoke  or  dust  from  unpaved  roads.    Secondary  particles  form  through  complex  chemical  reactions.    Some  example  sources  of  these  chemicals  are  emissions  from  cars  or  factories.  A  secondary  particle  includes  ammonium  nitrate  or  ammonium  sulfate.  

6. What  type  of  particles  (primary  or  secondary)  make  up  the  majority  of  particle  pollution  in  the  US?    Secondary    

7. Match  the  PM2.5  sources  in  the  second  column  to  the  sources  in  the  first  column.    Note,  sources  can  match  more  than  one  species:    __________  a)  nitrate  __________  b)  carbon  __________  c)  crustal  __________  d)  sulfate        

7. dust  8. car  exhaust  9. agriculture  10. ash  11. smoke/fire  12. industry  

 8. What  are  some  of  the  health  effects  particulate  matter  exposure  and  with  which  source  are  each  associated?  

Asthma  (woodsmoke),  non-­‐fatal  heart  attacks  and  lung  cancer  (fossil  fuel  emissions),  decreased  lung  function.  

9. Select  your  state  on  the  map  at  the  following  link.    There  you  will  be  able  to  explore  the  primary  sources  of  particulate  matter  pollution  by  county  in  your  state.    Select  your  own  county  first.    Then  explore  at  least  5  other  counties  in  your  state.    Summarize  and  explain  your  findings.    http://1.usa.gov/16AGO39        Students  should  be  able  to  identify  the  primary  sources  of  PM  in  their  region  as  well  as  explain  some  of  the  differences  across  the  state.    For  example,  smoke  is  the  primary  source  of  PM  pollution  in  Missoula  County.    In  many  of  the  central  Montana  counties,  a  primary  source  is  nitrates  which  reflects  the  amount  of  agriculture  in  those  areas.    Equally,  some  counties  have  dust  as  a  major  contributor,  which  is  explained  by  the  dry,  open  landscape.  

Page 19: Where Does Particulate Matter Come From?

 

  19  

Particulate Matter Lesson 1: Specific Learning Objectives and Standards Specific  Learning  Objectives  Upon  completion  of  this  lesson,  students  will  be  able  to:  

• define  particulate  matter.  • identify  common  sources  of  particulate  matter.  • differentiate  between  PM2.5  and  PM10,  as  well  as  primary  and  secondary  particles.  • identify  their  primary  exposures  to  particulate  matter.  • observe  basic  chemical  reaction  simulating  secondary  particle  formation  and  provide  basic  explanation.  • identify  temperature  as  a  factor  that  effects  chemical  reactions  and  explain  what  that  effect  is.  

     

NEXT  GENERATION  SCIENCE  STANDARDS  Students  who  demonstrate  understanding  can:      

HS-­‐PS1-­‐2  Construct  and  revise  an  explanation  for  the  outcome  of  a  simple  chemical  reaction  based  on  the  outermost  electron  states  of  atoms,  trends  in  the  periodic  table,  and  knowledge  of  the  patterns  of  chemical  properties.  

HS-­‐PS1-­‐6  Apply  scientific  principles  and  evidence  to  provide  an  explanation  about  the  effects  of  changing  the  temperature  or  concentration  of  the  reacting  particles  on  the  rate  at  which  a  reaction  occurs.    

 

MONTANA  STATE  SCIENCE  STANDARDS  A  proficient  student  will  (upon  graduation):  

Science  Content  Standard  1:  Students,  through  the  inquiry  process,  demonstrate  the  ability  to  design,  conduct,  evaluate,  and  communicate  the  results  and  form  reasonable  conclusions  of  scientific  investigations.  

 1.1  generate  a  question,  identify  dependent  and  independent  variables,  formulate  testable,  multiple  hypotheses,  plan  an  investigation,  predict  its  outcome,  safely  conduct  the  scientific  investigations,  and  collect  and  analyze  data.      1.4  analyze  observations  and  explain  with  scientific  understanding  to  develop  a  plausible  model  (e.g.,  atom,  expanding  universe).  

 Science  Content  Standard  2:    Students,  through  the  inquiry  process,  demonstrate  knowledge  of  properties,  forms,  changes  and  interactions  of  physical  and  chemical  systems.  

 2.3  describe  the  major  features  associated  with  chemical  reactions,  including  (a)  giving  examples  of  reactions  important  to  industry  and  living  organisms,  (b)  energy  changes  associated  with  chemical  changes,  (c)  classes  of  chemical  reactions,  (d)  rates  of  reactions  and  (e)  the  role  of  catalysts.  

 

ALASKA  STATE  SCIENCE  STANDARDS                                                                              SA1:  Students  develop  an  understanding  of  the  processes  of  science  used  to  investigate  problems,  design,  and  conduct  repeatable  scientific  investigations,  and  defend  scientific  arguments.  

 [10]  SA1.1  The  student  demonstrates  an  understanding  of  the  processes  of  science  by  asking  questions,  predicting,  observing,  describing,  measuring,  classifying,  making  generalizations,  analyzing  data,  developing  models,  inferring,  and  communicating.  

Page 20: Where Does Particulate Matter Come From?

PM  Lesson  1  

 20  

 SC3:    Students  develop  an  understanding  that  all  organisms  are  linked  to  each  other  and  their  physical  environments  through  the  transfer  and  transformation  of  matter  and  energy.  

 [11]  SC3.2    The  student  demonstrates  an  understanding  that  all  organisms  are  linked  to  each  other  and  their  physical  environments  through  the  transfer  and  transformation  of  matter  and  energy  by  analyzing  the  potential  impacts  of  changes  (e.g.,  climate  change,  habitat  loss/gain,  cataclysms,  human  activities)  within  an  ecosystem.  

SE3:    Students  develop  an  understanding  of  how  scientific  discoveries  and  technological  innovations  affect  and  are  affected  by  our  lives  and  cultures.  

[10]  SE3.1/[11]  SE3.1  The  student  demonstrates  an  understanding  of  how  scientific  discoveries  and  technological  innovations  affect  our  lives  and  society  by  researching  a  current  problem,  identifying  possible  solutions,  and  evaluating  the  impact  of  each  solution.  

IDAHO  STATE  STANDARDS  Chemistry:  

Goal  1.3:  Understand  Constancy,  Change,  and  Measurement  11-­‐12.C.1.3.1    Identify,  compare  and  contrast  physical  and  chemical  properties  and  changes  and  appropriate  computations.  

Goal  1.8:    Understand  Technical  Communication  11-­‐12.C.1.8.2    Communicate  scientific  investigations  and  information  clearly.  

Goal  2.5:    Understand  Chemical  Reactions  11-­‐12.C.2.5.3    Describe  the  factors  that  influence  the  rates  of  chemical  reactions.  

 Goal  5.1:    Understand  Common  Environmental  Quality  Issues,  Both  Natural  and  Human  Induced  

11-­‐12.C.5.1.1   Demonstrate  the  ability  to  work  safely  and  effectively  in  a  chemistry  laboratory.    Goal  5.3:    Understand  the  Importance  of  Natural  Resources  and  the  Need  to  Manage  and  Conserve  Them  

11-­‐12.C.5.3.1   Evaluate  the  role  of  chemistry  in  energy  and  environmental  issues.