wagner 1 10_14

16
A BenefitCost Evalua1on Method for Transit Stop Removal Zef Wagner Robert L. Bertini Portland State University Presented at the OTREC Transportation Seminar Portland, OR January 10, 2014

Upload: trec-at-psu

Post on 02-Jul-2015

45 views

Category:

Documents


0 download

DESCRIPTION

Zef Wagner, Portland State University

TRANSCRIPT

Page 1: Wagner 1 10_14

A  Benefit-­‐Cost  Evalua1on  Method  for  Transit    

Stop  Removal  

Zef Wagner Robert L. Bertini

Portland State University

Presented at the OTREC Transportation Seminar

Portland, OR January 10, 2014

Page 2: Wagner 1 10_14

Overview  

§  Introduction §  Research §  Methodology §  Application §  Next Steps

Page 3: Wagner 1 10_14

Introduc1on  

“Ugh! This bus has way too many stops!”

“Hey! Don’t take away my stop!”

Page 4: Wagner 1 10_14

Introduc1on  

Speed Access

Ridership Coverage

Wider Spacing Closer Spacing

Reliability Proximity

Page 5: Wagner 1 10_14

Introduc1on  

Close Spacing = Duplicate Coverage

Wide Spacing = Coverage Gaps

Page 6: Wagner 1 10_14

Introduc1on  

Stop Spacing in Practice = ~1/8-mile (or less!)

Stop Spacing Standards = ~1/4-mile

Page 7: Wagner 1 10_14

Research  

§  Exis%ng  research  focused  on  line-­‐level  analysis  to  determine  op%mal  average  stop  spacing      

§  Needed:  a  stop-­‐level  analysis  method  to  determine  which  specific  stops  to  remove  

Page 8: Wagner 1 10_14

Methodology  

§  Calculate Benefit-Cost Ratio (B/C) for removing each stop

§  B/C > 1 = candidate

for stop removal

Page 9: Wagner 1 10_14

Methodology  

§  B = (# of through riders on vehicle) x (time saved by not serving stop)

§  C = (# of riders using stop) x (additional time

to access nearest remaining stop) §  Passenger-minutes saved vs. passenger-

minutes lost

Page 10: Wagner 1 10_14

Methodology  

§  Average load and stop-level ridership §  Distances between stops §  Value of time ratio §  Average walking speed §  Average time lost per stop (not including

dwells)

Page 11: Wagner 1 10_14

Assump1ons  

§  Bus serves all stops on every trip §  All passengers migrate to nearest stop §  Perfect street grid with small blocks

 

Page 12: Wagner 1 10_14

Holland

Morgan

Bryant

Dekum

Rosa Parks

Ainsworth

Jarrett

Killingsworth

Sumner Alberta

Wygant

Prescott

Mason

Beech

Failing

Fremont

Fargo

Morris

Brazee

Knott

Tillamook

Lombard

§ TriMet Line 6 § 20 stops § Outbound § PM Peak § Fall 2011

§ Why chosen? § High ridership § Close spacing § Grid streets § Many stops

Applica1on  

Page 13: Wagner 1 10_14

Results  Holland

Morgan

Bryant

Dekum

Rosa Parks

Ainsworth

Jarrett

Killingsworth

Sumner Alberta

Wygant

Prescott

Mason

Beech

Failing

Fremont

Fargo

Morris

Brazee

Knott

Tillamook

Lombard

Stop  Loca1on   B/C  

Brazee   1.9  

KnoA   0.9  

Morris   1.4  

Fargo   5.3  

Fremont   2.0  

Beech   4.4  

Failing   1.4  

Mason   1.9  

PrescoA   2.0  

Wygant   2.0  

Alberta   0.6  

Sumner   2.1  

Killingsworth   0.5  

JarreA   1.3  

Ainsworth   0.3  

Rosa  Parks   1.1  

Dekum   1.4  

Bryant   3.3  

Morgan   7.4  

Holland   3.3  

Lombard  

Cross Street   B/C  Holland   1.6  Morgan   3.7  Bryant   1.6  Dekum   0.7  Rosa Parks   0.6  Ainsworth   0.2  Jarrett   0.7  Killingsworth   0.2  Sumner   1.0  Alberta   0.3  Wygant   1.0  Prescott   1.0  Mason   0.9  Failing   0.7  Beech   2.2  Fremont   1.0  Fargo   2.7  Morris   0.7  Knott   0.5  Brazee   0.9  

§ 5 stops have B/C>1

§ 3 adjacent stops

§ Remove outer stops first

§ Remove stops, then re-evaluate after one year

Page 14: Wagner 1 10_14

Sensi1vity  Analysis  

§ Va = Value of Time § Tr = Time Lost/

Stop § B/C = Benefit/Cost

§ A range of values still support the same conclusion

Page 15: Wagner 1 10_14

Next  Steps  

§  Stop Probability

§  Network Analysis

70% 30% 100% 60% 40%

§ Operational Benefits

Page 16: Wagner 1 10_14

Thank  You  Zef Wagner [email protected]

Special Thanks:

Robert L. Bertini [email protected]