universite de montreal comparison of heat flux and … · 2021. 8. 3. · dans des programmes...

268
UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND WALL TEMPERATURE BASED METHODS FOR PREDICTING POST-DRYOUT SURFACE TEMPERATURE IN TUBES EVE-LYNE PELLETIER DEPARTEMENT DE GENIE PHYSIQUE ECOLE POLYTECHNIQUE DE MONTREAL MEMOIRE PRESENTE EN VUE DE L'OBTENTION DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES (GENIE ENERGETIQUE) NOVEMBRE 2008 © Eve-Lyne Pelletier, 2008.

Upload: others

Post on 05-Sep-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

UNIVERSITE DE MONTREAL

COMPARISON OF HEAT FLUX AND WALL TEMPERATURE BASED METHODS

FOR PREDICTING POST-DRYOUT SURFACE TEMPERATURE IN TUBES

EVE-LYNE PELLETIER

DEPARTEMENT DE GENIE PHYSIQUE

ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L'OBTENTION

DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES

(GENIE ENERGETIQUE)

NOVEMBRE 2008

© Eve-Lyne Pelletier, 2008.

Page 2: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

1*1 Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A0N4 Canada

Bibliotheque et Archives Canada

Direction du Patrimoine de I'edition

395, rue Wellington Ottawa ON K1A0N4 Canada

Your file Votre reference ISBN: 978-0-494-47679-6 Our file Notre reference ISBN: 978-0-494-47679-6

NOTICE: The author has granted a non­exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non­commercial purposes, in microform, paper, electronic and/or any other formats.

AVIS: L'auteur a accorde une licence non exclusive permettant a la Bibliotheque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par telecommunication ou par Plntemet, prefer, distribuer et vendre des theses partout dans le monde, a des fins commerciales ou autres, sur support microforme, papier, electronique et/ou autres formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur conserve la propriete du droit d'auteur et des droits moraux qui protege cette these. Ni la these ni des extraits substantiels de celle-ci ne doivent etre imprimes ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

Conformement a la loi canadienne sur la protection de la vie privee, quelques formulaires secondaires ont ete enleves de cette these.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Canada

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Page 3: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce memoire intitule:

COMPARISON OF HEAT FLUX AND WALL TEMPERATURE BASED METHODS

FOR PREDICTING POST-DRYOUT SURFACE TEMPERATURE IN TUBES

presente par: PELLETIER Eve-Lyne

en vue de l'obtention du diplome de: Maitrise es sciences appliquees

a ete dument accepte par le jury d'examen constitue de:

M. MARLEAU Guy, Ph.D., president

M. TEYSSEDOU Alberto, Ph.D., membre et directeur de recherche

M. LEUNG Laurence, Ph.D., membre et codirecteur de recherche

M. GIRARD Rene, Ph.D., membre

Page 4: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

IV

ACKNOWLEDGMENTS

The author would like to thank Laurence K.H. Leung for providing technical guid­

ance, Alberto Teyssedou, Rene Girard and Elisabeth Varin for their technical advice

and comments on the document. Armando Nava Dominguez, Nihan Onder and Luke

McSweeney review of the manuscripts and their useful suggestions are deeply appreci­

ated. All about mentioned individual have contributed to the success of this work.

The author would also like to thank Hydro-Quebec and Ecole Polytechnique de Mon­

treal for their financial support for this study and the Atomic Energy of Canada Limited

for providing invaluable resources during my attachment to Chalk River.

Page 5: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

V

ABSTRACT

In nuclear reactors, the surface temperature of fuel bundles is relatively close to the

coolant saturation temperature during normal operating conditions. During some postu­

lated accidents, the heat flux of the fuel bundle could increase or the mass flow rate to

the fuel channel could reduce resulting in local heat flux exceeding the critical heat flux.

Under those scenarios, the surface temperature may increase relatively sharply beyond

the saturation temperature. The corresponding heat transfer regime is referred as the

film boiling. Due to the potential adverse consequence of fuel sheath failure due to high

temperature, it is important to predict accurately the film boiling heat transfer coefficient

for establishing the maximum surface temperature of fuel bundles in safety analysis.

Two methodologies in predicting film-boiling heat-transfer coefficient have been as­

sessed against experimental wall-temperature measurements obtained under steady-state

conditions with water flow inside vertical tubes. One of these methodologies employs

heat flux as the independent parameter (referred as the heat-flux-based methodology)

while the other applies wall-temperature as the independent parameter (referred as the

wall-temperature-based, or simply temperature-based methodology). The film-boiling

heat transfer is separated into the developing film boiling conditions and fully developed

film boiling conditions regions. Film-boiling heat-transfer coefficients are predicted us­

ing the film boiling look-up tables for fully developed flow. A modification factor is

applied for developing film-boiling heat-transfer coefficients.

The assessment shows that applying the heat-flux-based methodology predicts wall-

temperature measurements in the fully developed region with an average error of -0.8%

and a standard deviation of 8.6%, and the temperature-based methodology with an av­

erage error of 1.8% and a standard deviation of 6.4%. The maximum wall temperature

along the channel is predicted with an error of -0.8% and a standard deviation of 8.6% us-

Page 6: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

VI

ing the heat-flux-based methodology. It is slightly overpredicted using the temperature-

based methodology (with an average error of 3.4% and a standard deviation of 6.9%).

Based on the assessment result, it is concluded that both methodologies are applicable

for steady-state calculations. Also, the temperature-based methodology seems stable and

the final temperature distribution does not depend on the initial wall temperature guess.

Similar to film-boiling look-up tables for fully developed flow, the developing film-

boiling factors are expressed in terms of either heat flux or wall temperature. The

assessment shows larger prediction uncertainty of surface temperature in the develop­

ing film-boiling region, as compared to results observed for the fully developed region.

The average prediction error of surface-temperature measurements is -4.4% with a stan­

dard deviation of 14.3% for the heat-flux based methodology, and 8.6% and 10.7%

respectively for the temperature-based methodology. In addition, predicted surface-

temperature trends using the temperature-based methodology differ from experimental

trends in the developing film boiling region. The predicted surface-temperature rise

is much steeper than the experimental trend at low mass fluxes, but more gradual at

high mass fluxes. Based on the assessment result, the modification factor used in the

temperature-based methodology has been revised to improve the prediction accuracy.

An examination of the experimental surface-temperature measurements illustrates strong

effects of mass flux and quality on developing film-boiling heat transfer. These effects

have been included via the Reynolds number of the vapor phase in the revised modifica­

tion factor of the temperature-based methodology. Coefficients in the revised factor were

optimized using the tube heat-transfer database. An assessment of the revised factor has

shown an improvement in prediction accuracy of the wall-temperature measurements in

the developing film boiling region (with an average error of -1.9% and a standard de­

viation of 13.0%). In addition, the maximum wall temperature is predicted accurately

with an average error of 0.9% and a standard deviation of 5.5%. Further validation of

Page 7: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Vll

the revised factor is recommended against a wider range of experimental data.

As a simplification, all assessments have been performed with the assumption that the

radiative heat transfer is negligible. A sensitivity analysis has been carried out to confirm

this assumption. Including the radiative heat-transfer model has no apparent impact to

the prediction accuracy of wall-temperature measurements. Therefore, it is concluded

that the assumption is valid for the current range of flow conditions covered in the ex­

perimental data.

Strictly speaking, these methodologies are applicable for steady-state analyses. A dis­

cussion on applying these methodologies to transient analyses has been provided. It

was shown that thermal inertia and prediction uncertainties in CHF and film-boiling

heat transfer coefficient in the transition boiling region and minimum film boiling tem­

perature predictions do not affect the steady-state film-boiling temperature predictions.

Nevertheless, validation of the temperature-based methodology under transient condi­

tions is recommended against transient experimental data.

Page 8: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Vll l

RESUME

La temperature a la surface des gaines de combustible demeure relativement basse (i.e.

pres de la temperature de saturation) pour les conditions normales d'exploitation des

reacteurs nucleaires. Cependant, advenant certains scenarios d'accidents, la puissance

des grappes de combustible peut augmenter, alors que le debit et la pression du calo-

porteur peuvent etre considerablement reduits. Dans ces conditions, le flux de chaleur

est susceptible d'exceder la valeur du flux de chaleur critique. Le regime de transfert de

chaleur correspondant a cette condition est defini comme etant l'ebullition par film et se

caracterise par une rapide augmentation de la temperature de la paroi. Etant donne que

ces temperatures elevees sont susceptibles d'entratner des defaillances de gaines, il est

important pour la sfirete des reacteurs de predire adequatement le coefficient de trans­

fert de chaleur en conditions d'ebullition par film. Ce coefficient dictera la temperature

maximale des grappes de combustibles atteinte durant le scenario d'accident etudie.

Ce travail presente une evaluation de methodes de predictions du coefficient de transfert

de chaleur en post-assechement. Cette evaluation s'effectue par des comparaisons avec

des donnees experimentales recueillies en conditions stationnaires d'ecoulement dans

des tubes verticaux. La premiere de ces methodes utilise le flux de chaleur comme para-

metre independant alors que la seconde se base sur la temperature de paroi. Le transfert

de chaleur en ebullition par film est divise en deux regimes : un regime ou se deve-

loppent les conditions d'ebullition par film et un regime ou les conditions d'ebullition par

film sont totalement etablies. Le coefficient de transfert de chaleur pour des conditions

d'ebullition par film totalement etablies est predit par interpolation dans des tableaux de

valeurs en fonction de la pression, du flux massique, du titre thermodynamique et de la

surchauffe de la paroi. Un facteur de modification est ensuite applique afin de prendre

en compte l'effet du developpement des conditions d'assechement.

Page 9: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

IX

devaluation de ces methodes montre que la temperature de paroi est predite avec une

erreur moyenne de -0.8% et une deviation standard de 14.3% lorsque Ton utilise une

methodologie basee sur le flux de chaleur. Cette erreur et deviation standard sont respec-

tivement de 1.8% et 10.7% lorsqu'on utilise une methodologie basee sur la temperature

de paroi. La temperature maximale de paroi est quant-a-elle predite avec une erreur

moyenne de 0.8% et une deviation standard de 8.6% avec la methodologie basee sur le

flux de chaleur. Elle est legerement surestimee avec la methodologie basee sur la tempe­

rature de paroi (avec une erreur moyenne de 3.4% et une deviation standard de 6.9%).

En somme, les deux methodologies peuvent etre implementees avec de bons resultats

dans des programmes informatiques de calculs d'etats permanents.

Similairement aux tableaux de valeurs d'ebullition par film, le facteur de modification

s'exprime en fonction du flux de chaleur ou de la temperature de la paroi, suivant la me­

thodologie employee. Les resultats de 1'evaluation montrent une plus grande incertitude

lorsque les conditions d'assechement se developpent que lorsqu'elles sont completement

etablies. Les temperatures dans la region ou les conditions d'ebullition par film sont en

developpement sont predites avec une erreur de prediction de -4.4% et une deviation

standard de 14.3% pour la methode basee sur le flux de chaleur et une erreur de 8.6% et

une deviation standard de 10.7% pour la methode basee sur la temperature de la paroi.

Pour cette methode, les predictions n'epousent pas parfaitement la courbe experimental

dans cette region. En effet, pour de faibles flux massiques, la temperature augmente trop

rapidement lorsque se produit l'assechement alors qu'elle n'augmente pas suffisamment

rapidement pour des flux massiques plus importants. Le facteur de modification pour le

developpement de l'ecoulement utilise dans la methodologie basee sur la temperature

doit done etre revise.

Ce travail montre que le flux massique et le titre du melange ont un effet sur le deve­

loppement des conditions de transfert de chaleur. Le nombre de Reynolds de la phase

Page 10: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

X

vapeur a done ete inclus dans le facteur de modification. Les coefficients de la correla­

tion ont ete optimises en utilisant la meme base de donnees de transfert de chaleur dans

des tubes. Une validation de la correlation revisee montre une amelioration des predic­

tion des temperatures dans la region de developpement des conditions d'ebullition par

film (avec une erreur moyenne de -1.9% et une deviation standard de 13.0%). De plus,

la temperature maximale de paroi est predite avec une erreur moyenne de 0.9% et une

deviation standard 5.5%. La correlation revisee, cependant, devrait etre d'optimisee et

validee en utilisant une plus vaste base de donnees.

Pour fins de simplifications, le transfert de chaleur par rayonnement a ete neglige dans

les predictions. Cette approximation est verifiee en effectuant une etude de sensibilite

qui valide cette hypothese pour les temperatures et conditions d'ecoulement des don­

nees experimentales.

Finalement, les methodologies presentees dans ce travail sont applicables pour des ana­

lyses en conditions stationnaires. L'application des ces methodes a des analyses en

conditions transitoires est egalement discutee. II est ainsi demontre que 1'inertie ther-

mique, 1'incertitude sur le flux de chaleur critique, la temperature minimum d'ebullition

par film et le coefficient de transfert entre ces deux etats (i.e. CHF et TMIN) ne modifient

pas les predictions finales d'ebullition par film en conditions stationnaires. Cependant,

une validation complete de la methodologie basee sur la temperature de paroi devrait

cependant etre effectuee sous des conditions transitoires et en utilisant des donnees ex­

perimentales recueillies dans ces memes conditions.

Page 11: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XI

CONDENSE

La temperature a la surface des grappes de combustible est relativement basse (i.e. pres

de la temperature de saturation) pour les conditions normales d'exploitation des reac-

teurs nucleaires. Cependant, certains scenarios d'accident, tels des pertes de caloporteur

ou des pertes de debit, entrainent 1'augmentation de la puissance des grappes de com­

bustible alors que le debit et la pression du caloporteur peuvent etre considerablement

reduits.

Dans de telles conditions, le flux de chaleur est successible d'exceder le flux de chaleur

critique. Debute alors localement l'assechement des gaines qui se traduit par 1'apparition

d'une couche de vapeur qui reduit le transfer! de chaleur entre les gaines et le calopor­

teur. Cet effet resulte en une rapide augmentation de la temperature de la paroi, ce qui

nuit a l'integralite des gaines du combustible et peut mener a des defauts de gaine et

de combustible. Etant donne les effets negatifs d'une telle excursion de temperature, il

est important en analyse de surete de pr^dire avec precision le coefficient de transfert de

chaleur en regime de post-assechement.

Les predictions du coefficient de transfert de chaleur pour des grappes de combustibles

ayant excede le flux de chaleur critique sont calculees dans les programmes informa-

tiques en utilisant tables de coefficients de transfert de chaleur combinees avec des cor­

relations optimisees pour des grappes de combustibles. Ces tables et correlations peu­

vent etre implantes en utilisant une methode basee sur le flux de chaleur ou une methode

basee sur la temperature de paroi. Ce travail vise a comparer et valider la precision de

ces deux methodologies quant a la prediction de la temperature de la paroi en regime

de post-assechement. Etant donne les droits de propriete intellectuelle des experiences

et correlations pour des grappes de combustible, une base de donnees de transfert de

chaleur en post-assechement dans des tubes a ete elaboree. Les predictions effectuees

Page 12: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Xll

suivant les deux methodes sont ainsi comparees aux donnees experimentales de cette

base de donnees.

Survol Theorique: predictions du transfert de chaleur en post-assechement

Le coefficient de transfert de chaleur en conditions de post-assechement est generale-

ment calcule en utilisant des correlations. Ces dernieres sont cependant souvent limitees

a des conditions d'ecoulement restreintes. Ce coefficient peut egalement etre predit en

utilisant des modeles theoriques qui sont quant a eux complexe, resultent en de longs

temps de calculs et ne sont generalement valides que pour un seul regime de transfert

de chaleur. Pour pallier a ce probleme, des tables exprimant des valeurs experimentales

du coefficient transfert de chaleur en fonction des parametres de l'ecoulement ont ete

construites et implantees dans les programmes informatiques.

Les predictions faites par ces tables fournissent des coefficients de transfert de chaleur

pour des conditions d'ebullition par film totalement etablies. Ainsi, en conditions sta-

tionnaires, un profil de temperature base sur ces predictions resultera en une augmen­

tation instantanee et irrealiste de la temperature de la paroi. En effet, il est impossible

de passer instantanement d'un mode de transfert de chaleur a un autre. De plus, une

fois le flux de chaleur critique excede, l'assechement du film liquide en contact avec la

paroi debute. Des gouttelettes peuvent cependant encore entrer en contact avec la paroi,

ce qui augmente le transfert de chaleur et diminue la temperature de la paroi. Cet effet

se definit comme etant l'etablissement des conditions d'ebullition par film et est pris en

compte dans un facteur separe, le facteur de modification du developpement des condi­

tions d'ebullition par film. Ce facteur de modification multiplie le coefficient de transfert

predit par les tables de valeurs (i.e. pour des conditions d'ebullition par film totalement

etablies) et permet de predire plus precisement le transfert de chaleur et la temperature

Page 13: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

xiii

de la paroi. Cet effet a done un impact direct sur la temperature maximale.

Les methodes de prediction du transfert de chaleur en post-assechement sont implemen-

tees dans les programmes informatiques de surete suivant deux methodologie; la pre­

miere est basee sur le flux de chaleur alors que la seconde est basee sur la temperature

de la paroi. La methodologie basee sur le flux de chaleur est optimale pour des codes

en etat stationnaires ne resolvant pas 1'equation de conduction de la chaleur au travers

de la paroi. En effet, dans ces conditions, le flux de chaleur est un parametre connu

qui est utilise directement pour trouver le coefficient de transfert de chaleur, lequel per-

met finalement de calculer la temperature de la paroi (en utilisant la loi de Newton).

Cette methodologie est cependant difficile a implanter dans certains programmes infor­

matiques en etat transitoires ou le flux de chaleur n'est pas connu avant que soit deter-

minee la temperature de la paroi. De plus, tel que le prevoit la courbe d'ebullition (voir

figure 1.1), trois regimes de transfert de chaleur sont possibles pour un meme flux de

chaleur, ce qui complexifie davantage 1'application de cette methode en regime transi-

toire. La methodologie basee sur la temperature de la paroi a done ete developpee pour

palier a ces problemes. Cette methodologie base le calcul du coefficient de transfert de

chaleur et du flux de chaleur sur la temperature de la paroi.

Methodologie

Ce travail presente une evaluation des methodes basees sur le flux de chaleur et sur la

temperature de la paroi. Cette evaluation s'effectue en implantant les deux methodolo­

gies dans un code informatique en conditions stationnaire. Les predictions de la tem­

perature de la paroi en post-assechement effectuees par le code sont ensuite comparees

a la base de donnees experimentales.

Page 14: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XIV

Les conditions de post-assechement sont rencontrees une fois le flux de chaleur cri­

tique excede. Ce parametre (qui est egalement utilise dans les predictions du coefficient

de tansfert de chaleur en post-assechement) est calcule avec une table de valeur. Une

correction est ensuite apportee afin d'eviter que l'incertitude associee a ce parametre

n'influence les predictions dans des conditions d'ebullition par film. La correction est

calculee en utilisant la relation suivante:

C.F. CHF — QEXP DO (1) Ipred DO

Le coefficient de transfert de chaleur pour la methodologie basee sur le flux de chaleur

est calcule en utilisant une table de valeurs basee sur le flux de chaleur, le titre thermody-

namique, le flux massique et la pression. Le coefficient de transfert de chaleur est ensuite

multiplie par le facteur de modification de developpement des conditions d'ebullition par

film base sur le flux de chaleur critique:

K, developing = 1 + h nb

hfd — 1 ) exp x - xDO

(1 - xDO)Bo (2)

ou Hfg est la chaleur latente de vaporisation et Bo is est 1'index d'ebullition defini

comme:

Bo = GH

(3) fg

La methodologie basee sur la temperature de la paroi utilise quant-a-elle des tables de

valeurs basees sur la surchauffe de la parroi, le titre thermodynamique, le flux massique

et la pression pour calculer le coefficient de transfert de chaleur. Le facteur de modifica-

Page 15: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XV

tion utilise dans cette methodologie est defini par:

K, h

developing PDO

hfd 1 +

h NB

h fd 1 exp c(WSR (4)

avec:

WSR J-w •*• •< sat (5) TCHF — Tsat

Les predictions de la temperature de la paroi ainsi obtenues sont comparees aux experi­

ences de Bennett et al. (Bennett, 1967). Ces experences donne la disitribution axiale de

la temperature interne de la paroi pour un tube vertical dont la surface externe est chauf-

fee uniformement et la surface interne est refroidie par un ecoulement d'eau circulant

vers le haut.

Resultats de revaluation des methodes

Evaluation de la methodologie basee sur le flux de chaleur

L'evaluation de la methodologie basee sur le flux de chaleur montre cette methode predit

adequatement la temperature de la paroi lorsque les conditions d'ebullition par film sont

totalement etablies. En effet, la temperature est predite avec une erreur moyenne de 0.8%

et une deviation standard de 8.6% dans cette region. De plus, la methode predit la tem­

perature de la paroi avec une erreur de -4.4% et une deviation standard de 14.3% dans

la region ou les conditions d'ebullition par film sont en developpement. La temperature

maximale est quant-a-elle predite avec une erreur moyenne de -0.8% et une deviation

standard de 8.6%. Ainsi, il peut etre conclu que cette methode peut etre utilisee avec

precision dans les programmes informatiques en conditions stationnaires.

Page 16: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XVI

Evaluation de la methodologie basee sur la temperature de paroi

L'evaluation de la methodologie basee sur la temperature de la paroi montre que cette

methode predit adequatement la temperature de paroi lorsque les conditions d'ebullition

par film sont totalement etablies. En effet, la temperature est predite avec une erreur

moyenne de 1.8% et une deviation standard de 6.4% dans cette region. Cependant, la

temperature de la paroi est legerement surevaluee dans des conditions de developpement

de l'ebullition par film; une erreur moyenne de 8.3% et une deviation standard de 10.7%

sont trouvees dans cette region. La temperature maximale est predite avec une erreur

moyenne de 3.4% et une deviation standard de 6.9%. De plus, l'etude de revolution de

la temperature montre que cette derniere croit trop rapidement une fois le flux de chaleur

critique excede et ne suit pas adequatement les donnees experimentales. Ainsi, le facteur

de modification de cette methodologie n'apporte pas une correction suffisante et devrait

etre revise.

Sensibilite au facteur de modification

Ce travail presente une etude de 1'impact du facteur de modification sur la temperature

de la paroi. Cette etude montre qu'une variation de ±10% du facteur de modification

resulte en une variation d'environ 20% de 1'erreur moyenne sur la prediction de la tem­

perature de la paroi lorsque Ton utilise la methodologie basee sur la surchauffe de la

paroi. Cette variation est inferieure a 10% pour la methodologie basee sur le flux de

chaleur. La variation du facteur de modification a done un plus grand impact dans la

methodologie basee sur la surchauffe de la paroi. L'effet est similaire pour une variation

de ±10% des coefficients a, b et c des equations 2 et 4. Dans ces cas, une variation de

±10% des coefficients a et c resulte en des variations de 4% de l'erreur moyenne pour

methode baseee sur le flux de chaleur et de 12% pour la methode basee sur la surchauffe

de la paroi. Similairement, une variation de ±10% des coefficients c resulte en une vari-

Page 17: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

xvii

ation de 10% et 15% respectivement pour ces deux methodes.

Amelioration de la methodologie basee sur la temperature de paroi

L'evaluation des methodes de prediction en post-assechement montre que les deux me­

thodologies peuvent etre implantees dans les programmes informatiques en conditions

stationnaires. Cependant, la methodologie basee sur la surchauffe de la paroi surestime

la temperature de la paroi en condition de developpement de 1'ebullition par film. Cette

surestimation est imputable au facteur de modification. Ce dernier est done reexamine

dans ce travail.

L'etude du facteur de modification effectue dans ce travail monte que le developpement

des conditions d'ebullition par film est influence par le titre et le flux massique. La figure

1 montre clairement cette influence. Ces effets ont ete pris en compte dans un nombre

de Reynolds de la phase vapeur definit par:

Ce nombre a permis de definir une correlation revisee du facteur de modification qui

s'exprime par:

Kdeveloping = ^ = 1 + (^ - l ) exp {c** [Rev (WSR - l ) f * } • (7)

Les coefficients de cette correlation ont ete optimises avec la base de donnees pour des

tubes en post-assechement retenue pour ce travail. La correlation revisee est re-evaluee

Page 18: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

xviii

en comparaison avec la base de donnees experimentales et montre un meilleur comporte-

ment du facteur de modification. Cette evaluation montre que le facteur de modification

revise permet de predire la temperature de paroi avec une erreur de -1.9% et une devia­

tion standard de 13.0% dans des conditions de developpement de 1'ebullition par film. La

temperature maximale est quant a elle predite avec une erreur de 0.9% et une deviation

standard de 5.5%. Cette correlation revisee apporte done une amelioration importante

de la methodologie basee sur la temperature de la paroi. Cependant, cette correlation

revisee devrait etre optimisee en utilisant une plus vaste base de donnees.

J

0.07

0.06 -

0.05

0.04

0.03

0.02

0.01

0

-0.01

' - Knon-dimensional, tube v s [(WSR-1 )*x] for different mass

l l I l l I , n G = 1003.627 kg/m2s

G = 1342.69 kg/rrCs * G = 1953.004 kg/m,s * G = 2549.75-> 2576.88 kg/m2s * + G = 5180.88 kg/m2s

i i i i i i

fluxes

! I

I 1

1

1

1

+ * n

• <

+ _

10 30 35

ii-Kn

15 20 25

(WSR-1)*x

-dimensional, tube v s [(WSR-1 )*x*G] for different mass fluxes

40

af

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

-0.01

-

-

-

I I

D

X

*"%*

' '

G = 1003.627 kg/m2s G = 1342.69 kg/m2s

G = 1953.004 kg/m2s G = 2549.75 - > 2576.88 kg/mjs

G = 5180.88 kg/m2s

1 1 1 1

+ * D

X

1 1

1

-

3K-

5000 10000 15000 20000 25000 30000 35000 40000 45000

[(WSR-1 )*x*G]

Figure 1 Experimental Developing-Flow Modification Factor vs (WSR — l)x and vs

(WSR - l)xG

Page 19: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XIX

Effet de la radiation thermique et influence de parametres d'interets en conditions

transitoires

L'evaluation des methodes basees sur le flux de chaleur et sur la temperature de la paroi

presentee dans ce travail s'effectue en conditions stationnaires et en negligeant le trans-

fert de chaleur par rayonnement. L'impact de ces deux effets est etudie dans ce travail.

Radiation thermique

Un modele de transfert de chaleur par radiation a ete construit afin d'etudier 1'impact de

cet effet sur les temperatures de la paroi predites dans le cadre de ce travail. Ce modele

suppose un echange thermique entre deux materiaux (la paroi du tube et l'eau) separes

par un milieu participatif (la vapeur d'eau) et assume un regime annulaire inverse.

Ce modele de transfert de chaleur a par la suite ete implante dans le programme infor-

matique effectuant les predictions de temperatures afin de reevaluer les predictions en

les comparant avec les donnees experimentales. Cette evaluation montre que le fait de

prendre en compte le transfert de chaleur par radiation modifie tres peu les predictions.

En effet, la valeur maximale du rapport du flux de chaleur par radiation et du flux de

chaleur total est inferieur a 3%. La valeur moyenne de ce rapport pour des conditions

d'ebullition par film est de l'ordre de 1.3% alors que la variation (due fait que soit neg­

ligee la radiation thermique) de l'erreur moyenne sur la temperature est de l'ordre de

0.2%. II peut ainsi etre conclu que le transfert de chaleur par radiation est negligeable

dans les conditions de la base de donnees experimentales recueillies par Bennett (Ben­

nett, 1967).

Page 20: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XX

Parametres importants en transitoire

La methodologie basee sur la temperature de paroi a ete elaboree pour etre implan-

tee dans des programmes informatiques en conditions transitoires. Cependant, le pro­

gramme informatique utilise ne permet pas de valider cette methodologie en conditions

transitoires. Ainsi, un modele CATHENA a ete etabli afin de simuler l'une des ex­

periences de Bennett et al. (Bennett, 1967). De plus, les donnees experimentales sont

egalement en conditions stationnaires. L'approche utilisee est done de verifier la stabil-

ite de la methode en etudiant la convergence de la temperature de la paroi une fois un

etat stationnaire etabli pour des coditions d'ebullition par film totalement etablies. Cette

etude s'effecute en faisant varier certains parametres d'interet en conditions transitoires.

L'un des parametres etudies est l'inertie thermique (etudie en faisant varier l'epaisseur

de la paroi et la vitesse de 1'insertion de la puissance thermique). L'incertitude sur le flux

de chaleur critique, sur la temperature minimale d'ebullition (Tmin) et sur le coefficient

de transfert de chaleur dans la region de transition entre ces deux valeurs sont egalement

etudies. La methode utilisee pour prendre en compte l'effet du developpement des con­

ditions d'ebullition par film est un autre parametre etudiee. Tout ces parametres sont

varies et la convergence obtenue sur la temperature de paroi en ebullition par film une

fois ces conditions totalement etablies sont comparees.

Dans tous les cas, bien que la variation de ces parameetres entraine une difference dans

1'evolution du transitoire, la temperature finale en ebillition par film dans tous les cas

demeure la meme. Cependant, la validation de la methodologie en comparaison avec

des donnees experimentales en etat transitoire devrait etre effectuee.

Page 21: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XXI

Conclusion

Ce travail presente une evaluation des methodes de prediction du transfert de chaleur

en regime de post-assechement. Cette evaluation montre que les deux methodes (meth-

ode basee sur le flux de chaleur et sur la surchauffe de la paroi) produisent des pre­

dictions justes et sont applicables dans des programmes informatiques en conditions

stationnaires. II est egalement montre que la methodologie basee sur la surchauffe de la

paroi surestime la temperature de la paroi et la temperature maximale.

Une etude du developpement des conditions d'ebullition par film effectuee dans ce tra­

vail montre que cet effet est influence par le titre thermodynamique et le flux massique.

Ces parametres ont ete inclus dans la correlation utilisee pour prendre en comptre 1'effet

du developpement des conditions d'ebullition par film.n L'evaluation de la methodologie

basee sur la surchauffe de la paroi incluant cette correlation revisee montre un meilleur

comportement par rapport aux donnees experimentales et permet de predire adequate-

ment la temperature de la paroi et la temperature maximale. Ceci represente done une

amelioration importante de cette methodologie. La correlation revisee devrait cependant

etre optimisee et validee avec une plus grande base de donnees experimentales.

Cette evaluation est effectuee en negligeant le transfert de chaleur par radiation. Cet

effet done ete implante dans le code informatique, ce qui a permis de demontrer que

la radiation thermique est negligeable dans les conditions de l'ecoulement des donnees

experimentales utilisees dans ce travail.

La convergence de la temperature de paroi une fois les conditions d'ebullition par film to-

talement etablies a ete etudiee avec CATHENA en faisant varier des parametres d'interet

pour un code en etat transitoire. Ces parametres sont l'inertie thermique, l'incertitude sur

le flux de chaleur critique, la temperature minimale d'ebullition par film, le coefficient

Page 22: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XX11

de transfert de chaleur dans la region de transition entre ces deux valeurs et la methode

de correction pour le developpement des conditions d'ebullition par film. Dans tous ces

cas, la temperature finale obtenue en conditions d'ebullition par film totalement etablies

converge vers la meme valeur. La validation de la methodologie en comparaison avec

des donnees experimentales en etat transitoire devrait cependant etre effectuee.

Page 23: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XX111

TABLE OF CONTENTS

ACKNOWLEDGMENTS iv

ABSTRACT v

RESUME viii

CONDENSE xi

Survol Theorique: predictions du transfert de chaleur en post-assechement . . xii

Methodologie xiii

Resultats xv

Evaluation de la methodologie basee sur le flux de chaleur xv

Evaluation de la methodologie basee sur la temperature de paroi . . . . xvi

Sensibilite au facteur de modification xvi

Amelioration de la methodologie basee sur la temperature de paroi xvii

Effet de la radiation thermique et influence de parametres d'interets en condi­

tions transitoires xix

Radiation thermique xix

Parametres importants en transitoire xx

Conclusion xxi

TABLE OF CONTENTS xxiii

LIST OF FIGURES xxvii

LIST OF TABLES xxxii

LIST OF APPENDICES xxxiii

LIST OF NOTATIONS AND SYMBOLS xxxv

Page 24: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XXIV

INTRODUCTION 1

CHAPTER 1 FORCED CONVECTIVE HEAT TRANSFER 4

1.1 The Boiling Curve 5

1.1.1 Forced Convection to Liquid 8

1.1.2 Subcooled Boiling 9

1.1.3 Saturated Nucleate Boiling and Forced Convective Evaporation 11

1.1.4 Forced Convection to Vapor 13

1.2 Critical Heat Flux 14

1.2.1 Mechanisms Leading to DNB 14

1.2.2 Mechanisms Leading to Dry out 16

1.3 Transition Boiling 17

1.4 Minimum Film-Boiling Temperature 19

1.5 Stable Film Boiling 19

1.5.1 Inverted Annular Film Boiling (IAFB) 20

1.5.2 Slug Flow Film Boiling (SFFB) 21

1.5.3 Dispersed Flow Film Boiling (DFFB) 21

1.6 Heat Transfer Regimes in Heated Channels 22

1.6.1 Developing Flow Film Boiling 24

1.6.2 Thermodynamic equilibrium in post-dryout conditions 25

1.6.3 Rewetting 27

CHAPTER 2 LITERATURE SURVEY ON POST-DRYOUT HEAT TRANS­

FER EXPERIMENTS AND PREDICTION METHODS . . . 29

2.1 Post-Dryout Heat Transfer Experiments 29

2.1.1 Experiments of Bennett et all 30

2.1.2 Test Procedures and Flow Conditions 31

2.2 Prediction Methods for Critical Heat Flux 32

2.3 Prediction Methods for Transition Boiling 34

Page 25: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

^~- xxv

2.4 Prediction Methods for Minimum Film Boiling Temperature 36

2.5 Prediction Methods for Stable Film Boiling 37

2.5.1 Empirical Correlations 37

2.5.2 Phenomenologicial Correlation 38

2.5.3 Theoretical Models 39

2.6 Film Boiling Look-Up Tables 41

2.6.1 Description of the Film Boiling Look-up Tables 42

2.7 Developing Flow Modification Factor 43

CHAPTER 3 NUMERICAL MODELING 46

3.1 Experiments Selection 46

3.2 Simplifying Hypothesis 47

3.3 Post-Dryout Heat Transfer Methodologies 49

3.3.1 Heat Flux Based Methodology 49

3.3.2 Temperature-based Methodology 50

3.4 Description of the Numerical Scheme 50

3.5 Post-dryout Heat Transfer Coefficient Calculation Model 52

3.5.1 Film Boiling Heat Transfer Coefficient 53

3.5.1.1 Heat Flux Based Look-Up Table 53

3.5.1.2 Temperature-based Look-Up Table 54

3.5.2 Developing-Flow Modification Factors 54

3.5.2.1 Heat Flux Based Correlations 55

3.5.2.2 Temperature-based Correlations 55

3.6 Radiation Heat Transfer Model 56

CHAPTER 4 RESULTS 58

4.1 Assessment Results 59

4.1.1 Heat Flux Based Methodology 61

4.1.2 Wall temperature-based Methodology 64

Page 26: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XXVI

4.1.3 Sensitivity Analysis of the Developing-Flow Modification Factor 66

4.1.3.1 Sensitivity of the Modification Factor 67

4.1.3.2 Sensitivity of Coefficients a and c and Exponent b . . 68

4.1.4 Critical Heat Flux Correction Factor 69

4.2 Improvements of the Temperature-Based Methodology 70

4.2.1 Optimization of Coefficients c and b 71

4.2.2 Mass Flux and Quality Effect and Optimized Developing Flow

Modification Factor 73

4.2.2.1 Mass Flux Effect 74

4.2.2.2 Thermodynamic Quality Effect 75

4.2.2.3 Revised Correlation Based on the Reynolds number . 76

4.2.3 Revised Correlation Assessment 78

4.3 Validation of the Hypothesis 81

4.3.1 Radiative Heat Transfer 81

4.3.2 Conduction Heat Transfer and Transient Calculation Scheme . . 83

CONCLUSION 86

REFERENCES 88

APPENDICES 97

Page 27: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XXV11

LIST OF FIGURES

Figure 1 Experimental Developing-Flow Modification Factor vs (WSR—

l)xand\s(WSR-l)xG xviii

Figure 1.1 Idealized Boiling Curve 6

Figure 1.2 Examples of Temperature and Heat Flux Controlled Systems

Boiling Curves in Freon-12 (Groeneveld, 1972) 7

Figure 1.3 Heat Transfer Regimes and Organization of Chapter 2 8

Figure 1.4 Flow Patterns for Upward Flows 11

Figure 1.5 Examples of DNB Mechanisms 15

Figure 1.6 Examples of Dryout Mechanisms 17

Figure 1.7 Microscopic Behavior of the Boiling Curve 18

Figure 1.8 Illustration of (i) Dispersed Flow Film Boiling and (ii) Inverted

Annular Film Boiling regimes 20

Figure 1.9 Forced Convective Boiling Curve 23

Figure 1.10 Heat Transfer Coefficient and Wall Temperature Evolution in

Post-Dryout Conditions 25

Figure 1.11 Impact of Thermal Equilibrium on the Post-Dryout Wall Tem­

perature 26

Figure 1.12 Equilibrium and Actual Qualities Distributions in Post-Dryout

Conditions 27

Figure 1.13 Post-Dryout and Rewetting Processes in Heat Flux Controlled

Systems 28

Figure 2.1 Schematic Diagram of the Bennett's Test Section 31

Figure 3.1 Heat Transfer General Calculation Scheme for the Heat Flux

Based and Temperature Based Methodologies under Steady-State

Conditions 52

Page 28: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XXV111

Figure 4.1 Wall Temperature Predictions Using a Heat Flux Based Method­

ology (Experiments 5249 and 5292) 62

Figure 4.2 Wall-Temperature Predictions Using a Heat Flux Based Method­

ology (Experiments 5275 and 5312) 63

Figure 4.3 Experiments 5250 and 5289: Wall-Temperature Predictions Us­

ing a temperature-based Methodology 65

Figure 4.4 Wall Temperature Sensitivity to the Modification Factor and to

Parameters a and b 68

Figure 4.5 Best Fitting Function of the Experimental Knon^dimensionai . . . 72

Figure 4.6 Wall Temperature Predictions Using a temperature-based Method­

ology with the Optimized c and b Coefficients (Experiments

5250 and 5289) 73

Figure 4.7 Experimental Developing-Flow Modification Factor vs (WSR-1) 74

Figure 4.8 Experimental Developing-Flow Modification Factor vs (WSR—

l)xmdvs(WSR-l)xG 76

Figure 4.9 (i)-Kvs (WSR-1 )G and (ii)-K/(Gx) vs (WSR-1) 78

Figure 4.10 Wall Temperature Predictions Using the Revised Correlation (Ex­

periments 5246 and 5293) 80

Figure 4.11 Radiation Heat Flux Ratio of for Different Void Fractions . . . 82

Figure 1.1 Two Gray Bodies Equivalent Electric Circuit 106

Figure 1.2 Three Gray Bodies Equivalent Electric Circuit 107

Figure II. 1 Heat Flux to the Fluid Evolution as a Function of Time and Wall

Temperature 117

Figure II.2 Effect due to Power Variation Rate 119

Figure II.3 Wall Thickness Effect 120

Figure II.4 Radial Wall Temperature Distribution for Different Wall Thick­

nesses 121

Figure II.5 Heat Flux to the Fluid for Several CHF Predictions 122

Page 29: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XXIX

Figure II.6 Effects due to uncertainties in CHF 123

Figure II.7 Transition Boiling Uncertainty Effect on the Internal Wall Tem­

perature 125

Figure II.8 Influence of the Uncertainty of the Minimum Film Boiling Tem­

perature on the Internal Wall Temperature 127

Figure II.9 Influence of the Minimum Film Boiling Temperature on the Boil­

ing Curve 128

Figure 11.10 Impact of the Developing PDO on Internal Wall Temperature

Distributions 129

Figure II. 11 Impact of the Developing PDO Effect on the Heat Flux Evolution 130

Figure II. 12 Impact of the LUT Technique on the Internal Wall Temperature 132

Figure IV. 1 Experiments 5239, 5240 and 5241 158

Figure IV.2 Experiments 5242, 5243 and 5244 159

Figure IV.3 Experiments 5245, 5246 and 5247 160

Figure IV.4 Experiments 5278, 5249 and 5250 161

Figure IV.5 Experiments 5251, 5252 and 5253 162

Figure IV.6 Experiments 5254, 5255 and 5256 163

Figure IV.7 Experiments 5257, 5258 and 5260 164

Figure IV.8 Experiments 5261, 5262 and 5263 165

Figure IV.9 Experiments 5264, 5265 and 5266 166

Figure IV. 10 Experiments 5267, 5268 and 5269 167

Figure IV11 Experiments 5270, 5271 and 5272 168

Figure IV12 Experiments 5273, 5274 and 5275 169

Figure IV13 Experiments 5276, 5277 and 5278 170

Figure IV. 14 Experiments 5279, 5282 and 5283 171

Figure IV.15 Experiments 5285, 5286 and 5287 172

Figure IV.16 Experiments 5288, 5289 and 5290 173

Figure IV17 Experiments 5291, 5292 and 5293 174

Page 30: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XXX

Figure IV. 18 Experiments 5294, 5295 and 5296 .

Figure IV. 19 Experiments 5297, 5298 and 5302 .

Figure IV.20 Experiments 5303, 5304 and 5305 .

Figure IV.21 Experiments 5306, 5307 and 5308 .

Figure IV.22 Experiments 5309, 5310 and 5311 .

Figure IV.23 Experiments 5312, 5313 and 5314.

Figure IV.24 Experiments 5315, 5316 and 5317 .

Figure IV.25 Experiments 5318, 5319 and 5367 .

Figure IV.26 Experiments 5368, 5369 and 5370 .

Figure IV.27 Experiments 5371, 5372 and 5373 .

Figure IV.28 Experiments 5374, 5375 and 5376 .

Figure IV.29 Experiments 5377, 5378 and 5379 .

Figure IV.30 Experiments 5380, 5381 and 5382 .

Figure IV.31 Experiments 5383, 5384 and 5385 .

Figure IV.32 Experiments 5386, 5388 and 5389 .

Figure IV.33 Experiments 5390, 5391 and 5392 .

Figure IV.34 Experiments 5393, 5394 and 5395 .

Figure IV.35 Experiments 5396 and 5397 . . . .

Figure V.l Improved Correlation: Experiments 5239

Figure V.2 Improved Correlation: Experiments 5242

Figure V.3 Improved Correlation: Experiments 5245

Figure V.4 Improved Correlation: Experiments 5278

Figure V.5 Improved Correlation: Experiments 5251

Figure V.6 Improved Correlation: Experiments 5254

Figure V.7 Improved Correlation: Experiments 5257

Figure V.8 Improved Correlation: Experiments 5261

Figure V.9 Improved Correlation: Experiments 5264

Figure V.10 Improved Correlation: Experiments 5267

5240 and 5241

5243 and 5244

5246 and 5247

5249 and 5250

5252 and 5253

5255 and 5256

5258 and 5260

5262 and 5263

5265 and 5266

5268 and 5269

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

197

198

199

200

201

202

203

204

205

206

Page 31: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XXXI

Figure V. 11

Figure V.12

Figure V. 13

Figure V. 14

Figure V. 15

Figure V. 16

Figure V.17

Figure V. 18

Figure V. 19

Figure V.20

Figure V.21

Figure V.22

Figure V.23

Figure V.24

Figure V.25

Figure V.26

Figure V.27

Figure V.28

Figure V.29

Figure V.30

Figure V.31

Figure V.32

Figure V.33

Figure V.34

Figure V.35

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Improved Correlation:

Experiments 5270, 5271 and 5272 . . . 207

Experiments 5273, 5274 and 5275 . . . 208

Experiments 5276, 5277 and 5278 . . . 209

Experiments 5279, 5282 and 5283 . . . 210

Experiments 5285, 5286 and 5287 . . . 211

Experiments 5288, 5289 and 5290 . . . 212

Experiments 5291, 5292 and 5293 . . . 213

Experiments 5294, 5295 and 5296 . . . 214

Experiments 5297, 5298 and 5302 . . . 215

Experiments 5303, 5304 and 5305 . . . 216

Experiments 5306, 5307 and 5308 . . . 217

Experiments 5309, 5310 and 5311 . . . 218

Experiments 5312, 5313 and 5314 . . . 219

Experiments 5315, 5316 and 5317 . . . 220

Experiments 5318, 5319 and 5367 . . . 221

Experiments 5368, 5369 and 5370 . . . 222

Experiments 5371, 5372 and 5373 . . . 223

Experiments 5374, 5375 and 5376 . . . 224

Experiments 5377, 5378 and 5379 . . . 225

Experiments 5380, 5381 and 5382 . . . 226

Experiments 5383, 5384 and 5385 . . . 227

Experiments 5386, 5388 and 5389 . . . 228

Experiments 5390, 5391 and 5392 . . . 229

Experiments 5393, 5394 and 5395 . . . 230

Experiments 5396 and 5397 231

Page 32: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XXX11

LIST OF TABLES

Table 3.1 Flow Conditions and Grid Points for the Heat-Flux-Based Look­

up Table 53

Table 3.2 Flow Conditions and Grid Points for the Temperature-Based Look­

up Table 54

Table 4.1 Wall Temperature Prediction Errors and Standard Deviations for

the Heat-Flux-Based Methodology 61

Table 4.2 Wall Temperature Prediction Errors and Standard Deviations for

the Temperature-Based Methodology 64

Table 4.3 Values and Fitting Errors of the Optimized Coefficients c and b 71

Table 4.4 Values and Fitting Errors of the Optimized Coefficients c** and b** 78

Table 4.5 Errors for the Revised Correlation 79

Table 4.6 Errors Resulting From Neglecting Radiative Heat Transfer . . . 84

Table 1.1 Correlation Constants for Water Vapor Emissivity 110

Table 1.2 Coefficients for Water Vapor Emissivity 110

Table 1.3 Approximative Chemical Composition of Inconel-600 and Nimonic-

80A 114

IV. 1 Errors and Maximum Temperatures for the 5.56 m Test Section

Using a Heat-Flux-Based Methodology 150

IV.2 Errors and Maximum Temperatures for the 5.56 m Test Section

Using a Temperature-Based Methodology 154

V. 1 Errors and Maximum Temperatures for the 5.56 m Test Section

Using a Temperature-Based Methodology 193

Page 33: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XXX111

LIST OF APPENDICES

APPENDIX I INTRODUCTION TO HEAT TRANSFER MECHANISMS AND

RADIATIVE HEAT TRANSFER 97

1.1 General Heat Transfer Mechanisms 97

1.1.1 Conductive Heat Transfer 97

1.1.1.1 Conduction Through a Uniformly Heated Tube . . . 98

1.1.2 Convective Heat Transfer 100

1.1.3 Convective Heat Transfer 101

1.1.4 Radiative Heat Transfer 102

1.2 Complement on Radiative Heat Transfer 104

1.2.1 Radiative Exchange Between Two Gray Bodies 105

1.2.2 Radiative Exchange Between Three Gray Bodies 106

1.2.3 Emissivity of the Vapor Film: Leckner's Method 108

1.3 Radiative Heat Transfer Model 110

APPENDIX II INFLUENCE OF THERMAL INERTIA AND TRANSIENT CAL­

CULATIONS ON THE PREDICTION OF STEADY-STATE FILM

BOILING 115

II. 1 Thermal Inertia 116

11.2 Critical Heat Flux 121

11.3 Transition Boiling 124

11.4 Prediction of the Minimum Film Boiling Temperature 126

11.5 Developing Flow Film Boiling Conditions 128

11.6 Film Boiling Predictions 130

11.7 Conclusions 132

II.8 CATHENA Input File 133

Page 34: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

XXXIV

APPENDIX III ALGORITHM OF THE ASSESSMENT CODE 139

III. 1 Main Function 139

III.2 Radiation Heat Transfer Model 145

APPENDIX IV ASSESSMENT RESULTS 150

IV. 1 Heat-Flux-Based-Methodology 150

IV. 1.1 Errors and Maximum Temperatures 150

IV.2 Temperature-Based-Methodology 154

IV.2.1 Errors and Maximum Temperatures 154

IV.3 Figures 158

APPENDIX V IMPROVED CORRELATION RESULTS 193

V.l Errors and Maximum Temperatures 193

V.2 Figures 197

Page 35: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

LIST OF NOTATIONS AND SYMBOLS

A

Bo

CHF

Cp

Cth

De

DH

e

F

FB

Jed

fv

G

h

Hf9i

J

k

K

Nu

P

PDO

Q

q"

q'"

Pr

Area

Boiling Index

Critical Heat Flux

Specific Heat

Thermal Conductivity

Wetted Diameter

Heated Diameter

Power Density (Emissive Power)

View Factor

Heat Flux Splitting Factor

Cumulative Droplet Deposition Factor

Friction Factor of the Vapor Phase

Mass Flux

Heat Transfert Coefficient

Latent Heat of Vaporization

Radiocivity

Thermal Conductivity

Modification factor

Nusselt Number

Pressure

Post Dryout

Heat

Heat Flux

Heat Generation rate

Prandtl Number

Page 36: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

r Radius

R Equivalent Electric Circuit Resistance

Re Reynolds Number

S Suppression Factor

T Temperature

Tmin Minimum Film Boiling Temperature

ud Droplet Deposition Velocity

V Volume

WSR Wall Superheat Ratio

x Quality

a Absorptivity

P Reflectivity

e Void Fraction

£ emissivity

T Irradiation

/j, Viscosity

p Density

a Surface Tension

&SB Stefan-Boltzmann's Constant

r Transmitivity

ATe Mean Superheat

ATsat Wall Superheat

Ape Change Pressure Corresponding to ATe

Apsat Change of Pressure Corresponding to ATsai

INDICES

a Partial

Page 37: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

b

actual

b.b.

DO

e

equil

ext

Exp

f FB

fc

film

g.b.

int

I

nb

OSV

rad

sat

Sim

tot

TB

tp

V

w

Bulk

Actual

Black Body

Dryout

Equivalent

Equilibrium

External

Experimental

Fluid

Film Boiling

Forced Convection

Film Boiling

Gray Body

Internal

Liquid Phase

Nucleate Boiling

Onset of Significant Void

Radiation

Saturation

Simulation

Total

Transition Boiling

Two Phase

Vapor Phase

Wall

Page 38: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

1

INTRODUCTION

The surface temperature of fuel bundles is relatively low (i.e., close to the coolant sat­

uration temperature) during normal operating conditions of the nuclear reactor. Heat-

transfer regimes encountered at these conditions are single-phase forced convection to

liquid, nucleate boiling and forced convective evaporation. During some postulated acci­

dents, such as Loss-of-Flow Accident (LOFA) or Loss-of-Regulation Accident (LORA),

the local heat flux may be high enough at certain locations to prevent contacts between

the coolant and the sheath, resulting in a drastic temperature increase. This point is

referred as the critical heat flux (CHF) or dryout. Conditions encountered beyond dry-

out are referred as post-dryout (PDO) conditions. The sharp rise in sheath temperature

may challenge the sheath, fuel, and fuel channel integrities. Therefore, it is important to

establish accurately the maximum sheath temperature at these accident scenarios.

Safety analyses for the CANDU 6 nuclear reactors (such as the Gentilly-II and Point

Lepreau CANDU reactors) are being carried out using the CATHENA computer code

(Hanna, 1998). Maximum sheath temperature in the fuel channel is established with

post-dryout heat-transfer correlations, derived using experimental data obtained from

full-scale bundle tests at steady-state conditions. Two methodologies have been ap­

plied in the development of post-dryout heat-transfer correlations; one based on heat flux

while the other based on wall temperature. Although both methodologies have been im­

plemented into the CATHENA code, the temperature-based methodology is the default

option due mainly to the cumbersome application of the heat-flux-based methodology

(details to be provided in following sections). Outside the framework of CATHENA,

prediction accuracy of heat-transfer coefficient for these methodologies has been estab­

lished through assessments against experimental data used to develop the correlations at

the local flow conditions (i.e., pressure, mass flux, and quality). A comparison of their

prediction accuracy in sheath temperature is required for the same system conditions

Page 39: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

2

(i.e., outlet pressure, mass flow rate, and inlet temperature).

Assessing bundle-data-based correlations against full-scale bundle data is not feasible

due to the proprietary nature of these correlations and experimental data. A set of

post-dryout surface-temperature data obtained with vertical upward water flow inside

tubes has been assembled to assess the prediction accuracy of the two methodologies

(i.e., heat-flux-based and temperature-based correlations). The assessment result would

provide insight into the applicability of these methodologies in predicting the surface-

temperature distribution and maximum surface temperature. If necessary, improvement

will be recommended to extend the applicability and reduce the prediction uncertainty.

Objectives of this study are:

• To assess the heat-flux based and wall-temperature-based methodologies in pre­

dicting surface temperatures along a vertical heated tube at steady-state conditions.

• To improve the temperature-based methodology.

• To establish the impact of radiative heat transfer on film-boiling temperature pre­

dictions and examine various parameters of interest to transient calculations.

In the thesis, the theoretical concepts are presented first in Chapter 1. It is however

assumed that the reader already has a heat transfer background. As a result, a general

overview of heat transfer mechanisms can only be found in Appendix I while forced

convection heat transfer, dryout and departure form nucleate boiling mechanisms and

post-dryout conditions are the main topics presented in Chapter 1.

Chapter 2 presents a literature survey on experimental data and heat transfer predic­

tion methods in post-dryout conditions. The look-up table technique in predicting film-

boiling heat-transfer coefficient is also discussed in details in this chapter.

Page 40: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

3

Chapter 3 describes the heat transfer models used in the assessment. The selection of

the experiments, the description of the code and the simplifying hypothesis are also

presented in the chapter.

The assessment results of the heat-flux based and wall-temperature-based methodologies

are discussed in Chapter 4. An improved temperature-based methodology is presented.

The assumption of negligible radiative heat transfer is closely examined and justified.

This chapter also described a brief examination of the applicability of these methodolo­

gies in a transient calculation scheme.

Conclusions of this study and some relevant recommendations are provided at the end

of this document.

Page 41: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

4

CHAPTER 1

FORCED CONVECTIVE HEAT TRANSFER

Heat transfer can be generally categorized into natural and forced convective regimes.

Boiling is encountered in each regime depending on the coolant temperature. The most

common natural convective heat transfer is encountered under pool boiling. Various

heat-transfer modes are encountered in these boiling heat transfer regimes; their rela­

tionship can be described via the boiling curve.

Dimensionless numbers are often used in heat transfer calculations. Thus, some of these

numbers have to be defined before introducing heat transfer prediction methods. The

Nusselt number, Nu, is defined as the ratio of the conductive heat transfer to the convec­

tive heat transfer and is expressed as:

Nu = ^ (1.1) k

where DH is the heated diameter and k is the thermal conductivity of the fluid. The

Reynolds number is defined as the ratio of internal and viscous forces:

Re = ^ (1.2)

where De is the wetted diameter, G is the mass flux, and fj, is the viscosity of the fluid.

Finally, the Prandtl number is the ratio of momentum diffusivity (viscosity) and thermal

diffusivity (conductivity):

Page 42: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

5

where cp is the specific heat of the liquid.

1.1 The Boiling Curve

A classical boiling curve is shown in Figure 1.1 for a specific set of local flow conditions

(i.e., pressure, mass flux, and quality). Single-phase liquid convective heat transfer is

encountered at low wall temperatures and low heat fluxes. Once the saturation temper­

ature is reached, nucleate boiling or forced convective evaporation regimes arise. These

regimes are characterized with an efficient heat transfer mechanism. At sufficiently high

heat fluxes, the wall temperature is too hot to permit contact between the liquid phase and

the heated wall to take place, which results in a rapid decrease of the heat transfer rate.

This phenomenon is referred as the critical heat flux (CHF), and is defined as Point B in

Figure 1.1. Beyond the CHF point, the heat-flux variation with wall temperature follows

two different paths depending on the controlling parameter in the system. In a wall-

temperature controlled system, the heat flux decreases with increasing wall temperature

and follows Path B-C to the minimum film boiling point (Point C), and subsequently

increases following Path C-D and beyond corresponding to the stable film-boiling re­

gion. The stable film-boiling region is characterized with a stable vapor film covering

the heated surface; there are no contacts between the heated wall and the liquid phase. In

a heat-flux controlled system, the wall temperature increases sharply from Point B (i.e.,

CHF) to Point D (fully developed film-boiling regime) and the increasing trend follows

the boiling curve beyond Point D with further increase in heat flux. The sharp increase

in wall temperature from Point B to Point D is the main concern in safety analyses.

Page 43: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

6

CM

E

x CD © X

TCHF Tmm

Wall Temperature °C

Figure 1.1 Idealized Boiling Curve

Heat flux based and its extrapolated temperature-based system boiling curves have been

measured in tubes cooled by Freon-12 for several flow conditions by Groeneveld (Groen-

eveld, 1972). Figure 1.2 shows a typical trend observed in the flow boiling curves pre­

sented in this reference. Two behaviors can be observed from this Figure. First, com­

paring to pool boiling, a slight wall temperature reduction is observed just before CHF

occurs. This temperature reduction is a consequence of the increasing velocity of the

thin liquid film. Also, the transition from CHF to the stable film boiling is not a straight

line, thus, a slight heat flux increase is necessary to reach a stable film boiling regime.

Page 44: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

20 50

T(g)-TsatfC)

200

Figure 1.2 Examples of Temperature and Heat Flux Controlled Systems Boiling Curves

in Freon-12 (Groeneveld, 1972)

Figure 1.3 illustrates heat transfer regimes, corresponding flow patterns, CHF mecha­

nisms, and film-boiling regimes as a function of void fraction (not to scale). The bound­

aries (from (Tong, 1997) and (Kirillov)) are approximate and may vary significantly with

the flow conditions, but provide the understanding of these general concepts. Figure 1.3

also introduces the topics presented in the current chapter; the numbers in parenthesis

indicate the sections where the topics are presented.

Page 45: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

8

« • • • — • Subcooled Boiling

(section 2.1.2)

Bubbly Flow

Departure From Nucleate Boiling (UNEJi (section 2.2.1)

Inverted Annular Film Boiling (IAFB) (section 2.4.1)

kiTransfer Regime/, £*$*

Saturated Nucleate Boiling (section 2.1.3)

Slug Flow

jjjgalJHeat flux £Jp*S

INBi

[table Film Boihrig&3$ji

Slug Flow Film Boiling (SFFB) (section 2.4.2)

Saturated Forced Convective (section 2 1 3)

Annular Flow (with or without entrainment)

Dispersed Flow Film Boiling (DFFB) (section 2.4 3)

0.0 0.4 0.8 1.0 Void Fraction

Figure 1.3 Heat Transfer Regimes and Organization of Chapter 2

1.1.1 Forced Convection to Liquid

For subcooled liquids with negligible viscous-dissipation effect, the heat transfer rate

strongly depends on turbulences in the fluid. The Nusselt number depends on the Reynolds

number, the Prandtl number, and the geometry factor L/D. For fully developed turbu­

lent flows {Re > 20000), Dittus and Boelter (Dittus ans Boelter, 1930) suggested the

following correlation:

Nu = 0.023Re°-8Pr0-3. (1.4)

In a heated channel where a large temperature gradient is encountered between the bulk

fluid and near-wall fluid, Seider and Tate (Seider and Tate, 1936) introduced a modifica­

tion factor to account for the heating effect:

Nu = 0.026JRea8Pr1/3 f ^ 0.14

(1.5)

Page 46: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

9

where \xh is the viscosity evaluated at bulk temperature and jiw, at wall temperature.

For laminar flows (Re < 2100), the Nusselt number is generally calculated as follows:

D\ 1//3 / \ 0 1 4

Nu = lM[RePr-\ ( — J . (1.6)

The heat transfer behavior between these two regions is complex and, usually, systems

are designed in such a way that slightly turbulent flows are avoided.

1.1.2 Subcooled Boiling

Subcooled boiling is initiated at nucleation sites before the fluid reaches the saturation

temperature. These sites are initially sparse and single-phase forced-convective heat

transfer remains the main heat removal process. This region corresponds to the develop­

ing subcooled nucleate boiling regime. The activation of the nucleation sites increases

and the heated wall is slowly covered with vapor bubbles. A fully developed subcooled

boiling regime is then reached. Several heat transfer correlations have been developed

for subcooled boiling; most of these correlations are based on the single-phase Dittus

and Boelter type of equation. Groeneveld and Snoek (Groeneveld, 1986) recommended

a correlation developed by Nixon (unpublished report) for water in tubes within the range

of its database (Re ranging from 10000 to 327000 and Pr ranging from 1.9 to 10.5). The

correlation expresses the Nusselt Number of the liquid, Nuf , as:

Nuf = 0.02ARe°f77Pr°f

m7. (1.7)

Chen's correlation (see section 1.1.3) can also be extended to subcooled conditions

and the amount of heat used in vapour generation is accounted by the Splitting Factor

Page 47: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

10

(Beuthe, 2005). The heat flux Splitting Factor, FB, is defined as the fraction of the wall-

to-liquid heat flux that results in bulk liquid heating (i.e., sensible heat). The remainder,

1 — FB, results in vapour generation. This heat flux Splitting Factor is computed by:

FB = i ^ , (1.8) Q tot

where qvtot is the total heat flux computed using (for example) Chen's correlation (see

section 1.1.3). q" osv is the heat flux corresponding to the onset of significant void.

When locally, this heat flux is exceeded, void generation is considered and the split­

ting factor is used to determine the amount of heat used in vapour generation and bulk

liquid heating, g" osv is often fixed to q" osv — max [q" osv, q" tot] to avoid possible

discontinuities.

Saha ans Zuber (Saha and Zuber, 1974) have derived correlations for the onset of signif­

icant void. These correlations are divided into two regions based on the flow conditions

expressed trough the Peclet number, Pe.

For low flows (Pe < 70000):

Kf (Tfat - Tf) q"osv = 455.0 ; V f ^ , (1.9)

and for high flows (Pe > 70000):

q"osv = 0.0065Gcp (Tf- - Tf) . (1.10)

In this work, however, subcooled booling is neglected.

Page 48: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

11

1.1.3 Saturated Nucleate Boiling and Forced Convective Evaporation

Once the saturation temperature is reached, bubbles remain in the liquid core and the

void fraction starts rising. Thus, the fluid will undergo a succession of flow patterns.

The increase in void fraction also corresponds to an increase in thermodynamic quality.

Figure 1.4 shows the flow patterns for vertical upward flows. At low void fractions, the

vapor phase can be found as a dispersion of bubbles within the liquid phase. With an

increasing in void fraction, the vapor phase may form plugs within the liquid phase. This

flow pattern is defined as slug flow. Still increasing the void fraction, the vapor plugs

will deform leading to the formation of the churn flow. Increasing the amount of steam

provokes a transition form churn to annular flow.

Bubbly Slug Churn Annular flow Flow Flow Flow

Figure 1.4 Flow Patterns for Upward Flows

In annular flow, a liquid annulus surrounds a vapor core containing (or not) entrained

liquid droplets. At high mass fluxes, a rapid transition from bubbly flow to annular flow

may occur. Initially, the heat transfer regime is defined as the saturated nucleate boiling.

Increasing the quality, convective evaporation mechanism becomes progressively more

Page 49: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

12

important leading to forced convective evaporation regime. In the transition region, both

heat transfer regimes can coexist.

Chen (Chen, 1963) developed a correlation to cover the forced convective evaporation

and nucleate boiling heat transfer regimes and the transition region. A single two-phase

heat transfer coefficient, htp, is expressed as the sum of a nucleate boiling component,

hnb, and a forced convection component, hfc, thus:

htp = hnb + hfc. (1.11)

The forced convective component is calculated using a Dittus-Boelter type of correlation

and is written as:

hfc = 0.023Re™Pr™ { ^ , (1.12)

where the thermal conductivity, k, and Reynolds and Prandt numbers are calculated for

the mixture. The nucleate boiling heat transfer coefficient component is calculated as

follows:

/ ^.0.79c0.45„0.49 \

^ = ° - 0 0 1 2 2 , 0 . 5 , 0 . 2 ^ 0 24,0.24 ^ a f Ap^ S, (1.13)

\ a ft nfg Pv J

where pi is the density of the liquid phase, pv is the density of the vapor phase, a is

the surface tension and Hfg the latent heat of evaporation. ATsat is the wall superheat

(Tw — Tsat), Apsat is the change of pressure corresponding to the temperature ATsat.

The suppression factor, S, is defined as:

Page 50: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

13

S \ ATel AT sat.

0.99 r Arei ATsat.

0.24

APsat.

0.75

(1.14)

where ATe is the mean superheat and Ape is the change of pressure corresponding to

ATe. The suppression factor has a value between 0 and 1. Its value approaches unity

at low flow velocities and 0 at high flow velocities. Further details can be found in

references (Chen, 1963) and (Collier, 1994).

1.1.4 Forced Convection to Vapor

This single-phase forced convection to vapor corresponds to the heat transfer mode at

thermodynamic qualities greater than 1 (the vapor does not contain any droplets). At

low wall superheats, correlations derived for single-phase forced convection to vapor are

similar to those for single-phase forced convection to liquid (except with vapor proper­

ties). Modified correlations have been derived for heat transfer at high wall superheats.

Groeneveld and Snoek (Groeneveld, 1986) recommend the Hadaller and Banerjee corre­

lation (Hadaller and Banerjee, 1969) within the range of its database. The Hadaller and

Banerjee correlation is expressed as

Nu = OMOlRe^'^Pr ,0.8774 D^0.6112 0.0328

(1.15)

Outside the database range of Hadaller and Banerjee, the Kutateladze and Borishanskii

correlation (Kutateladze and Borishansky, 1953) is recommended (Groeneveld, 1986):

Nu = 0.027Re°-8PrOA ^ 0.55

(1.16)

Page 51: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

14

where Tv is the vapor temperature in Kelvin and Tw is the wall temperature in Kelvin.

1.2 Critical Heat Flux

Critical heat flux is the transition point between nucleate boiling (or forced evaporative

convection) and film boiling (or transition boiling). It is often referred as the departure

from nucleate boiling (DNB) or dryout depending on the mechanism and flow condi­

tions. The change in CHF mechanism would lead to differences in temperature rise. In

general, a drastic temperature rise, impacting the sheath integrity, is observed for DNB

while a gradual temperature rise, with no detrimental impact to the sheath, is encoun­

tered for dryout. Different CHF mechanisms and most common prediction methods are

briefly presented in following sections. Details on CHF prediction methods can be found

in Chapter 2.

1.2.1 Mechanisms Leading to DNB

Departure from nucleate boiling refers to the disruption of the liquid contact between the

heated wall and the subcooled or saturated liquid. The DNB occurs at low void fractions

and may result from one of the following mechanisms:

1. Surface Overheating at Nucleation Sites:

A thin (micro) layer of liquid is present between the vapor bubble and the heat

wall at the nucleation site. Evaporation of the liquid from the thin layer is contin­

uously replenished with surrounding liquid. At sufficiently high heat fluxes, the

evaporation rate increases drastically exceeding the replenishing rate. This has led

to disruption of the liquid layer, exposing the heated surface to the vapour bub­

ble directly. The wall temperature increases rapidly preventing wall rewetting and

Page 52: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

15

compromising the integrity of the heated surface. This mechanism is shown in

Figure 1.5-i.

2. Bubble Crowding and Vapor Blanketing:

At medium and low subcoolings, the bubble density near the heated surface in­

creases and the coalescence of adjacent bubbles may obstruct the thermal contact

between the fluid and the wall (see Figure 1.5-ii). A rapid surface-temperature

increase is observed and may prevent rewetting. With deteriorating heat-transfer

characteristics, the dry patch may grow and spread quickly over the heated sur­

face. This rapid temperature increase can seriously compromise the integrity of

the heated surface.

3. Dryout of the Liquid Film Surrounding a Vapor Plug:

In slug flows, the thin liquid film between the heated wall and the vapor plug may

evaporate and form a dry patch that spreads over the heated surface (see Figure

1.5-iii). The low thermal conduction of the steam in contact with the surface will

cause a local wall temperature increase.

i- Overheating at ii- Bubble Crowding iii- Dryout of the Liquid Nucleation Site Film Surrounding a

Vapor Plug

Figure 1.5 Examples of DNB Mechanisms

Page 53: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

16

1.2.2 Mechanisms Leading to Dryout

At high void fractions (about 80%) and lower wall superheating, CHF corresponds to

the dryout phenomena, which refers to the complete evaporation of the liquid film in

the annular flow regime. Again, different mechanisms explain the occurrence of this

phenomenon:

1. Film Disruption due to Nucleate Boiling within the liquid Film:

Nucleate boiling may still be present in the annular liquid film. Hence, bubble

formation in the liquid film may produce the formation of dry spots. This pro­

cess may not necessarily lead to film boiling conditions (if the bubble spreads and

dryout the liquid film) or, as shown in Figure 1.6-i, to local DBN contiditions.

2. Liquid Film Breakdown due to Thermo-Capillary Effects:

This dryout process is caused by the surfaces waves in the liquid film that causes a

non-uniform heat transfer coefficient through the film. Under these conditions, the

interfacial temperature changes provoke surface tension gradients that pumps out

the liquid film from the hottest region. However, these dry patches may eventually

disappear and the heated surface will rewet, thus this process does not necessarily

lead to film boiling conditions. This CHF mechanism is shown in Figure 1.6-ii.

3. Liquid Film Dryout in Annular Flow:

In annular flow, the liquid film thickness decreases with increasing quality. In

this region, the heat transfer process is governed by droplet depositions, droplets

entrainment and liquid film evaporation. If the droplet deposition rate does not

balance the evaporation and droplets entrainment rate, dryout may occur. This

mechanism is shown in Figure 1.6-iii and leads to dispersed annular flow film

boiling characterized by a moderate wall temperature increase. A more detailed

presentation of this heat transfer regime is discussed in this chapter since it is

Page 54: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

17

studied in this work.

These mechanisms have been suggested in the literature and their classification is quite

subjective. Experimental evidences of the occurrence of these mechanisms are, however,

very limited.

i- Film Disruption due to Nucleate Boiling

Within the Film

» 9

• #

ii- Liquid Film Breakdown due to Thermo-Capillarity

Effects

Hi- Liquid Film Dryout in Annular Flow

Figure 1.6 Examples of Dryout Mechanisms

1.3 Transition Boiling

Transition boiling is the heat transfer region between CHF and the minimum film boil­

ing point (i.e., points B and C in Figure 1.1). This region is encountered mainly in

temperature controlled systems and is a combination of unstable film boiling and unsta­

ble nucleate boiling taking place at the same location. For dryout occurring at low void

fraction, the heated surface just in excess of the CHF temperature is partially covered

with unstable vapor patches varying with space and time. Near the dryout location, the

heated wall is almost entirely in contact with the coolant. The surface area in contact

with the coolant decreases with increasing wall temperature.

Figure 1.7, from (Groeneveld, 1976), shows the microscopic behavior at the interface

Page 55: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

18

between the heated wall and the fluid for pool boiling (column a), flow boiling where

CHF is reached at low qualities (column b), and flow boiling where CHF is reached at

high qualities (column c). In the figure, <f) represents the heat flux and ATW is the wall

superheat. The behavior at the interface is shown at different steps of the boiling process;

under nucleate boiling conditions (position I), at the CHF occurrence point (position II),

under transition boiling conditions (positions III, IV and V) and at the minimum film

boiling occurrence point (position VI).

(a) POOL BOILING (b) FILM BOILING (SUBCOOLED OR ( C , F L 0 W BOILING (HIGH LOW QUALITY) QUALITY)

Figure 1.7 Microscopic Behavior of the Boiling Curve

Groeneveld and Fung (Groeneveld, 1976) stated that the boiling curve in temperature-

controlled systems (i.e. the transition boiling and minimum film boiling temperature)

Page 56: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

19

is affected by, among other variables, the mass flux, the thermodynamic quality, the

local pressure and subcooling. In addition, there appears to be a strong effect of surface

roughness on this boiling phenomenon.

1.4 Minimum Film-Boiling Temperature

The minimum film boiling temperature, Tmin (point C on Figure 1.1)), is also referred

as the Leidenfrost temperature. This temperature corresponds to the boundary that sep­

arates the transition boiling region from the stable film boiling region in a temperature

controlled system. Once a stable film boiling regime is established, the rewetting process

(described in Section 1.6.3) can be reached by decreasing the wall temperature. In this

case, Tmin bounds the beginning of this process. Hence, accurate Tmin predictions are

of great importance in safety analysis. Details on Minimum Film-Boiling Temperature

prediction methods can be found in Chapter 2.

1.5 Stable Film Boiling

Stable film boiling regime is categorized into inverted annular flow film boiling, slug

flow film boiling, and dispersed flow film boiling. The dispersed and inverted annular

flow regimes are shown in Figure 1.8. Film boiling prediction methods will be presented

Chapter 2.

Page 57: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

20

gravity direction /••::V-;I

-Liquid Deposition

_ Entrapment by vigorous boiling

Flow Direction

Breakup

Dryout Point

Vt":4.' •"

Dispersed Flow

Breakup of Liuid Core

Liquid Core

i- Dispersed Flow Film Boiling Single Phase Liquid

- Inverted Annular Film Boiling

Figure 1.8 Illustration of (i) Dispersed Flow Film Boiling and (ii) Inverted Annular Film

Boiling regimes

1.5.1 Inverted Annular Film Boiling (IAFB)

IAFB results from the Departure from Nucleate Boiling and occurs at void fractions

lower than about 40%. Once the CHF is exceeded, vapor is generated rapidly near the

wall, creating a vapor annulus that surrounds a liquid core which may contain entrained

bubbles.

As the quality increase, the vapor accelerates faster than the liquid, causing instabili­

ties in the liquid-vapour interface, which may breakup into droplets. The number of

liquid droplets is not very high initially, and the droplet size is relatively large. These

Page 58: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

21

droplets can eventually evaporate or break up into smaller droplets. IAFB may change

to dispersed flow film boiling with increasing quality.

1.5.2 Slug Flow Film Boiling (SFFB)

This regime is usually encountered at low flow velocities and at void fractions that are too

high to maintain inverted annular film boiling but too low to maintain the dispersed flow

film boiling. As shown in Figure 1.8-(ii), this regime may be formed just downstream of

the inverted annular flow regime, when the liquid core breaks up into slugs of liquid in a

vapor matrix.

1.5.3 Dispersed Flow Film Boiling (DFFB)

Dispersed Flow Film Boiling (or liquid deficient region or mist flow) takes place after

dryout had occurred. Since the void fraction under dryout conditions can be as high as

80%, the heat is transferred to a continuous vapor phase containing dispersed and fine

liquid droplets; the diameter is approximately 50 to 1000 \im. The wall temperature at

DFFB is a function of the heat transferred by forced convection from the wall to the

vapor phase, convection from the vapor to droplets within the core, and radiation heat

transfer from the wall to the vapor and droplets. The heat transfer rate is influenced

by the droplets distribution and their behavior near the wall. Within the vapor core,

the droplets initially tend to be large. These large droplets are deformable and spread

considerably, and eventually breakup into many smaller droplets (see Figure 1.8). The

reduction in droplet size increases the droplets-vapor interfacial area and improves the

heat transfer between vapor and droplets.

Page 59: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

22

1.6 Heat Transfer Regimes in Heated Channels

Heat transfer regimes encountered with an upward cooling flow in a uniformly heated

tube are shown in Figure 1.9, from (Corradini). A subcooled fluid entering the tube en­

counters the single-phase forced convection to liquid, subcooled boiling, nucleate boil­

ing, forced convective evaporation, film boiling, and single-phase forced convection to

vapor. These regimes correspond closely to the boiling curve with a direct transition

from nucleate boiling to film boiling at the CHF occurrence point (point B to point D on

Figure 1.1).

The wall temperature increases sharply once the CHF is reached, as illustrated in Figure

1.9. This wall temperature increase is only possible if the heat flux from the heated wall

to the fluid is temporarily reduced while the applied power remains constant. Under

steady-state conditions (i.e. when the applied power, the wall temperature and flow con­

ditions remain constant within the time in each position in the tube), these phenomena

may be interpreted as the developing flow film boiling effect that will be presented in the

following subsection.

Page 60: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

23

WALL AND FLUID TEMP VARIATION

FLOW PATTERNS

HEAT TRANSFER REGIONS

Wait temp.

Wail temp

Fluid temp

Sat temp

H

Vapour core temp

'Dryout' 4 - L

Fluid temp f"

Liquid core temp

* - 0

Fluid temp

Single- Convective phase neat transfer vapour to vapour

Drop Liquid deficient flow region

B

Annular flow with

entrainment Forced

convective heat transfer thro*

liquid film

Annular flow

Slug flow

Bubbly flow

Saturated nucleate

boiling

Subcoded boiling led

Single- Convective phase heat transfer liquid to liquid

Figure 1.9 Forced Convective Boiling Curve

Page 61: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

24

1.6.1 Developing Flow Film Boiling

The axial wall temperature distribution along the heated tube is shown in Figure 1.10,

from (Guo, 1978), at steady-state high-flow conditions. An increase in wall temperature

is illustrated at locations downstream of the CHF location, but the increasing trend is

relatively gradual. Predicted wall temperatures for fully developed film boiling are also

shown in the same figure for comparison, and are significantly higher than the observed

wall temperatures beyond the CHF point. The region bounded between the dryout and

maximum wall temperatures is referred as the developing film boiling region, and the

region beyond the maximum wall temperature is identified as the fully developed film

boiling region.

The gradual wall-temperature rise at the CHF location is attributed to the buildup of

vapor superheat at high flow and high quality conditions (i.e., the flow would not be

able to change from fully developed nucleate boiling heat transfer to fully developed

film boiling heat transfer instantaneously at a specific axial location). Prior to CHF

occurrence, droplets from the liquid core are repelled by vapor formed by the evaporation

of the liquid film and having a velocity component toward the center of the channel.

Once the dryout of the liquid film is completed, some of these droplets can impinge

onto the heated wall increasing the heat transfer rate. The increasing in vapor superheat

near the heated wall reduces the frequency of the droplet-surface interaction and the

film boiling approaches fully developed conditions (at the maximum wall-temperature

location). After reaching the maximum wall temperature, the droplet-wall interaction is

completely inhibited and fully developed film boiling heat transfer is encountered.

Page 62: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

25

440

O o Q)

3

E & a <j

42 w 3

CO

Tsat

340

Temperature Profile based on Fully Developed F|m Boiling

/ ' Iv'ax Temperature

Pre-CHF

Fully developed F Im-Boiling Heat Transfer Coefficient;

Developing Fully Developed

25

0.35

Figure 1.10 Heat Transfer Coefficient and Wall Temperature Evolution in Post-Dryout

Conditions

1.6.2 Thermodynamic equilibrium in post-dryout conditions

Generally, flows with low dryout qualities and high mass fluxes show thermal equilib­

rium behaviors (i.e. the two phases are at saturation temperature) while flow with high

dryout qualities and low mass fluxes show non-equilibrium behaviors. Typical wall tem­

perature axial distribution and fluid and vapor temperatures are shown in 1.11 for a tube

where post-dryout conditions are encountered. Consequently, the flow may not be under

thermodynamic equilibrium under dispersed flow film boiling conditions and the quality

(or void fraction) could be overestimated if thermal equilibrium is assumed.

Figure 1.12, from (Corradini), presents the equilibrium quality, xeguu, and the actual

quality, xactuai. The figure shows that, before the dryout location, both phases are close

to the saturation temperature. After CHF, the vapor-droplets heat transfer is small and

Page 63: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

26

most of the heat goes to the vapor which provokes its superheating. The increase of

the vapor temperature (i.e. superheated steam) then allows the heat transfer from the

steam to the droplets to occur. Further downstream, the amount of heat transferred from

the wall to the vapor may approximately balance the amount of heat absorbed by the

droplets that starts evaporating.

s

DO " tq Length

Complete Lack of Thermodynamic Equilibrium

Bulk vapor Temperature

Length

Complete Thermodynamic Eqttilibrinm

Figure 1.11 Impact of Thermal Equilibrium on the Post-Dryout Wall Temperature

Page 64: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

27

UNIFORM HEAT FLUX

T(z)

X(z)

1 1 1 1 r\ O • O O

^CHF*"

> / v-non-eqi

. . • * * * „ « — •

* <- equii

^ Z*

1 1 1 9 Q

O » 0

TWALL

il .

Xequil

•*• actual

^ . . . • * * " " '

Axial Len

I SAT

Figure 1.12 Equilibrium and Actual Qualities Distributions in Post-Dryout Conditions

1.6.3 Rewetting

If the applied heat flux is reduced once a stable film boiling regime is reached, the heat

flux to the fluid will also be reduced and the film boiling region is observed until the

minimum film boiling temperature is reached. At this point, a sudden transition to nu­

cleate boiling then occurs (from point E to C of Figure 2.6). Dryout (increasing q") and

rewetting (decreasing q") processes are shown on the boiling curve of Figure 1.13 for

heat flux controlled systems.

Page 65: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

28

* Increasing Heat Flux • Decreasing Heat Flux

Wall Temperature

Figure 1.13 Post-Dryout and Rewetting Processes in Heat Flux Controlled Systems

Page 66: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

29

CHAPTER 2

LITERATURE SURVEY ON POST-DRYOUT HEAT TRANSFER

EXPERIMENTS AND PREDICTION METHODS

This chapter presents some relevant experiments related to post-dryout heat transfer and

a detailed exposition of the data used in this work. It also presents a general overview

of the critical heat flux and post-dryout heat transfer prediction methods available in the

literature. Because of the exhaustive number of prediction methods available, only the

most general and popular ones are presented. An alternative methodology, the look-up

table, is used in the current assessment work. This method is also introduced in this

chapter.

2.1 Post-Dryout Heat Transfer Experiments

A large number of post-dryout experiments have been performed for various test section

geometries. Many of these experiments were carried out using cryogenics and refriger­

ants because of the high temperatures reached in such experiments. Also, most of the

experimental data were obtained at steady-state conditions.

Kirillov and Groeneveld (Kirillov) tabulated a large number of film-boiling experimen­

tal data obtained in tubes. Additional data are available from Kastner et al. (Kastner,

1981), Kohler-Hein (Kohler and Hein, 1986), Konkov-Zuperman (Konkov and Zuper-

man, 1967), Leung (Leung, 1994), Nijhawan (Nijhawan, 1980), and Subbotin et al.

(Subbotin, 1973). Among available experiments, data sets provided in Bennett et al.

(Bennett, 1967) and Becker et al. (Becker, 1983) have been recognized as the most re­

liable and well documented. Both sets of data were obtained with upward water flow

Page 67: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

30

inside vertical circular tubes. However, tubes used in the experiment of Bennett et al.

(Bennett, 1967)] exhibited a uniform axial power profile, while those in Becker et al.

(Becker, 1983) had non-uniform axial power profiles.

The experiment performed by Bennett et al. (Bennett, 1967) has been selected in this

assessment of the two methodologies in predicting post-dryout heat-transfer coefficient.

A brief description of the experiment is provided in this chapter. Details can be found in

(Bennett, 1967).

2.1.1 Experiments of Bennett et all.

Bennett et al. (Bennett, 1967) measured directly the external surface temperatures to in­

fer the internal surface temperature distribution in a vertical Nimonic-80a tube of 0.0127

m inside diameter. The tube was uniformly heated and cooled with an upward co-current

flow of water at a pressure of 6893 kPa. Two heated lengths were used: 3.6576 m and

5.5626 m. It was not possible to obtain a 5.5626 m tubing in this material and the second

test section was constructed of two pieces joined by a special quick-changing flange.

This obviously affected the results; it was found (see (Bennett, 1967)) that it caused a

depression of the heat flux over a short distance (approximately 3 cm). However, it was

unlikely to have any significant effect on the critical heat flux and in no case the liquid

deficient region propagated upstream of the flange. The experimental facility consisted

of 27 thermocouples attached to the test section using one of the following two methods:

1. The bottom 12 thermocouples were made of standard chromel-alumel glass insu­

lated wire. The junction was cemented to a piece of anodized aluminum which, in

turn, was cemented to the test section outer wall. The attachment was very effec­

tive and resulted in a negligible temperature drop across the anodized aluminum

insulator.

Page 68: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

31

2. The top 15 thermocouples were sheathed type since the cement used to attach the

anodized aluminum insulator type could not sustain the extremely high tempera­

ture found in the liquid deficient region. The thermocouples were bounded to the

outer wall of the test section with wire and were electrically insulated from the test

section by a mica layer.

Figure 2.1 shows the schematic diagram of the 5.5626-m heated length test section.

Thermocouples locations are also shown in the figure.

a

W"

Mmouic SO-a tube (Dai=0.6127tn)

Elertrical clamp

Thermocouples location

Electrical clamp

Figure 2.1 Schematic Diagram of the Bennett's Test Section

2.1.2 Test Procedures and Flow Conditions

The experiments were carried out as follows: the power was increased until the temper­

ature measured at the last thermocouple began to increase rapidly. Then, the power was

increased very slowly until both wall temperature and flow conditions remained con­

stant. Once the steady-state flow conditions were reached, the outside wall temperature

Page 69: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

32

distribution was recorded. These temperatures, and the applied power, are then used to

infer the internal surface temperature distribution by solving heat conduction equation

through the heated tube. The procedure was repeated for the next thermocouple until an­

other steady-state conditions were reached, and so on. These operations were performed

for each set of heat flux, inlet temperature and mass flux. Test conditions were remained

between following boundaries:

p = 3.896 MPa

380 \ < G < 5235 -^-

80 kW < P < 406 kW

258 °C < Tin < 277 °C

Finally, there are no indications about the order of magnitude of experimental errors and

uncertainties in the report (see (Bennett, 1967)).

2.2 Prediction Methods for Critical Heat Flux

A large number of CHF predictions methods have been developed and can be divided

into three groups:

1. Local flow conditions correlations:

These correlations express CHF in terms of local flow parameters (such as pres­

sure, mass flux, and quality) and flow cross-sectional geometry (either diameter

or area). An iterative approach is applied using the local CHF correlation and

Page 70: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

33

the heat-balance equation to establish the dryout power and dryout location in a

heated channel. Most local CHF correlations are derived for a specific geometry

(e.g., tubes and annuli) with uniform axial and radial power profiles at steady-state

conditions. Modification factors have been developed for separate effects, such

as channel size, non-uniform axial and radial power profiles and transients. The

commonly used local CHF correlations have been summarized in (Groeneveld,

1986).

2. Global conditions correlations:

These correlations express CHF as functions of system-flow parameters (such as

outlet pressure, mass flow rate or mass flux, and inlet enthalpy or inlet temper­

ature), heated length, and flow cross-section geometry (either diameter or area).

This type of correlations is valid for establishing average CHF (or critical power)

for a specific geometry (i.e., length and diameter) only. It is not applicable to

determine the local CHF value and CHF location in non-uniform heated channels.

3. Analytical model:

Analytical models have been developed for bubble crowding CHF mechanism

(e.g. Weisman and Pei (Weisman and Pei, 1983)) and annular film dryout mech­

anism (e.g., Hewitt (Hewitt, 1978). The bubble crowing model accounts for the

bubble formation and coalescence, and considers the CHF occurrence at the near-

wall void fraction of about 0.8. The annular-film dryout model accounts for the

liquid-film depletion through evaporation and entrainment with the compensating

effect of droplet deposition. These models, in principle, are valid for any channel

geometries, steady state and transient flow conditions, and various axial and radial

power profiles. However, each model is applicable for a specific CHF mecha­

nism (or flow regime) and cannot be extended to others. In addition, there is no

analytical model applicable to the transition regime further complicating their ap­

plicability.

Page 71: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

34

Most empirical correlations and analytical models have a limited range of application.

The look-up table approach was initiated to provide a general prediction method over a

wide range of flow conditions. According to reference (Groeneveld, 2003 (1)), a stan­

dard CHF look-up table was developed in Russia with a relatively small amount of CHF

data (about 5000). The table look-up approach was continued at the CENG (Centre

Nucleaire de Grenoble) and the University of Ottawa using a more extensive database

(Groeneveld, 1986). An international CHF look-up table was developed with databases

contributed from various organizations (Groeneveld, 1996). It has been shown to have

the best prediction accuracy over the widest range of flow conditions, among all correla­

tions. A minor update has also been introduced recently (Groeneveld, 2007). The critical

heat flux look-up table (CHF-LUT) presents discrete CHF values as a function of local

pressure, mass flux and thermodynamic quality for vertical upward flow of water inside

an 8-mm ID tube. The local CHF value at in-between flow conditions is calculated using

interpolation of the tabulated CHF values at neighbouring flow conditions. Modification

factors have been derived for various separate effects (such as tube diameters, geome­

try, axial power profile, and transient). Additional information about the CHF-LUT is

presented in reference (Groeneveld, 1996).

2.3 Prediction Methods for Transition Boiling

A large number of correlations have been proposed for transition boiling, but often pro­

vide very different predictions. These correlations can be divided into three groups:

1. Empirical correlations: These correlations, although very simples, cannot gener­

ally be extrapolated outside the range of data on which they are based.

2. Correlations containing boiling and convective components: These correlations

Page 72: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

35

are generally expressed as:

hTB = hFB + A exp (-B (Tw - Tsat)), (2.1)

where hFB is the film boiling heat transfer coefficient (or convective component)

and the second term of the right hand side of the equation is the boiling component

that becomes insignificant at high wall superheats.

3. Phenomenological Correlations: This set of correlations is based on physical mod­

els and on empirical correlations to overcome some inadequate physical under­

standing.

References (Groeneveld, 1986), (Groeneveld, 1976) and (Auracher, 1990) provide useful

overviews on the current topic. In view of the deficiency of various prediction methods,

Bjordard and Griffith (Bjornard, 1977) introduced a correlation to interpolate the heat

flux at transition boiling between those at CHF and film boiling:

q" = \&HF + (l-\)</}Um, (2.2)

where qCHF is the critical heat flux, q"jam is the film boiling heat flux and A given as:

T -T \ -'-w -Lmin m i\

A ~~ T< r • {<2"5> J- CHF — J- min

Groeneveld and Snoek (Groeneveld, 1986) recommended an interpolation between the

CHF and the minimum film-boiling points:

£r£=(^y, (2.4) Qmin \ Qmin /

Page 73: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

36

lrn I lmin 1 sat

m = —f- —-^-, (2.5) I -t-min J-sat

where g'Vs is the heat flux in the transition boiling region and q"min is the heat flux at

the minimum film boiling temperature (see Figure 1.1). The coefficient m is calculated

as follows:

yJ-CHF—J-aat t

where, TTB is the temperature in the transition boiling region, Tmin is the minimum film

boiling temperature, Tsat is the saturation temperature and TCHF is the critical heat flux

temperature. The correlation of Groeneveld and Snoek (Groeneveld, 1986) exhibits a

correct parametric trend of transition boiling.

2.4 Prediction Methods for Minimum Film Boiling Temperature

Several correlations are available to predict the minimum film boiling temperature. Many

of them have been summarized in (Groeneveld, 1986); the reader is referred to this ref­

erence for further details. Groeneveld and Stewart correlation (Beuthe, 2005) has been

widely used to predict the minimum film-boiling temperature:

for x < 0 and pf < 107 Pa

Tmin = 284.7 + 44.11 x l O ^ p / - 3.72 x 10"12pJ - 104a:/ (2.819 + 1.219 x 10_6p/) •

(2.6)

For x > 0 and pf < 107 Pa

Tmin = 284.7 + 44.11 x 10"16p/ - 3.72 x 10"12p/- (2.7)

Page 74: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

37

For pf > 107 Pa

Tmin = Tsat + f 42.8 - min [x, 0.0] ^ ) + (22A ~^* 1 0 \ , (2.8)

where pf is the local pressure of the liquid phase.

2.5 Prediction Methods for Stable Film Boiling

In the stable film-boiling region, the predictions methods can be divided in the following

three groups:

1. Empirical correlations that use functional relationships between the heat transfer

coefficient and some independent parameters.

2. Phenomenological correlations that account for thermodynamic non-equilibrium

in vapor actual quality and temperature.

3. Theoretical models developed by solving equations for various heat transfer pro­

cesses.

2.5.1 Empirical Correlations

A large number of empirical correlations have been developed to predict film-boiling

heat transfer (Kirillov). These correlations are expressed in modified form of the Dittus-

Boelter equation. The simplest correlations were based on the assumption of thermalhy-

draulic equilibrium (e.g., Dougall-Rohsenow correlation (Dougall and Rohsenow, 1963),

Page 75: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

38

Miropolskiy correlation (Mirololskiy, 1963), and Groeneveld correlation (Groeneveld,

1976)). All these equations have limited ranges of application and are valid only at high

mass flow rates where non-equilibrium effects are relatively small.

The Groeneveld correlation was derived with experimental data obtained with tubes and

annuli and is expressed as

b

Prcg,wYd, (2.9)

where the Y factor is defined as:

Y = l-0.l(^-l\(l-x)OA. (2.10)

Coefficients "a", "b", "c", and "d" were optimized using a large bank of selected data.

Details on this correlation and the coefficients are given in (Groeneveld, 1973). A para­

metric comparison of post-dryout heat transfer correlations showed that the Groeneveld

correlation produces artificially high heat transfer coefficients at low pressures (Kirillov).

Slaughterback (Slaughterback, 1973) revised the Groeneveld correlation to improve the

prediction accuracy.

2.5.2 Phenomenologicial Correlation

Phenomenological correlations represent the compromise approach between correlations

and theoretical models. These correlations account for the degree of non-equilibrium

between liquid and vapor phases. Examples of this type of correlation include those

from Groeneveld and Delorme (Groeneveld, 1976), Plummer et al. (Plummer, 1976),

Chen et al. (Chen, 1977) (Chen, 1979), Saha (Saha, 1980), Sergeev (Sergeev, 1985),

Nuv = a Rev < x + — (1 — x) I Pi

Page 76: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

39

and Nishikawa (Nishikawa, 1986). Most of these correlations are a modified form of

the Dittus-Boelter equation, expressed in terms of vapor Reynolds and Prandtl numbers.

The Reynolds number in the phenomenological correlation is based on the actual quality,

x', instead of the equilibrium quality, xe (as in the empirical correlation).

The vapor non-equilibrium is accounted via the actual vapor quality. Plummer et al.

(Plummer, 1976) expressed the actual vapor quality as a function of the mass flux (i.e.,

({xactuai ~ XDO) I (xequii ~ xDO) = f (G)). Chen et al. (Chen, 1977) (Chen, 1979) pre­

sented the vapor quality in terms of pressure and wall temperature (xactuai/xequilibrium —

f (p, Tw)). Sergeev (Sergeev, 1985) defined the vapor quality using a differential equa­

tion (see reference (Kirillov) for further details). Groeneveld and Delorme (Groeneveld,

1976) expressed the vapor quality as:

actua - max (1, xequii) = exp {-tan (*0)), (2.11) Xequii

where xjj is a function of Rev,hom,P, <?, xequu, xactuai- (See (Groeneveld, 1976) for further

details.)

2.5.3 Theoretical Models

Theoretical models for film-boiling heat transfer account for various heat transfer mech­

anisms that occur between the heated surface and the fluid. These models were based on

mass, momentum and energy balance equations and included empirical closure relation­

ships. Six different heat-transfer mechanisms have been identified:

1. Wet collisions: heat transferred from the surface to the liquid droplets that impact

the wall.

2. Dry collisions: heat transferred from the surface to the liquid droplets that enter in

Page 77: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

40

the thermal boundary layer but that do not wet the surface.

3. Forced convection heat transfer from the surface to the vapor.

4. Forced convection heat transfer from the vapor to the droplets.

5. Radiative heat transfer from the surface to the vapor.

6. Radiative heat transfer from the surface to the droplets.

A large number of analytical models have been developed and described in Kirillov and

Groeneveld (Kirillov). These models are generally valid for a specific flow pattern.

According to reference (Wolverint), Garnic and Rohsenow proposed one of the early

models for steady-state vertical upward flows in tubes. The total heat flux is considered

as the sum of three contributions: wall-to-vapor convection, wall to droplet evaporation

and radiation. An interesting aspect of this model is that a detailed analysis of the wall-

to-droplet heat transfer mechanisms was attempted, although non-equilibrium effects

were ignored. The heat flux due to the impinging droplets to the wall is expressed as:

QL = ud(l- e) pLhLGfcd exp TT \ 2

- sat (2.12)

where / ^ is the cumulative deposition factor expressed as a function of the droplet size.

The droplet deposition velocity Ud is calculated using:

Gx iyv ud = 0.15—JJ-^. (2.13) Pie V 2

where fv is the single-phase friction factor calculated at the effective Reynolds number

of the vapor phase (i.e., GxD/eiu,v).

Page 78: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

41

According to reference (Wolverint), Yoder and Rhosenow improved the model of Garnic

and Rohsenow and included the heat transferred from the wall to the vapor, from the

wall to the droplets during droplet-wall collisions, and from the vapor to the entrained

liquid droplets. Subsequently, Varone and Rohsenow (Varone, 1986) and (Varone, 1990)

considered the average diameter of the droplets and their breaking up dynamics in their

model, which provided improved prediction accuracy. Tong and Tang (Tong, 1997)

recommended the model of Varone and Rohsenow for dispersed flow film boiling.

Theoretical models are highly complex and consist of empirical closure relationships

that were based on limited range of experimental data. Despite of their apparent success

(Varone, 1990), their applications remain limited particularly in transient analyses.

2.6 Film Boiling Look-Up Tables

A correlation or a theoretical model can be used to predict the heat transfer coefficient.

However, the former is usually restricted to a limited range of flow conditions while the

latter is rather complex and requires long computation times. To overcome these prob­

lems, the look-up table method was developed for predicting heat transfer coefficient in

post-dryout conditions (Groeneveld, 1988). This look-up table consists of a set of tabu­

lated stable film boiling heat transfer coefficients obtained from experimental values of

wall temperatures. These coefficients are presented as a function of discrete values of

mass flux, pressure, quality, and heat flux or wall superheat. The look-up technique is

easy to implement in safety analysis computer codes and is currently the default post-

dryout heat transfer prediction method in CATHENA (Hanna, 1998). In the present

study, the look-up technique is used to predict the stable film boiling heat transfer coef­

ficient.

According to reference (Groeneveld, 2003 (1)), the look-up tables have several advan-

Page 79: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

42

tages: simple to use and implement, no iterative procedures required, wide range of ap­

plications, applicable to non-aqueous fluids using fluid-to-fluid modeling relationships,

and provide accurate predictions. However, there are a few concerns with the latest

look-up table, such as fluctuations in the film boiling heat transfer coefficients with flow

parameters in some regions, sharp variations between adjacent tables entries, and data

scarcity at some flow conditions. Further work is required to improve the table.

2.6.1 Description of the Film Boiling Look-up Tables

The Look-up Table (LUT) method was developed by Groeneveld and Leung and subse­

quently improved by Leung et al. (Groeneveld, 2003 (2)) at AECL and the University

of Ottawa. The resulting 1996 look-up table is referred as the PDO-TW-96 and has been

recommended in Kirillov et al. (Kirillov, 1996). The PDO-TW-96 table was based on

21525 data providing 14687 tabulated heat transfer predictions. It predicted wall tem­

perature measurements in tubes with an average error of 1.2% and a root-mean-square

(RMS) error of 6.73%. Vasic et al. (Vasic, 2001) introduced additional data and a

smoothing process to the table.

The first LUT version was based on the heat flux, therefore, their implementation in

transient calculations was cumbersome. Thus, subsequent versions were based on the

wall superheat (rather than the heat flux) by using the same flow properties. The latest

version of the look-up table (version 2003) has been based on 77 234 film-boiling data

points obtained from 36 different sources.

The look-up table method provides fully developed film-boiling heat-transfer coeffi­

cients for upward flows in tubes of a given internal diameter. The heat transfer co­

efficient has to be corrected to take into account others effects, such as different tube

diameters, bundle geometries, spacer devices, etc. The approach used to introduce these

Page 80: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

43

corrections is to multiply the LUT heat transfer coefficient by a modification factor. The

modification factor can be understood as follows; the Nusselt number can be expressed,

at a specified location z, as:

1\UZ — iVWo {•[)• geometry ' ^-spacers ' -**developing ' -ft-ADF) > (Z. 14)

where Nu0 is the reference Nusselt number calculated at the same location and flow con­

ditions for a clean tube. The coefficients Ki are the different modification factors that

account for geometry, Kgeometry> spacer devices, Kspacers, the development of the film

boiling conditions, Kdeveioping, axial heat flux distributions, KAFD, and other negligible

effects. Further details regarding the modification factor method can be found in refer­

ence (Leung, 2002). Equation (2.14) assumes that all the effects are totally independent

of each other. However, this is not totally true but is a better assumption than ignoring

these effects.

2.7 Developing Flow Modification Factor

Groeneveld and Leung (Leung, 2002) developed the heat-flux-based developing-flow

modification factor for applications with the heat-flux-based film-boiling look-up table.

The modification factor is expressed as:

K _ hppo _ ^•developing * *• '

h fd

nb

•fd

1 ) exp x - xDO

(1 - xDO)Bo (2.15)

where hPDO is the post-dryout (or film boiling) heat transfer coefficient at the location

of interest, hfd is the fully developed film-boiling heat-transfer coefficient, and hnb is the

nucleate-boiling heat-transfer coefficient. The boiling number, Bo, is defined as:

Bo = GH

(2.16) fg

Page 81: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

44

where Hfg is the latent heat of vaporization. Coefficients "a" and "b" were optimized

using 1222 points selected from the database of Becker et al. [4] under vertical upward

steam-water flow condition in tubes. Reference (Leung, 2002) performed an assessment

of this modification factor which indicated significant improvement in prediction accu­

racy; the average prediction error was 2.82% with the modification factor as compared to

11.86% without the modification factor (i.e., applying the fully developed film-boiling

calculations).

Guo and Leung (Guo, 1978) developed a modification factor to be used in conjunction

with the temperature-based look-up table. The temperature-based modification factor is

expressed as:

Kdeveloping = ~J^~ = 1 + ( T 5 ^ - 1 J exp C (WSR - 1) hfd \rifd J L

(2.17)

where WSR is the Wall Superheat Ratio defined as:

WSR = (Tw - Tsat) I (TCHF - Taat) (2.18)

Coefficients "c" and "b" were optimized using a large experimental database (Guo,

1978). Applying this correlation in predicting the film-boiling heat-transfer coefficient

resulted in an average error of -1.37% and a root-mean-square error of 13.03%.

A separate modification factor has been developed for low pressures (less than 2000 kPa)

(Guo, 1978). It is expressed as:

Hdev,lowP = -f— = ! + T 1 ) exp hfd \ hfd

-0.18

-1.85 (^) (WSR-V0A83 (2.19)

where pi and pv are the liquid and gas densities. Applying this modification factor

predicted the low-pressure heat-transfer coefficients with an average error of -0.07% and

Page 82: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

45

a root-mean-square error of 5.98% for 554 data points.

Page 83: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

46

CHAPTER 3

NUMERICAL MODELING

This section presents the numerical modeling used in the assessment of the proposed

methods discussed in the previous chapter. The simulated temperatures are compared to

the experimental data of Bennett et al. (Bennett, 1967). The modeling simplifications

and hypothesis are presented. A brief description of the implemented post-dryout heat

transfer models is presented in this chapter. Initially, the effect of radiation heat transfer

is neglected. However, a model that takes into account this mechanism has been imple­

mented in the assessment procedure to validate this initial assumption. The description

of the approach used is presented at the end of this chapter.

3.1 Experiments Selection

The experimental set-up and procedures of Bennett et al. (Bennett, 1967) have been

presented in Chapter 2. Pre-CHF and CHF runs in the experiment do not provide any

post-dryout heat-transfer data and hence have been excluded in the assessment. Erro­

neous temperature measurements (e.g., sudden local temperature drop without justifica­

tion) were also excluded from the database. This study focuses mainly on applications to

the loss-of-flow and small-break loss-of-coolant accidents, where mass fluxes are gener­

ally higher than 1000 kg/m2s. Therefore, experimental data obtained at low mass fluxes

(i.e., less than 1000 kg/m2s) have been excluded in the assessment.

As described in Chapter 2, the experimental data were collected from two test sections

(3.66 m and 5.56 m heated lengths) in the experiment of Bennett et al. (Bennett, 1967).

This study focuses only on data obtained with the 5.56 m tube, where distinctive post-

Page 84: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

47

dryout sections have been observed (post-dryout data spread over a shorter length over

the 3.66 m tube). The database includes 702 post-dryout temperature measurements

from 104 runs, covering both developing and fully developed film boiling regimes. A

classification in each region has been performed using the experimental maximum wall

temperature. The final data set covers the following range of flow parameters:

p = 6.893 MPa

1003 \<G< 5235 \

147 kW < P < 277 kW

259 °C < Tin < 277 °C

3.2 Simplifying Hypothesis

A few simplifying hypothesis have been introduced before performing the assessment

of the model under steady-state conditions. These simplifications are discussed in the

following paragraphs.

• Constant flow properties: Pressure-drop variations are neglected; the outlet pres­

sure is assumed over the channel.

• Node position: The axial nodes coincide with the experimental locations of the

thermocouples used to perform the experiments (see Section 2.1.1). Additional

axial nodes could have been used when performing the simulations. However, the

node distribution was considered satisfactory for temperature predictions.

Page 85: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

48

• Heat losses: Heat losses are neglected since no such information is provided in the

report of Bennett et al. (Bennett, 1967).

• Conduction heat transfer: Only the steady-state inside surface wall temperature

distribution of the tube is simulated. Consequently, the conduction heat transfer

equation through the heated wall is not solved. Appendix II attempts to study the

impact of this assumption.

• Radiation heat transfer: The radiation heat transfer is neglected. This assumption

results in an overestimation of the forced convection heat flux component and

consequently can produce wall temperature errors. A validation exercise will be

performed in order to confirm the validity of this assumption.

• CHF correction: The CHF value has an important impact on post-dryout heat

transfer calculations. Prediction uncertainty in CHF would introduce a system­

atic bias in the post-dryout heat transfer coefficient. Since the CHF look-up table

presents correct parametric trends and no significant fluctuations are observed in

the table, the bias is anticipated to be systematic.

To minimize bias in predicting the post-dryout temperature, all calculated CHF

values under post-dryout conditions have been corrected using a correction factor

evaluated at the experimental dryout location. This CHF correction may in turn

introduce a small bias due to the separation of neighboring thermocouples (the cor­

rection can only be applied to the thermocouple location where CHF is observed

despite the actual CHF location may be upstream). This bias is anticipated to be

negligible. The correction factor is calculated as follows:

r< T? IEXP DO fn i\ ^•^•CHF — -J, , ( J - U

%red DO

where q"EXp DO *S t n e experimental heat flux at the dryout location and q^red DO is

the predicted CHF at the dryout location. For a given experiment, the correction

Page 86: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

49

factor multiplies all CHF predictions for the post-dryout region. In the heat-flux-

based methodology, the CHF value is not required at the post-dryout region and

hence the correction is not applied once the CHF occurrence point is correctly

fixed. However, in the temperature-based methodology, the CHF correction is

applied in evaluating TCHF from the WSR ratio of the modification factor in the

post-dryout region.

3.3 Post-Dryout Heat Transfer Methodologies

This study focuses on two methodologies implemented in the film boiling look-up table

technique for safety-analysis computer codes. The heat-flux-based methodology refers

to the calculation scheme applying the local heat flux to evaluate the heat transfer coef­

ficient, while the wall-temperature-based methodology is the scheme applying the local

wall temperature to evaluate the heat transfer coefficient. The descriptions and applica­

tions of these general calculation schemes are presented below.

3.3.1 Heat Flux Based Methodology

In this method, the heat transfer coefficient is evaluated using a known heat flux. The

method is convenient for steady-state calculations where the heat flux applied to the

coolant is known. The main calculations steps are:

1. Set the heat flux, q", equal to the applied heat flux

2. Calculate the heat transfer coefficient, h, as a function of the heat flux (using a heat

flux based look-up table)

3. Calculate the wall temperature, Tw, from h = q"/(Tw - Tsat)

Page 87: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

50

In some thermalhydraulic transient codes, however, the heat conduction equation within

the wall is solved first. In these cases, the heat flux to the fluid is unknown until the

heat transfer coefficient is found. Thus, a heat flux based methodology implementation

is cumbersome and requires an iterative approach. Also, as shown in Figure 1.1, for

the same heat flux, the boiling curve presents three different heat transfer modes. To

overcome these problems, the wall temperature can be used to calculate the heat transfer

coefficient.

3.3.2 Temperature-based Methodology

In this method, the heat transfer coefficient is calculated using the local wall temperature.

The implementation of the temperature-based methodology in a transient code is faster

and potentially more robust since no iterations are required. The simplified calculation

steps are then:

1. Calculate Tw (for instance, by solving the heat conduction equation)

2. Calculate the heat transfer coefficient (using a temperature-based look-up table)

3. Calculate the heat flux q" using Newton's heat transfer law (q" = h(Tw — Tsat))

3.4 Description of the Numerical Scheme

A simplified one-dimensional steady-state model is used to assess the heat-flux based

and temperature-based methodologies. The code and associated properties were ex­

tracted from the Thermalhydraulics Evaluation Package presented in References (Leung,

1999) and (Guo, 2007). The source code of the main function is given in Appendix III. 1.

Slight modifications, however, have been made to simulate a tube geometry since the

Page 88: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

51

code was originally treating the geometry of a bundle. The model was written in FOR­

TRAN 77 and further modifications were applied to make it compatible with FORTAN

90/95. The numerical model uses the following modules:

• MODULE_DATA: Allocates, initializes and performs calculations on several vari­

ables.

• MODULE_PROP: Contains fluid property variables and their calculation func­

tions.

• MODULE_FILES: Performs all the operations in the different files. It can modify

data from MODULE_DATA.

• MODULE_CHF_LUT: Creates the CHF-LUT and performs interpolations to cal­

culate the CHE

• MODULE_LUT_Q_based: Creates the heat flux based film boiling LUT and per­

forms interpolations to calculate the heat transfer coefficient.

• MODULE_LUT_T based: Creates the temperature-based film boiling LUT and

performs interpolations to calculate the heat transfer coefficient.

These modules replace the common blocks that may be removed in further versions of

FORTRAN compilers. The LUT data has been declared private and can only be accessed

by the module's functions and cannot be mistakenly modified.

The temperature-based methodology is more appropriate for implementing transient cal­

culations; it is faster and no iterations are required compared to the implementation of a

heat flux based methodology. On the other hand, the current work performs an assess­

ment under steady-state conditions. In this case, the heat flux methodology implementa­

tion is direct while the temperature-based methodology requires an iterative procedure.

Page 89: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

52

The general heat transfer calculation scheme for both methodologies under steady-state

conditions is shown in Figure 3.1.

Heat flux based methodology

Calculate TBUDI and flow properties

I Calculate

h(q",F,G,x)

I Calculate Ima

Next point

Temperature based methodology

Calculate Isidk and flow properties

Initial T^JI guess

1 Calculate

h(T«* P, G, x)

Figure 3.1 Heat Transfer General Calculation Scheme for the Heat Flux Based and Tem­

perature Based Methodologies under Steady-State Conditions

3.5 Post-dryout Heat Transfer Coefficient Calculation Model

The current approach employs the film boiling look-up tables to predict the fully de­

veloped heat transfer coefficient. The developing-flow effect is then taken into account

using a separate modification factor to the fully developed heat transfer coefficient.

Page 90: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

53

Table 3.1 Flow Conditions and Grid Points for the Heat-Flux-Based Look-Up Table

pressure [kPa]

Mass flux Lm' ! .'!J

quality

heat flux rkW-, L m 2 J

Flow range and grid points

100 11000

0 4000 -0.20 0.80 50

3000

200 13000

50 5000 -0.10 1.00 100

500 17000

100 6000 -0.05 1.20 150

1000 20000

200 7000 0.00

200

2000

500

0.05

400

5000

1000

0.10

600

7000

1500

0.20

800

9000

2000

0.40

1000

10000

3000

0.60

2000

3.5.1 Film Boiling Heat Transfer Coefficient

The look-up table technique is used in this work to predict the fully developed heat

transfer coefficient (see Section 2.6.1).

3.5.1.1 Heat Flux Based Look-Up Table

The flow conditions of the heat flux based film boiling look-up table used in the present

assessment are given in Table 3.1. Once obtained from the look-up table, the heat transfer

coefficient has to be corrected for the internal diameter, D, since the tabulated values are

normalized for tubes of a 9 mm internal diameter. The correction is made using the

following relation (Groeneveld, 2003 (2)):

h — h table D

0.009

-0.2

(3.2)

Page 91: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

54

Table 3.2 Flow Conditions and Grid Points for the Temperature-Based Look-Up Table

pressure [kPa]

Mass flux

[4-1 Lm,zsJ

quality

wall superheat [K]

Flow range and grid points

100 10000

0 3000

-0.20 0.60

5 750

200 11000

50 4000

-0.10 0.80 50

900

500 13000

100 5000

-0.05 1.00 100 1050

1000 17000

200 6000

0.00 1.20 200 1200

2000 20000

500 7000

0.05 1.40 300

5000

1000

0.10 1.60 400

7000

1500

0.20 1.80 500

9000

2000

0.40 2.00 600

3.5.1.2 Temperature-based Look-Up Table

The temperature-based methodology uses a temperature-based look-up table. The dis­

crete flow conditions used to tabulate the 32 448 heat transfer coefficients calculated

from experimental data are given in Table 3.2. For this LUT, the heat transfer coeffi­

cients are normalized for a tube of a 8mm internal diameter. Therefore, the interpolated

value has to be corrected as follows (Groeneveld, 2003 (2)):

h = h table D

0.008

-0.2

(3.3)

3.5.2 Developing-Flow Modification Factors

Developing flow modification factors have been presented Chapter 2. The correlations

used in the current assessment are repeated here.

Page 92: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

55

3.5.2.1 Heat Flux Based Correlations

The developing flow modification factor correlation used in this work has been devel­

oped in (Leung, 2002) and it is expressed as:

K, developing = 1 + hnb

hfd — 1 1 exp x-xDO

[1 - xDO)Bo (3.4)

where Hfg is the latent heat of vaporization and Bo is the boiling index is given by

Equation (2.16) i.e.:

Bo = GH fg

(3.5)

3.5.2.2 Temperature-based Correlations

Leung and Guo (Guo, 1978) derived the developing flow modification factor correlation

based on the wall temperature used in this work, that is:

K, h

developing PDO

h = 1

id

h NB

h fd — 1 I exp c(WSR-lf

with:

WSR = -sat

TM

(3.6)

(3.7) J CHF — ± sat

where TCHF is defined as the wall temperature calculated using the CHF local value,

the nucleate boiling heat transfer coefficient and the saturation temperature. The nucle­

ate boiling heat transfer coefficient is calculated using the Chen correlation for forced

convective boiling (correlation 1.11) where the local value of CHF is used for the heat

Page 93: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

56

flux.

3.6 Radiation Heat Transfer Model

A radiation heat transfer module was implemented in the computational model in or­

der to study the importance of this mechanism in the assessment procedure. Radiation

between the heated wall and the liquid core and passing through a participating gas is

assumed (i.e. inverted annular film flow). The model used for the validation is restricted

to inverted annular film boiling but can be used for all post-dryout regime and can pro­

vide estimations for other conditions. Radiative exchange between three gray bodies is

simulated and the following simplifications are assumed:

1. No entrainment of liquid droplets in the vapor film takes place.

2. Smooth liquid/vapor interface.

3. Radiation heat transfer in the axial direction is negligible.

4. Optically thin vapor film.

5. Uniformly heated wall and homogeneous liquid phase temperatures.

In order to calculate the radiative heat flux in the assessment code, the following calcu­

lations are performed:

1. Calculate the liquid core diameter (Df).

2. Calculate the wall-to-fluid view factor (Fw_/).

3. Calculate the emissivity of the liquid core.

4. Calculate the emissivity the heated wall.

Page 94: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

57

5. Calculate the emissivity of the vapor film.

6. Solve the system of equations.

7. Calculate the radiative heat flux.

The theory and details about this radiative heat transfer model are described in Appendix

1.3, while the computer code for the radiative module is listed in Appendix III.2.

Page 95: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

58

CHAPTER 4

RESULTS

Post-dryout heat transfer coefficient is calculated using either the heat-flux based or

temperature-based methodology in safety analysis codes. The heat-flux-based method­

ology applies the known heat flux to calculate the heat transfer coefficient that is then

used to calculate the wall temperature. The temperature-based methodology is applied

when the heat flux is unknown and the heated wall temperature is used to calculate the

heat transfer coefficient. The heat flux to the bulk fluid is then calculated.

This section presents the assessment result of the heat-flux based and wall-temperature-

based methodologies (presented in Section 3.3) against experimental data obtained at

steady-state conditions. The heat transfer coefficient for the fully developed flow is cal­

culated using the corresponding film boiling look-up table (Groeneveld, 2003 (2)) and

is corrected using the developing-flow modification factor. The corrected heat-transfer

coefficient is applied to predict the internal wall temperature at each thermocouple po­

sition, which is compared against experimental data of Bennett et al. (Bennett, 1967).

Prediction accuracy of each methodology is established from the bias and standard de­

viation.

An examination of the predicted wall-temperature trend has revealed deficiencies in the

developing modification factor for the temperature-based methodology. A sensitivity

analysis of the developing-flow factor has therefore been carried out. Improvements

to the factor have been introduced to reduce the prediction accuracy and enhance the

predicted trend. Prediction accuracy of the revised developing-flow modification factor

has been assessed against the database.

Page 96: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

59

The impact of several hypotheses has been examined on the applicability of a temperature-

based methodology.

4.1 Assessment Results

Table IV. 1 (for the heat flux based methodology) and Table IV.2 (for the temperature-

based methodology) given in Appendix IV present detailed information about the exper­

imental conditions and predictions for each experiment. These tables list flow properties,

the CHF correction factor, experimental and predicted wall temperatures, and prediction

errors on maximum wall temperature and local post-dryout wall temperature. The aver­

age prediction error and standard deviation are also presented. Appendix IV.3 compares

the experimental and predicted wall-temperature distributions using the heat-flux based

and temperature-based methodologies for all selected experiments.

To quantify the differences between the predicted and experimental temperatures, the

relative error is calculated for each thermocouple position used to perform the experi­

ment (Bennett, 1967). The local temperature prediction error is defined as:

error(i)[%] = W O ~ W O x 10Qj (4>1)

TEXPW

where Ts%m is the predicted local post-dryout temperature in °C and TExp is the experi­

mental temperature in °C. The subscript / refers to the axial position of the thermocou­

ple. The overall average error is expressed as:

Error[%] = ^ 1 ^ ^ x 100 (4.2)

and the standard deviation is:

Page 97: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

60

STD[%] = ^ [error^-Er^rl ^ ^ _

where N is the total number of data points for all experiments, i.e. number of degree of

freedom. The total error is calculated for both the fully developed and the developing

film boiling regions.

The experiments (Bennett, 1967) present steady state inside wall temperature distribu­

tions of a tube where CHF has been exceeded at thermocouple locations near the outlet.

As in Figure 1.10 (Guo, 1978), the steady-state temperature distribution shows an im­

portant temperature increase at the location where the heat flux corresponds to the local

CHF value. Downstream of this point, post-dryout conditions are encountered and the

temperature continues to increase, reaches a maximum temperature, and then decreases

gradually. The experimental maximum temperature locates between the developing film

boiling and the fully developed film boiling regions. Fully developed post-dryout tem­

perature is considered at positions downstream of the maximum temperature, and de­

veloping post-dryout temperature at upstream positions but downstream of the dryout

location. A total of 702 post-dryout data points have been assembled from the experi­

ment; 441 points in the fully developed region and 261 in the developing flow region.

The heat transfer coefficient is corrected using a modification factor accounting for the

developing flow effect. Consequently, the error in the developing flow region should be

interpreted as the sum of the correlation error and the uncertainty of the look-up table.

Page 98: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

61

Table 4.1 Wall Temperature Prediction Errors and Standard Deviations for the Heat-Flux-Based Methodology

Developing Flow Region Fully Developed Flow Region All Regions Maximum Wall Temperature

Value [%] Average Error Standard Deviation

-4.4 0.8 -2.1 -0.8

14.3 8.6 11.2 8.6

4.1.1 Heat Flux Based Methodology

Wall-temperature prediction errors using the heat-flux-based methodology are shown

for various film-boiling regions in Table 4.1. The film boiling look-up table slightly

overpredicts the fully developed wall temperature (or under predicts the fully developed

heat transfer coefficient), with an average error of 0.8% and standard deviation of 8.6%.

Experimental wall-temperature data at the developing flow region are underpredicted

with the heat-flux-based methodology (i.e., film-boiling look-up table and the developing-

flow factor) with an average error of -4.4% and a standard deviation of 14.3%. However,

the maximum wall temperature, often of interest in safety analyses, is predicted accu­

rately with an average error of -0.8% and standard deviation of 8.6%. This assessment

illustrates good prediction accuracy of the heat-flux-based methodology, which provides

accurate wall temperature predictions for the current database (overall average error of

-2.1% and standard deviation of 11.2% in wall-temperature predictions).

A detailed analysis is performed through comparing the predicted and experimental in­

side wall temperature distributions (Appendix IV.3). The predicted wall-temperature

distributions follow closely the experimental trends in both developing flow and fully

developed film boiling regions. Figure 4.1 compares wall-temperature profiles at mass

fluxes greater than 1000 kg/m2s for Runs 5249 and 5291.

Page 99: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

62

i- Experiment 5249: G=1356 kg/rrTs, P= 194 kW

o 0) i— 3

••-» (0

& E

8 CD t CO

o 0) _=> "S 0) Q.

E *—• o n> t 3

CO

650

600

550

500

450

400

350

300

250

650

600

550

500

450

400

350

300

250

-

1 Bennett

Simulation •

'+• + ^ t i

+

4"

i

i 4- 4 4-

1

4 1

+ +

1

4-1

--+

1

• +

+

I

-

-

1 2 3 4 5 Heated length [m]

i i- Experiment 5292: G=1966 kg/m2s, P= 233 kW

1 r Bennett 4

Simulation • -X-+-+ :-t+4,

h--•-+----+---=H-----f- •¥---+-- -+---.v- -±-

2 3 4 Heated length [m]

Figure 4.1 Wall Temperature Predictions Using a Heat Flux Based Methodology (Exper­iments 5249 and 5292)

Figure 4.2-i compares the temperature trends at the low mass flux (G « 1000 kg/m2s).

The experimental inside wall temperatures are overpredicted at the developing-flow re­

gion, but approach the predicted values at the fully developed region. Since the local

qualities are generally high at low mass fluxes, the developing-flow modification factor

may not be applicable for low powers, where the degree of vapour superheating is low

in the experimental conditions.

Figure 4.2-ii compares the temperature trends at the high mass flux (G > 2000 kg/m2s).

Page 100: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

63

The reversed trend has been observed with the experimental inside wall temperatures are

underpredicted at the developed-flow region. This is attributed to possibly high degree

of vapour superheating at high powers and low qualities, which has not been captured

with the developing-flow factor. The look-up table predicts closely fully developed wall

temperatures.

o <0 t_ 3 (5 I E B <D O (0

t 3

800

700

600

500

400

300

i- Experiment 5275: G=1030 kg/m'

i i i Bennett -t

Simulation

i i r

-s, P= 189

i

I + +

i

kW

i

+ + +

i

4--

-

-

1 2 3 4 5 Heated length [m]

ii- Experiment 5312: G=2536 kg/m2s, P= 257 kW

O o> 3 TO h_ d> Q. E B o (0 t 3

800

700

600

500

400

300

Bennett + Simulation

+ i->"+-H.

• 4--"" '-f" • • •+•' - -+- - 4-- - - - + • • - -+- - • • + . . . -+ - - -+ - - - 4, + 1 h -t-

I I I I L

0 1 2 3 4 5 6 Heated length [m]

Figure 4.2 Wall-Temperature Predictions Using a Heat Flux Based Methodology (Ex­periments 5275 and 5312)

Other comparisons of predicted and experimental temperature trends are shown in Ap­

pendix IV.3. Overall, predictions obtained with the heat flux based methodology are in

Page 101: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

64

Table 4.2 Wall Temperature Prediction Errors and Standard Deviations for the Temperature-Based Methodology

Developing Flow Region Fully Developed Flow Region All Regions Maximum Wall Temperature

Value [%] Average Error Standard Deviation

8.3 1.8 4.2 3.4

10.7 6.4 8.8 6.9

good agreement with the experimental data of Bennett et al. (Bennett, 1967). The pre­

diction accuracy of the developing flow factor is better for mass fluxes ranging between

1300 and 2000 kg/m2s than others.

4.1.2 Wall temperature-based Methodology

Similar simulations of wall temperatures are performed using a temperature-based method,

Prediction errors and standard deviations are shown in Table 4.2. The fully developed

post-dryout temperatures are predicted accurately with an average error of 1.8% and

a standard deviation of 6.4%. Wall temperatures at the developing flow region, how­

ever, are overpredicted with an average error of 8.3% and a standard deviation of 10.7%.

Hence, the developing flow modification factor has underpredicted the post-dryout heat

transfer coefficient at this region. Maximum temperatures along the tube are predicted

with an average error of 3.4% and a standard deviation of 6.9%. Combining developing

and fully developed regions, the experimental wall temperatures are predicted with an

overall average error of 4.2% and a standard deviation of 8.8%.

Figures presented in Appendix IV.3 (p. 158) show that at low mass fluxes (G < 2000

kg/m2) and powers (P < 250kW), the temperature increases drastically near the CHF

location. This behavior is shown in Figure 4.3 and is common for the data set used in

Page 102: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

65

this study. In many cases, however, (i.e., for G > 2000 kg/ms and P > 250 kW) the

developing flow temperatures are predicted quite well as shown in Figure 4.3-ii).

Experiment 5250: G=1356 kg/m2s, P= 202 kW

o <D k_ 3 ai i_ a> a. E m o •g 3

CO

o_ <D 3

(D a E B a> o CD

t 3

CO

650

600

550

500

450

400

350

300

250

650

600

550

500

450

400

350

300

250

Bennett t T-based

•+•-+-++++4,

• ++ + - ^

,' +

fF---4--' + - - T •+•---+----+••• 4---+----f-- 4 - • • ^ - - + - - - + I I I L_

1 2 3 4 5 Heated length [m]

i i- Experiment 5289: G=1953 kg/m2s, P= 213 kW

Bennett + T-based

+•'-+•• "+"""+"""+""' T - • • + • - 4 •--+--- 4- - - '4' - -4 H 4- 4- + -

I I I I |_

2 3 4 Heated length [m]

Figure 4.3 Experiments 5250 and 5289: Wall-Temperature Predictions Using a temperature-based Methodology

The steady-state algorithm uses the wall superheat to evaluate the heat transfer coeffi­

cient that is, in turn, used to calculate the wall temperature; an iterative procedure is

therefore required. The wall temperature is initially guessed and updated until conver­

gence is reached (i.e., typically better than 10~3). To examine the impact of initial guess

temperature on the prediction, several calculations are performed with different initial

Page 103: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

66

values. No impact on the final results has been observed. This result is attributed to

the smooth variation (i.e., the surface does not show any minimum points) of the heat

transfer coefficient in the temperature-based look-up table (Groeneveld, 2003 (2)).

Guo et al. (Guo, 1978) derived two separate correlations (one for high pressures and

the other for low pressures) for predicting the developing flow effect on film-boiling

heat transfer. Based on the test conditions covered in the experiment of Bennett et al.

(Bennett, 1967), the high-pressure correlation has been applied in the assessment. As

a sensitivity study, the low-pressure correlation (Equation 2.19) has been assessed sep­

arately for its prediction accuracy. Applying the low-pressure correlation together with

the film-boiling look-up table, the wall-temperature measurements are predicted with an

overall average error of 1.7% and a standard deviation of 8.0%. The maximum tem­

peratures are predicted with an average error of 0.3% and a standard deviation of 6.0%.

The assessment result seems to suggest that the low-pressure correlation provides better

prediction accuracy than the high-pressure correlation over the current database range.

This improvement is attributed mainly to the database used in generating the correlation

(which included a large number of low mass-flux data), which is representative to those

of Bennett etal. (Bennett, 1967).

4.1.3 Sensitivity Analysis of the Developing-Flow Modification Factor

The accuracy of the post-dryout surface temperature prediction strongly depends on the

developing-flow modification factor in both the heat-flux based and the wall-temperature-

based methodologies. An underprediction of the surface temperature for the heat flux

based methodology is attributed to the relatively smooth variation of the developing-

flow modification factor after the occurrence of CHF. Conversely, the overprediction of

the surface temperature for the wall temperature-based correlation is the result of a sharp

change of the developing-flow factor. A sensitivity analysis of the developing-flow mod-

Page 104: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

67

ification factor on the predicted wall temperature is therefore performed in this section.

4.1.3.1 Sensitivity of the Modification Factor

Figure 5.4-i shows the impact of ±10% change in developing-flow modification factors

for the heat-flux based and temperature-based correlations. An increase in developing-

flow modification factor tends to reduce the wall-temperature prediction error. The tem­

perature prediction is very sensitive to the modification factor in the temperature-based

methodology. A ±10% change in the developing-flow modification factor has led to

about ±20% change in prediction error for the temperature-based methodology while

the same variation has a smaller impact (less than ±10%) for the heat flux based method­

ology.

The modification factor can be re-optimized to improve the prediction accuracy. An op­

timized value can be found graphically in Figure 4.4. Prediction uncertainties of these

modification factors are attributed to the scatter among the developmental experimen­

tal database. In addition, these factors have been derived with reference to a specific

LUT version (Groeneveld, 2003 (2)), which has since been updated/revised with addi­

tional data and improved smoothing process. This would lead to increased prediction

uncertainty. Thus, further improvement of prediction accuracy is possible through re-

optimization of correlation coefficients together with any new released version of the

look-up table.

Page 105: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

68

i- Sensibility to the modification factor

-5 0 5 Modification factor variation [%]

10

i i - Sensibility to parameter a and c

—i r -

Q-based T-based

K4-. . .:.+_..

-10 -5 0 5 Parameter a variation [%]

10

iii- Sensibility to parameter b

I

-5 0 5 Parameter b variation [%]

Figure 4.4 Wall Temperature Sensitivity to the Modification Factor and to Parameters a and b

4.1.3.2 Sensitivity of Coefficients a and c and Exponent b

The sensitivity of the coefficients and the exponent in developing-flow modification fac­

tors (i.e., Equations and) to film-boiling temperature predictions is examined.

K, developing = 1 h nb

hfd 1 exp a

%th — XPO

(1 - xDO)Bo (4.4)

Page 106: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

69

R-developing , I u I -^P rifd \ tifd J

c(WSR-l)b (4.5)

Figure 4.4-ii shows the impact of ±10% change in coefficients a and c on the prediction

error of wall temperature. The impact of coefficient a variation in the heat-flux-based

methodology on the prediction error is much smaller than that of coefficient c variation

in the wall-temperature-based methodology. The overall variation in prediction error is

only 4% with varying coefficient a as compared to 12% with varying coefficient c over

for ±10%.

Figure 4.4-iii shows the impact of ±10% change in the exponent b on the prediction

error of wall temperature. The impact of varying exponent b on the prediction error is

relatively similar for the heat- flux based and the wall-temperature-based methodologies.

The overall variation in prediction error with varying exponent b is 10% for the heat-flux-

based methodology as compared to 15% for the wall-temperature-based methodology.

Based on the sensitivity assessment, the prediction accuracy of wall temperature depends

strongly on the optimization of coefficient c and exponent b in the wall-temperature-

based modification factor. Therefore, the size of the database and their range of flow

conditions would have a strong impact on the applicability of the wall-temperature-based

methodology as compared to the heat-flux-based methodology.

4.1.4 Critical Heat Flux Correction Factor

As illustrated previously, the uncertainty of critical-heat-flux correlation has a strong im­

pact on post-dryout wall-temperature predictions. The prediction accuracy of the CHF

look-up table has been assessed against the current experimental database. The assess-

Page 107: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

70

ment result is presented in Appendix IV. Tables IV. 1 shows that the critical heat flux in

the current database is generally overestimated using the CHF look-up table with an av­

erage error of 30.97% and a standard deviation of 34.66%. Improving the CHF look-up

table prediction accuracy is beyond the scope of this study. An adjustment factor has

been introduced to minimize the critical-heat-flux prediction uncertainty in the current

assessment. Overall, an average adjustment factor of 0.825 has been applied to align the

prediction from the CHF look-up table to the experimental point.

4.2 Improvements of the Temperature-Based Methodology

The assessment result has shown that the wall-temperature-based methodology overpre-

dicts the experimental wall temperatures and does not follow the experimental trend of

wall temperature at the developing-flow region. An improvement of the wall-temperature-

based developing-flow factor is proposed to reduce the prediction uncertainty and repre­

sent the experimental wall-temperature trend.

Two separate approaches are introduced to improve the temperature-based developing

flow modification factor. The simplest improvement is to re-optimize the coefficient c

and exponent b in Equation 3.6 using data of Bennett et al. (Bennett, 1967). This would

provide a better representation of the experimental film-boiling temperatures and allow

the examination of the wall-temperature-based methodology with minimal film-boiling

heat-transfer prediction uncertainty. The second approach takes into the account of the

influence of mass flux and quality on post-dryout heat transfer in the developing-flow re­

gion. This would further minimize the film-boiling heat-transfer prediction uncertainty.

In this section, all the coefficients were optimized using the data collected by Bennett et

al. (Bennett, 1967). The optimizations are performed by fitting the experimental value

of the developing flow modification factor {Knon_dimensional — h^DQ~£FD) as a function

Page 108: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

71

Table 4.3 Values and Fitting Errors of the Optimized Coefficients c and b Coefficient

c b

Optimized value -0.796432 0.561333

Error [%] 3.312 2.054

of the WSR ratio provided by the assessment code. Since the correlation presents an

exponential trend, a nonlinear least square method has to be implemented in order to

fit the coefficients and the GnuPlot's "fit" function was used to generate all the coeffi­

cients shown in this section. This function uses a nonlinear least-squares Marquandt-

Levenberg's algorithm.

4.2.1 Optimization of Coefficients c and b

The coefficient c and exponent b in the temperature-based developing-flow factor (i.e.,

Equation 4.5) have been re-optimized using the database of Bennett et al (Bennett, 1967).

The number of experimental data used in the re-optimization has been reduced to focus

mainly on the developing flow temperatures. In addition, some data with high CHF

prediction error have also been excluded to avoid propagation of the error to film-boiling

prediction uncertainty. Overall, the database applied in the re-optimization contains 195

experimental points at developing flow conditions.

Page 109: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

72

e.i

0.06

EHperinental values Best fit

M)Ji\, -h+H- i T H„ ,i„4.»

Figure 4.5 Best Fitting Function of the Experimental Knon_dimensianal

Table 4.3 lists the re-optimized values and associated prediction errors. Figure 4.5 com­

pares the re-optimized developing-flow factor against experimental values with respect

to the wall-superheat ratio. An assessment of the re-optimized developing-flow fac­

tor is performed against the database. The post-dryout wall temperatures are predicted

with an average error of -2.8% and a standard deviation of 12.6%. Despite the im­

provement in overall prediction accuracy, the revised developing flow factor remains

deviating from the experimental wall-temperature trend at some conditions. The revised

developing-flow factor provides improved prediction accuracy of wall temperatures at

low mass fluxes but not at high mass fluxes. Figure 4.6 compares predicted wall temper­

atures using the revised developing-flow factor against experimental values for two sets

of flow conditions. Therefore, additional parameters in the developing-flow factor may

be needed to improve the prediction accuracy further.

Page 110: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

73

i - Experiment 5250: G=1356 kg/m2s, P= 202 k W

O

_3 ro I— <D a. E a> o t 3

CO

o 1_

i— m Q. E 0)

8 3

CO

650

600

550

500

450

400

350

300

250

650

600

550

500

450

400

350

300

250

1 r Bennett +

T-based

H~, . .---•+-..+;H+++i

4- + - • • - + +

;+

I i +

1 2 3 4 5

Heated length [m]

i i - Experiment 5289: G=1953 kg/m2s, P= 213 k W

2 3 4

Heated length [m]

Bennett T-based -

:

~

i

+ i

i +

i

i - -+- - - -

i

i

+:'

i

-

-

-

Figure 4.6 Wall Temperature Predictions Using a temperature-based Methodology with the Optimized c and b Coefficients (Experiments 5250 and 5289)

4.2.2 Mass Flux and Quality Effect and Optimized Developing Flow Modification Factor

The dependency of flow parameters in the developing flow effect is examined to improve

the temperature-based developing flow factor. The examination focuses mainly on the

mass flux and quality effects.

Page 111: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

74

4.2.2.1 Mass Flux Effect

The assessment presented in Section 5.1 indicates a possible dependency in the developing-

flow effect on mass flux. To study this potential dependency, the experimental Knon-

dimensional (at developing-flow conditions) is examined in Figure 4.7 as a function of

the WSR ratio for different mass fluxes. The impact of mass flux on the developing-flow

factor is stronger at low mass fluxes than high mass fluxes. This is possibly attributed to

the increase in lift force at high mass fluxes decreasing the interaction between the heated

wall and entrained droplets (i.e., wet collisions). The heated wall temperature would in­

crease more rapidly approaching fully developed film-boiling conditions. Therefore, the

developing-flow factor tends to be small at higher mass fluxes, but large at low mass

fluxes.

-

-

-

-

1— r

D

H

*

' '

- — i — r —r - 1 1 TT— G = 1003.627 kg/m,s G = 1342.69 kg/m,s

G = 1953.004 kg/m,s G = 2549.75 - > 2576.88 kg/m,s

G = 5180.88 kg/m2s

»4* * -i

"J* \ * IK* * fc+ * + + 44-

• • • % # S) L: * * mm

i i i i i i

+ * D

* *

-

-

-

*

5 10 15 20 25 30 35 40 45 50 (WSR-1)

Figure 4.7 Experimental Developing-Flow Modification Factor vs (WSR-1)

Page 112: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

75

4.2.2.2 Thermodynamic Quality Effect

The thermodynamic quality variation appears strong on the developing flow effect. As

shown in Figure 4.8-i, the developing-flow factor varies systematically with the multi­

plication term of the over-wall-superheat ratio and thermodynamic quality (i.e., (WSR-

1) x) at various mass fluxes. Further consolidation is observed in Figure 4.8-ii when

the developing-flow factor is assessed against the multiplication term of the over-wall-

superheat ratio, mass flux, and thermodynamic quality (i.e., (WSR — 1) xG), which is

a possible correlation parameter for the developing-flow effect, i.e.,

Knon-dimensional = €Xp | c * [Gx (WSR - l)f* j . (4.6)

A dimensionless parameter is introduced to extend the application and the Reynolds

number of the vapor is selected to represent effects of mass flux and quality.

Page 113: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

76

i " Knon-dimensionai, tube v s [(WSR-1 )*x] for different mass fluxes

0.07

0.06

0.05

0.04 h

0.03

0.02

0.01

0

-0.01

G = 1003.627 kg/rr6s G = 1342.69 kg/rrCs

G = 1953.004 kg/m^s G = 2549.75 -> 2576.88 kg/m,s

G = 5180.88 kg/rr/s

4*K

A V ^ ^ • • % -

* * ** #+*

10 30 35 15 20 25

(WSR-1 )*x

• Knon-dimensional, tube v s [(WSR-1 )*x*G] for different mass fluxes

40

0.07

0.06

0.05 h

0.04

0.03

0.02

0.01

0 -

-0.01

• G = 1003.627 kg/m^s + G = 1342.69 kg/mjs *

G = 1953.004 kg/m^s • G = 2549.75 -> 2576.88 kg/m,s •

G = 5180.88 kg/nrs A

^ * «*«+a# * *

5000 10000 15000 20000 25000 30000 35000 40000 45000

[(WSR-1 )*x*G]

Figure 4.8 Experimental Developing-Flow Modification Factor vs (WSR — l)x and vs (WSR - l)xG

4.2.2.3 Revised Correlation Based on the Reynolds number

The Reynolds number of the vapor phase is the ratio of inertia forces over viscous forces

and, thus, may have an impact on the developing flow process. Also, it is expressed as

a function of tube diameter and hence is applicable to tubes of different diameters. The

Reynolds number of the vapor phase is defined as:

Rev = GVD

(4.7)

Page 114: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

77

where fiv is the viscosity of the vapor (constant in the assessment code and calculated at

saturation temperature) and D is the tube diameter. The mass flux of the vapor phase is

expressed as Gv = xG in a mixture model. The Reynolds number of the vapor phase is

also written as:

xGD Rev = . (4.8)

A possible form of the developing-flow factor is:

Knon-dimensional = <^Xp lc** [Rev (WSR - l ) ] 6 j . (4 .9)

Some attempts have been made to include the Reynolds number in the coefficient c

(or c**). Figure 4.9 shows the relation between (i) ln(Knon_dimensional) vs [(WSR -

l)xG] and (ii) •^ln(Knon^dimensionai) with the over-wall-superheat ratio (i.e., WSR -

1). If the Reynolds number could be included in the coefficient c (or c**), the graph of

-^ln(Knon-dimensionai) vs (WSR — 1) would present a more linear trend than the graph

of ln(Knon_dimensional) vs [(WSR - l)xG]. However, Figure 4.9 shows the opposite

behavior. Therefore, a separate c** coefficient is more appropriate than including it with

the Reynolds number. A fit of the developing-flow factor with the term (WSR — l)Rev

is performed using the database to optimize coefficients c** and b**. The optimized

coefficients are presented in Table 4.4 with their fitting errors.

Page 115: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

78

Table 4.4 Values and Fitting Errors of the Optimized Coefficients c** and b** Coefficient

c** b**

Optimized value -0.000761511

0.531791

Error [%] 18.10 2.14

j

i - InfKnon-dimensional, tube) V E [ (WSR-1 )* (X G)]

- V + i ln(K) '

- ^ ^ ^ ^

i

+ i i i i i

-

-2 -3 -4 -5 -6 -7 - 8

- 9

- 1 0

-11 5e+006

-0 .003

-0.004

-0 .005

-0.006

-0 .007

-0 .008

-0 .009

-0 .01

-0.011

-0 .012

1e+007 1.5e+007 2e+007 2.5e+007 3e+007 3.5e+007

[ (WSR-1 ) * ( x G ) ]

i i " InfKnon-dimensionaUubeVfX G) ^ [ (WSR-1) ]

- r ^ ln(K/xG)

_J Ij il l_ 10 15 20 25 30 35 40 45 50 55 60

[WSR-1 ]

Figure 4.9 (i)- K vs (WSR-1 )G and (ii)- K/(Gx) vs (WSR-1)

4.2.3 Revised Correlation Assessment

The revised developing-flow factor has been included in the code and assessed against

all experimental data. Prediction errors and standard deviations are listed in Table 4.5.

Comparisons of experimental and predicted temperature distributions are shown in Ap-

Page 116: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

79

Table 4.5 Errors for the Revised Correlation

Developing Flow Region

Fully Developed Flow Region

All Regions

Maximum Wall Temperature

Avg. Error [%] Std. Dev. [%] Avg. Error [%] Std. Dev. [%] Avg. Error [%] Std. Dev. [%] Avg. Error [%] Std. Dev. [%]

Correlation parameter (WSR-1) Reg(WSR-l)

8.3 10.7 1.8 6.4 4.2 8.8 3.4 6.9

-1.9 13.0 1.9 5.1 0.3 9.2 0.9 5.5

pendix V.2 for the two correlations.

The developing flow temperatures are predicted with an average error of -1.9% and a

standard deviation of 13.0% using the revised developing-flow factor. This represents

a significant improvement over the original developing-flow factor, which predicts the

wall temperature with an average error of 8.3% and a standard deviation of 10.7%. An

improvement has also been observed for the maximum wall temperature in the channel,

which has been predicted with an average error of 3.4% and a standard deviation of

6.9% using the original developing-flow factor and is now predicted with an average

error of 0.9% and a standard deviation of 5.5% using the revised factor. The change has

been focusing on the developing-flow region and hence the prediction accuracy of wall

temperature at the fully developed region has not been affected.

In addition to the improved overall prediction accuracy, the revised correlation provides

a better agreement with temperature variations at the developing flow region than the

original correlation for low and high mass fluxes. Figure 4.10 compares predicted tem­

peratures using the revised correlation against experimental temperatures for two sets of

flow conditions. Good agreement has been observed at both developing-flow and fully

developed regions.

Page 117: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

80

Despite the good prediction accuracy and improved parametric trend, further validation

of the revised correlation is suggested, because the revised correlation has been devel­

oped using a small database covering only one tube diameter in a single source. Assess­

ment against other databases would confirm the prediction accuracy and, if necessary,

extend the application of the revised developing-flow factor.

o,

ure

-•—»

CD Q.

F £ CD u m t 3

650 600

550

500 450 400

350

300 250

o CD 3

•+•»»

CD L _ CD Q .

E -«—• CD O CD

t Z3

V)

650

600

550

500

450

400

350

300

250

i- Experiment 5246: G=1356 kg/nTs, P= 180 kW

1 r Bennett +•

Simulation 4.+-H-,

I L -+--- + •--4.--:,:---4/---+---+-^- + -4

1 2 3 4 5

Heated length [m]

i i - Experiment 5293: G=1980 kg/m2s, P= 237 k W

Bennett + Simulation .+ -+-+-+.t_H.

h=--4--••+-•'^-'-+- • + - • M--—+••••+-

I +

2 3 4 Heated length [m]

Figure 4.10 Wall Temperature Predictions Using the Revised Correlation (Experiments 5246 and 5293)

Page 118: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

81

4.3 Validation of the Hypothesis

As mentioned in Chapter 3, the current assessment neglects the radiative heat transfer

and heat conduction, and focuses only on steady-state applications. This section exam­

ines the impacts of these simplifying hypotheses.

4.3.1 Radiative Heat Transfer

In the steady state assessment code presented in Chapter 3, the total heat flux, rather

than the convective heat flux, is used to determine the fully developed heat transfer co­

efficient from the look-up tables. The effect of this simplifying assumption is studied in

this section. Before being implemented in the assessment computer code, the radiative

heat transfer model (presented in Section 3.6) is tested first. Using this testing version,

radiative heat flux can be computed for a typical value of the total heat flux for the data

of Bennett et al. (Bennett, 1967). The ratio between the radiative heat flux and the total

heat flux is shown in Figure 4.11 for different void fractions. The power of 214 kW is

applied.

Page 119: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

82

0.07

S 0.05 h

§ °0 4

0.03

300

x=0.50 x=0.75 x=0.95

600 700

wall Temperature [C]

800 900 1000

Figure 4.11 Radiation Heat Flux Ratio of for Different Void Fractions

Figure 4.11 shows that, for a typical wall temperature of 600° C under post-dryout con­

ditions and void fractions between 0.5 and 0.95, the ratio between the radiative heat

transfer and the total heat transfer is less than 2%.

The radiative heat transfer model has been implemented in the assessment code pre­

sented in Chapter 3. Appendix III.2 presents the source code of this radiation heat trans­

fer model. Some errors have been defined in order to study the impact of neglecting

radiation heat transfer:

• • The average radiation heat flux ratio in post-dryout conditions is defined as:

Qrad\

Qtot I poo

E i = 1 ( Qrad N \ atnt Qtot

N (4.10)

Page 120: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

83

where N is the total number of experimental data points.

• The error on wall temperature resulting form neglecting radiation heat transfer is

defined as:

T-I rp J-w ~ -LwRad //i i i\

ErrTwRad = — , (4.11) J-wRad

where Tw the predicted wall temperature without radiative heat transfer while

TWRad TwRad is the predicted wall temperature including the radiative heat trans­

fer.

• Finally, the average error in wall-temperature prediction with and without radiative

heat transfer is calculated with:

^—•!• r m rji

^w •* wRad (ErrTwRad) = — ^ N

N T, wRad

(4.12)

Table 4.6 lists prediction errors in wall temperatures with and without radiative heat

transfer for both heat-flux based and temperature-based methodologies. These errors

could be generalized as the impact of radiation heat transfer in post dryout conditions

since they are restricted to the wall temperature predictions as computed by the assess­

ment computer code presented in Chapter 3. Table 4.6 shows a small average error of

1.3% and maximum error of 3% while the {ErrTWrad) errors are smaller than 0.2%.

According to these results, the radiation heat transfer is negligible in the assessment

within the flow conditions of its data base (i.e. Bennett et al. (Bennett, 1967)).

4.3.2 Conduction Heat Transfer and Transient Calculation Scheme

The temperature-based methodology was developed to be implemented in transient cal­

culation schemes. Such calculations involve solving the heat conduction equation and

going through the different heat transfer stages of the boiling curve (see Figure 1.1).

Page 121: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

84

Table 4.6 Errors Resulting From Neglecting Radiative Heat Transfer

Q-based

T-based

Qrad qtot max

3.0

3.0

Value [%] /Qrad \

\ qtot 1pno

1.27

1.25

(ErrTsRad)

0.09

0.20

For instance, a transient calculation scheme would simulate steady state experiments

in tubes, such as Bennett experiments (Bennett, 1967), by applying a fixed power as

the external surface boundary condition. Heat is generated through the tube (by Joules

effect) and heat conduction would be computed. Finally, the remaining internal wall

temperature would be used in the heat transfer coefficient calculation. The applicabil­

ity of a temperature-based methodology could therefore depends on its sensitivity to

thermal inertia, CHF predictions, heat transfer coefficient predictions in the transition

boiling region, the minimum film boiling temperature prediction, etc. This concern is

studied qualitatively in Appendix II where the results were obtained using the transient

thermalhydraulics computer code CATHENA (Hanna, 1998). The reader is referred to

this appendix for further details.

The results presented in Appendix II does not allow the applicability of a method based

on the wall temperature in a transient calculation scheme to be validated; only an as­

sessment of this method using transient experimental data could help in answering this

concern. However, the sensitivity analysis presented in the appendix shows that, even if

the evolution of the wall temperature during the transient is indeed affected by thermal

inertia, the prediction of the heat transfer coefficient in the transition boiling region and

the prediction of the Tmin converges to almost the same final steady-state film boiling

calculated value. It is also observed that the CHF uncertainty affects the maximum wall

temperature but the film boiling predictions are unchanged. It remains unclear, how-

Page 122: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

85

ever, when the developing flow conditions modification factor should be used to perform

transient calculations since it could possibly induce non conservative or underpredicted

wall temperatures. The axial heat transfer could also have a possible impact on the film

boiling predictions.

Page 123: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

86

CONCLUSION

This thesis presents the assessment result of film-boiling heat-transfer prediction meth­

ods (i.e., the heat-flux based and the wall-temperature-based methodologies) against ex­

perimental wall-temperature measurements at steady-state conditions. The assessment

has shown that the wall temperature in the fully developed region is predicted accu­

rately using both methodologies and that these two methodologies can be implemented

in steady-state computer code calculations. It was also shown that the radiative heat

transfer component can be neglected within the temperatures and flow conditions used

to perform the assessment.

Despite the accurate fully developed film boiling predictions, the assessment has shown

that the temperature-based methodology slightly overpredicts the maximum wall tem­

perature and the wall temperature in the developing film boiling region. Furthermore,

the predicted temperatures do not follow closely the experimental trend in the developing

film boiling region.

Based on the assessment results, the temperature-based methodology has been revised

to reduce the prediction uncertainty and improve the parametric trend. The experimental

temperature increase has been examined in the developing film boiling region. The

temperature rises drastically at the CHF point for low mass fluxes but gradually for high

mass fluxes. In addition to the mass flux effect, the quality appears to have a strong effect

on the developing film-boiling heat-transfer coefficient.

Consequently, the Reynolds number of the vapor phase has been included in the modifi­

cation factor and the coefficients of the revised correlation are optimized using the data

of Bennett et al. (Bennett, 1967). An assessment of the revised correlation against the

database showed an improvement in surface-temperature prediction accuracy. Due to

the limited database applied in this study, validation of the revised correlation is recom-

Page 124: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

87

mended against experimental data covering a wider range of flow conditions.

A sensitivity analysis of the effect of thermal-inertia and other parameters of interest on

steady-state film-boiling heat transfer has been performed. The effect has no apparent

impact on the wall-temperature prediction. This alleviates one of the concerns to apply

the proposed methodology, based on the steady-state data, in transient calculations. Nev­

ertheless, further validation of the methodology against transient data is recommended.

Page 125: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

88

REFERENCES

AURACHER, H., 1990, "Transition Boiling", Proc. 9th Intertional Heat Transfer Con­

ference, Jerusalem, p.69-90.

BANKOFF, S.G., and MEHRA, V.S., 1962, "A Quenching Treory for Transition Boil­

ing", Ind. Eng. Chem. Fund., p.38-40.

BECKER, K.M., LING, C.H., HEELBERG, S., STRAND, G., 1983, "An experimental

investigation of post-dryout heat transfer", KTH-NEL-33, Sweden.

BENNETT, A.W., HEWITT, G.F., KEARSEY, H.A., KEEYS, R.K.F., 1967, "Heat

transfer to steam-water mixtures flowing in uniformly heated tubes in which the criti­

cal heat flux has been exceeded", United Kingdom Atomic Energy Energy Authority,

AERE-R-5373.

BERGLES, E.A., COLLIER, J.G., DELHAYE, J.M., HEWITT, G.F., MAWINGER,

R, 1981, "Two-Phase Flow and Heat Transfer in the Power and Process Industries",

Hemisphere Publishing Corporation.

BJORNARD, T.A., GRIFFITH, P., 1977, "PWR blowdown heat transfer", Proceed­

ings ASME, Symposium on the Thermal Hydaulic Aspects of Nuclear Reactor Safety,

Atlanta Georgia, p. 17-41.

BEUTHE, T.B., HANNA, B.N., 2005, "CATHENA MOD-3.5d Theory Manual",

AECL document, 153-112020-STM-001, Revision 0.

CHEN, J.C., 1963, "A Correlation for Boiling Heat Transfer to Saturated Fluids in

Convective Flow", Paper ASME 63-HT-34, p.267-272.

Chen, J.C., SUNDARAM, R.K., OZKAYANAK, F.T., 1977, "A Phenomenological

Correlation for Post-CHF Heat Transfer", NUREG-0237.

Page 126: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

89

Chen, J.C., OZKAYANAK, F.T., SUNDARAM, R.K., 1979, "Vapor Heat Transfer in

Post-CHF Region Including the Effect of Thermodynamic Non-Equilibrium", Nucl.

Eng. Design, volume 51, p.143-155.

COLLIER, J.G.„ "Heat Transfer in the Postburnout Region and During Quenching and

Reflooding".

COLLIER, J.G., 1981, "Nuclear Reactor Safety Heat Transfer, Chapter 7: Single- and

Two-phase Heat Transfer", Ed. Owen C. Jones, Jr., Department of Nuclear Energy

Brookhaven National Laboratory.

COLLIER, J.G., THOME, J.R., 1994, "Convective Boiling and Condensation, 3 ed.",

Oxford Science Publications, Great Britain.

CORRADINI, M.L., "Fundamentals of Multiphase Flow", Department of Engineer­

ing Physics, University of Wisconsin, Madison WI 53706 (disponible online at:

http://wins.engr.wisc.edu/teaching/mpfBook/main.html).

CUMO, M., FARELLO, G.E., 1967, "Heated Wall Droplet Interaction for Two Phase

Flow Heat Transfer in Liquid Deficient Region", Proceedings Symposium on Two

Phase Flow dynamics, Eindhoven, volume 2, p.1325-1357.

DENN, D., 1966, "An Outline of the Characteristics and Construction of the Data Ac­

quisition System Used on the Harwell High Pressure Steam/Water Loop", United King­

dom Atomic Energy Energy Authority, AERE-R-5128.

DOUGALL, R.S., ROHSENOW, W.M., 1963, "Film Boiling on the Inside of Vertical

Tubes with Upward Flow of Fluid at Low Qualities", MIT Report Number 9079 26,

Cambridge, Massachusetts.

DITTUS, F.W., BOELTER, L.M.K., 1930, "Heat Transfer in Automobile Radiators of

the Tubular Type", University of California Publications, vol. 2, No. 13, pp. 443-461.

Page 127: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

90

GIRARD, R., and HANNA, B., LEUNG, L.K.H., 2004, "CATHENA New Post-Dryout

Heat Transfer Methodology", Proc. 6th Int. Conf. on Simulation Methods in Nuclear

Engineering, Montreal, Quebec, Canada.

GUO, Y., and LEUNG, L.K.H., 2005, "Correlations for Developing Film Boiling Ef­

fect in Tubes", Proc. 11th Topical Meeting on Nuclear Reactor Thermal-Hydraulics

(NURETH-11), Avignon, France.

GUO, Y., LEUNG, L.K.H., VASIC, A., 2007, "An Update to The Multitasking Ther-

malhydraulics Evaluation Package", Proceedings of the CNS 28th Annual Conference.

GROENEVELD, D.C., 1972, "The Thermal Behavior of a Heated Surface and Beyond

Dryout", Faculty of Graduate Studies of the University of Western Ontario, AECL-

4309, Chalk River.

GROENEVELD, D.C., 1973, "Post-dryout heat transfer at reactor operating condi­

tions", AECL-4513, Nat. Topical Meeting on Water Reactor Safety, ANS, Salt Lake

City.

GROENEVELD, D.C., DELORME, G.G.J., 1976, "Prediction of Thermal Non-

equilibrium in the Post-Dryout Regime", Nuclear Engineering and design, volume 36,

p.17-26.

GROENEVELD, D.C., FUNG, K.K., 1976, "Forced Convective Transition Boiling -

Review of Litterature and Comparison of Prediction Methods", AECL-5543.

GROENEVELD, D.C., SNOEK, C.W., 1986, "A Comprehensive Examination Heat

Transfer Correlations Suitable for Reactor Safety Analysis", Multiphase Science and

Technology, Hewitt, G.F. et al. eds., chapter 3, p.181-271.

GROENEVELD, D.C., 1988, "Recent Developments in Thermalhydraulic Prediction

Methods", International Topical Meeting on Thermalhydraulics and Nuclear Reactors,

Seoul, Rep. of Korea.

Page 128: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

91

GROENEVELD, D.C., LEUNG, L.K.H., KIRILLOV, P.L., BOBKOV, V.P., SMO-

GALEV, LP., VINOGRADOV, V.N., HUANG, X.C., ROYER, E., 1996, "The 1995

Look-Up Table for Critical Heat Flux in Tubes", Nuclear Engineering and Design, Vol­

ume 163, No. l-2p.l-23.

GROENEVELD, D.C., LEUNG, L.K.H., VASIC, A.Z., Guo, Y.J., Cheng, S.C., 2003,

"A Look-up Table For Fully Developed Film-Boiling Heat Transfer", Nuclear Engi­

neering and Design, volume 225, p.82-97.

GROENEVELD, D.C., LEUNG, L.K.H., Guo, Y.J, VASIC, A.Z.., El NAKLA, M.,

PENG, S.W., Cheng, S.C., 2003, "Look-Up Tables for Predicting CHF and Film-

Boiling Heat Transfer: Past, Present and Future", Proc. 10th Topical Meeting on Nu­

clear Reactor Thermal-Hydraulic, Seoul, Korea.

GROENEVELD, D.C., SHAN, J.Q., VASIC, A.Z., LEUNG, L.K.H., DURMAYAZ, A.,

YANG, J., CHENG, S.C. and TANASE, A., "The 2006 CHF Look-Up Table",Miclear

Engineering and Design, Volume 237, No. 15-17, pp. 1909-1922.

HADALLER, G.I., BANERJEE, S., 1969, " Heat Transfer to Superheated Steam in

Round Tubes", AECL, WDI-147.

HANNA, B., 1998, "CATHENA: A Thermalhydraulic Code for CANDU Analysis",

Nuclear Engineering and Desing, p. 113-131.

HEWITT, G.F., SHIRES, G.L., BOTT, T.R., 1994, "Process Heat Transfer", CRC Press

LLC.

HEWITT, G.F., 1978, "Critical Heaf Flux in Flow Boiling", Proc. 6th Int. Heat Transfer

Conference, Toronto, Canada, Vol 6. pp. 143-171.

KARLEKAR, B. V, DESMOND, R. M., 1985, "Transferencia de calor, 2da edicion",

traduced in Spanish by A. G. Martinez, Mexico D.F., Mexico.

Page 129: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

92

KASTNER, W., KOHLER, W., KRATZER, W., HEIN, D., 1981 "Warmeubergang im

Post Dryout-Bereich in Vertikalen und Horizontalen Rohren bei Gleichformiger Be-

heizung ", KWU-Abschlussbericht zum Forderungsvorhaben BMFTET1409 A.

KIRILLOV, P.L., and GROENEVELD, D.C.,"General Film Boiling Heat Transfer Pre­

diction Methods For Advanced Water Cooled Reactors", IPPE, Russia and AECL,

Canada.

KIRILLOV, P.L., SMOGALEV, LP., IVACSHKEVITCH, A.A., VINOGRADOV, V.N.,

SUDNITSINA, M.O., MITROFANOVA, T.V., 1996, "The Look-Up Table for Heat

Transfer Coefficient in Post-Dryout Region forfater flowing in tubes (the 1996-

version)", Preprint FEI-2525, Institute of Physics and Power Engineering, Obninsk,

Russia.

KREITH, F. editor, 2000, "The CRC Handbook of Thermal Engineering", CRC Press

LLC.

KOHLER, W., HEIN, D., 1986, "Influence of the Wetting State of a Heated Surface on

Heat Transfer and Pressure Loss in an Evaporator Tube ", Report NUREG/IA-0003.

KOLEV, N., 2002, "Multiphase Flow Dynamics, Mechanical and Thermal Interac­

tions", Springer-Verlag, Berlin Heidelberg, Germany.

KONKOV, A.S., ZUPERMAN, D.A., 1967, "Experimental study of heat transfer to wet

steam"Teploenergetika, vol. 14, No. 3, pp. 54-56 (in Russian), Thermal Engineering,

pp. 73-75 (English translation).

KUTATELADZE, S.S., BORISHANSKY, V.M., 1953 "Heat Transfer to Liquid Freely

Flowing over a Surface Heated to a Temperature above the Boiling Point", Problems of

Heat Transfer during a Change of State: A collection of Articles, AEC-tr-3405, p.109.

LECKNER, B., 1972, "Spectral and Total Emissivity of Water Vapor and Carbon Diox­

ide", Combustion and Flame, VOL.19, p.22-48.

Page 130: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

93

LEUNG, L.K.H., 1994, "A Model for Predicting the Pressure Gradient Along a Heated

Channel During Flow Boiling", Ph.D. thesis, University of Ottawa, Ottawa, Canada.

LEUNG, L.K.H., RUDZINSKI, K.F., VERMA, B., GROENEVELD, D.C., VASIC,

A 1999, "Thermalhydraulics Evaluation Package (TEP V3.0) - A User-friendly Soft­

ware Package for Evaluating Thermalhydraulics Parameters in Tubes and Bundles",

Proceedings of the 9th International Topical Meeting on Nuclear Reactor Thermal-

Hydraulics (NURETH-9).

LEUNG, L.K.H., GROENEVELD, D.C., CHENG, S.C., 2002, "Separate Effects on

Film-Boiling Heat Transfer", Proc. 12th Int. Heat Transfer Conference, Grenoble,

France.

LEUNG, L.K.H., GROENEVELD, D.C., ZHANG, J., 2005, "Prediction of the obstacle

effect on film-boiling heat transfer", Nuclear Engineering and Design, volume 235,

p.687-700.

MATTSON, R.J., and CONDIE, K.G., BENGSTON, S.J., OBENCHAIN, C.F., 1974,

"Regression analysis of post-CHF flow boiling data", Paper B3.8, 4, Proc. of 5th Inter­

national Heat Transfer Conference, Tokyo.

MCDONOUGH, J.B., and MILICH, W., KING, E.C, 1960, "AICHE Preprint no. 29",

4th US National Heat Transfer Conference.

MIROPOLSKIY, Z.L. 1963, "Heat Transfer at Film Boiling Steam-Water Mixture in

Tubes", Keploenergetika, volume 5, p.49-52.

NAKLA, E., CHENG, S.c, GROENEVELD, D.C., 2004, "Improvements of Prediction

Accuracy. Parametric Trends and Smoothness of the Film Boiling Look-Up Tables at

ACR Conditions of Interest", Technical Report of University of Ottawa, UO-MCG-TH-

2004-001.

Page 131: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

94

NIJHAWAN, S., 1980, "Experimental Investigation of Thermal Non-Equilibrium in

Post-Dryout Steam-Water Flow ", Ph.D. Theses, Lehigh University.

NISHIKAWA, K., YOSHIDA, S., MORI, H., TAKAMATSU, H., 1986, "PDO Heat

Transfer to Freon in a Vertical Tube at High Subcritical Pressure", J. of heat Transfer,

volume 29, p. 1245-1251.

PELLETIER, E.-L., LEUNG, L.K.H., GIRARD, R., TEYSSEDOU, A., VARIN, E.,

2007, "Comparison of Heat-Flux and Wall-Temperature Based Correlations for Pre­

dicting Post-Dryout Surface Temperature in Tubes", 28th Annual Conference of the

Canadian Nuclear Society, Saint John, New Brunswick, Canada.

PLUMMER, D.N., GRIFFITH, P., ROHSENOW, W.M., 1976, "Post-Critical Heat

Transfer to Flowing Liquid in a Vertical Tube", 16th National Heat Transfer Confer­

ence, 76-CSME/CSCh-13, St-Louis.

RAMU, K., and WEISMAN, J., 1974, "A method for the correlation of transition boil­

ing heat transfer data", Paper B4.4, 4, Proc. of 5th International Heat Transfer Confer­

ence, Tokyo.

SAHA,R, 1980, "A Non-equilibrium Heat Transfer Model for Dispersed Droplet Post

Dryout Regime", Int. J. Heat Mass Transfer, volume 23, p.383-492.

SAHA, P. and N. ZUBER, 1974, "Point of Net Vapor Generation and Vapor Void Frac­

tion in Subcooled Boiling", Proc. Fifth International Heat Transfer Conference, Tokyo,

IV, p. 175-179.

SEIDER, E.N., TATE,E., 1936, "Heat Transfer and Pressure Drop of Liquids in Tubes",

Industrial Engineering Chemistry, Volume 28: p. 1429.

SERGEEV, V.V., GALCHENKO, E.F., REMIZOV, O.V, 1985, "Engineering Method

of Design PDO Heat Transfer", Institute of Physics and Power Engineering, Reprint

FEI-1649, Obninsk, Russia.

Page 132: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

95

SLAUGHTERBACK, D.C., and YBARRONDO, L.J., OBENCHAIN, C.F., 1973,

"Flow film boiling heat transfer correlations - parametric stydy with data comparison",

ASME-AICHE Heat Transfer. Conference, Atlanta

SUBBOTIN, V.I., REMIZOV, O.V., VOROBIEV, V.A., 1973, " Temperature Regimes

and Heat Transfer in the Region of Degraded Heat Transfer", IPPE Institute, J., TVT,

11,6,73.

TONG, L.S., 1967, "Heat transfer in water-cooled nuclear reactors", Nuclear Engineer­

ing and Design, 6, 301.

TONG, L.S., and YOUNG, J.D., 1978, "A phenomenological transition and film boil­

ing heat transfer correlation", Paper B3.9, 4, Proc. of 5th International Heat Transfer

Conference, Tokyo.

TONG, L. S., and TANG, Y. S., 1997, "Boiling Heat Transfer and Two-Phase Flow,

2nd edition", Taylor and Francis editions, United States of America.

VARONE, Jr.A.E, ROHSENOW, W.M., 1986, "Post-Dryout Heat Transfer Predictions

, Nuclear Engineering Design, p.315-317.

VARONE, Jr.A.E, RAHSENOW, W.M. 1990, "The Influence of the Dispersed Flow

Film Boiling", Heat Transfer Lab, Massachusetts Institute of Technology, Cambridge,

MIT Rep. 71999-106.

VASIC, A.Z., GROENEVELD, D.C., LEUNG, L.K.H., GUO, Y.J., CHENG, S.C.,

2001, "Post-CHF heat transfer in water-cooled tubes: Compilation of world Data",

International Journal of Experimental Methods in Heat Transfer, Thermodynamics and

Fluid Mechanisms.

WEISMAN, J., PEI, B.S., 1983, "Prediction of critical heat flux in flow boiling at low

qualities", Int. J. Heat Mass Transfer, Volume 26, pp. 1463-1477.

Page 133: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

96

WINTERTON, R.S., "Transition Boiling", AEEW-R1567.

OTHER REFERENCES:

Commercial data. Available at: www.alloywire.com

Commercial data. Available at: www.espi-metals.com

Wolverint Tube, Inc., "Engineering Data Book III", (available online)

Page 134: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

97

APPENDIX I

INTRODUCTION TO HEAT TRANSFER MECHANISMS AND RADIATIVE HEAT TRANSFER

This appendix presents a short overview three different heat transfer mechanisms: con­

ductive, convective and radiative heat transfer. Complements on radiative heat transfer

are also introduced before presenting the radiative heat transfer model implemented in

the assessment computer code.

1.1 General Heat Transfer Mechanisms

Descriptions of the three heat transfer modes are presented in this section. Specific

equations useful for the assessment are also derived.

1.1.1 Conductive Heat Transfer

Conduction is the heat transfer propagation mode encountered mainely in solids. The

velocity of the heat transfer is a function of the material and is expressed as a function

of a macroscopic coefficient, the thermal conductivity, k.

The heat conduction equation can be expressed as:

-> -^ dT V-g" +q"' = pcth — . (1.1)

where p is the density (in kg/m3) of the material, cth, its thermal conductivity (in

J/kg°C) and T, the local temperature (in °C). The term q'" is the heat generation within

Page 135: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

98

the material (in W/m3) while the right hand side of Equation 1.1 represents the heat

accumulation within the material. Finally, q" is the heat flux (in W/m2) defined as the

heat, Q (in W), devided by the heated area, A (in m2). This component can be related to

the spatial temperature variation using Fourier's law defined as:

q"= -k V T. (1.2)

Substitution of Equation 1.2 into Equation 1.1 gives the general conduction equation

based on the temperature:

-V.(lVT)+^ = M (1.3)

The above equation, used with the appropriate system of coordinates and boundary con­

ditions, permits the temperature distribution in any conduction heat transfer problem to

be calculated.

1.1.1.1 Conduction Through a Uniformly Heated Tube

The assessment work presented in this thesis studies temperature distributions in a uni­

formly heated tube under post-dryout conditions. Uniformly heated tubes are usually

obtained by applying an electric potential along the heated length of the tube resulting in

heat generation (q'" in Equations 1.1 and 1.3) through the tube by Joules effect. In such

experiments, the external surface (r = rext) is isolated and the internal surface (r = rint)

is cooled by a fluid. Therefore, the boundary conditions are:

= 0 (1.4) r=rext

dT dr

Page 136: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

99

and

&T = h{Tw-Tsat). (1.5)

r=rint dr

In steady-state conditions, the conduction equation can be written as follows

(fc V T) = -</". (1.6)

In cylindrical coordinate with negligible conduction in the axial direction and having

angular (8 direction) symmetry, the equation simplifies to:

where r is the radial direction.

4?+*£__,» (I.7) orz r or

The stady-state temperature distribution can be calculated using Fourier's Equation 1.2

or Equation 1.7. Once a stady-state temperature distribution is reached with an external

thermally insulated boundary, the applied power is entirely transferred to the coolant.

This property was used in the assessment code presented in Chapter 3 where the heat flux

was constant and taken as the ratio between the applied power and the area presented to

the fluid.

Transient conditions implies a more complex temperature distribution obtained by solv­

ing Equation 1.3. This distribution is more conveniently solved numerically. For very

thin tube thicknesses or materials with a very high thermal conductivity, however, the

heat conduction trough the heated material seems instantaneous and thermal inertia can

be neglected. This simplification could be made for Bennett's experiments (Bennett,

Page 137: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

100

1967). It remains unclear, however, if transient heat conduction trough the heated ma­

terial (or thermal inertia) could have an impact on the post-dryout predictions. This

concern is studied in Appendix II.

1.1.2 Convective Heat Transfer

Heat convection defines the heat transfered from a body to a fluid. Natural convection is

considered for nil or low fluid velocities. In these case, temperature gradients are formed

within the fluid causing density changes. These changes of density are responsible for

the relative motion between the liquid and the body. Natural convection is outside of

the scope of this project and is not presented in this document. As the fluid velocity

increases, the velocities due to density changes become insignificant. In these cases,

forced convective heat transfer is considered and is presented in this section.

By extension to conduction heat transfer, Prandtl introduced the thermal boundary layer

in the fluid (at the interface between the solid and the liquid) of a thickness S and in

which all the thermal resistance is localized. The thermal boundary layer concept is

used to define the heat transfer coefficient. Defining the wall temperature as Tw and the

bulk fluid temperature as Tb, the heat flux from the wall to the fluid can be estimated

using Fourier's law:

q" = =f (Tb - Tw) (1.8)

Since 8 cannot be estimated independently, it is combined with A; in a single number,

h, defined as the heat transfer coefficient. This coefficient gives the velocity of the

heat transfer and is expressed in W/°Cm2. The heat flux can then be calculated using

Newton's law:

Page 138: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

101

J' = h(Tw-Tb) (1.9)

1.1.3 Convective Heat Transfer

Heat convection defines the heat transferee! from a body to a fluid. Natural convection is

considered for nil or low fluid velocities. In these case, temperature gradients are formed

within the fluid causing density changes. These changes of density are responsible for

the relative motion between the liquid and the body. Natural convection is outside of

the scope of this project and is not presented in this document. As the fluid velocity

increases, the velocities due to density changes become insignificant. In these cases,

forced convective heat transfer is considered and is presented in this section.

By extension to conduction heat transfer, Prandtl introduced the thermal boundary layer

in the fluid (at the interface between the solid and the liquid) of a thickness S and in

which all the thermal resistance is localized. The thermal boundary layer concept is

used to define the heat transfer coefficient. Defining the wall temperature as Tw and the

bulk fluid temperature as Tb, the heat flux from the wall to the fluid can be estimated

using Fourier's law:

q" = ^(Tb-Tw) (1.10)

Since <5 cannot be estimated independently, it is combined with A; in a single number,

h, defined as the heat transfer coefficient. This coefficient gives the velocity of the

heat transfer and is expressed in W/°Cm2. The heat flux can then be calculated using

Newton's law:

Page 139: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

102

q" = h(Tw-Tb) (1.11)

1.1.4 Radiative Heat Transfer

Thermal radiation results from the emission of electromagnetic waves from a heated

body to a colder one. Radiation heat transfer is usually negligible when compared to a

direct interaction (i.e. conduction and convection) and is generally not taken into account

in common heat transfer problems. However, in some high temperature applications

and without contacts between the heated wall and the liquid phase (such as post-dryout

conditions), radiation may be important. This section therefore presents some radiation

concepts.

1. Black-Body, Gray-Body and Stefan-Boltzmann's Law: An ideal emitting body

is defined as a black body and emits its energy according to Stefan-Boltzmann's

law:

eb.b. = (VSB)TA (1.12)

where e^.b. is the power density of the black body (the total energy emitted per

units of area and time), <7SB is the Stefan-Boltzmann's constant (<JSB = 5.66 x

lO~8W/m2K4) and T is the temperature of the black body (in K). A black body

is characterized by the fact that at any given temperature, its power density is the

maximum value of any body at the same temperature. The black body is an ideal

concept and the power density of a real body at a given temperature is only a

fraction of the power density of a black body at the same temperature. A fraction

between these two powers is defined as the emissivity, £, which is function of the

material and has a value between 0 and 1. The emissive power of a body is then

Page 140: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

103

given by the following equation:

eg.b. = ieh.h. = Z((JSB)TA (1.13)

2. Form Factors:

The form factor, Fj_j, is defined as the fraction of the radiation energy emitted by

a surface i that will reach the surface j . The form factors are based on geometric

characteristics. Two relationships are of a great interest.

The first, the Sum Relation, states that all the radiation emitted in a closed surface

of N internal faces will be absorbed within it. We therefore have:

N

J2^m-n = U(m=l,2,...,n) (1.14) n=l

The second is the Reciprocity Relation and relates the form factor to the area with:

•A-m-Tm—n = •^n-^n—ra (•*•. 1 3 )

3. Radiation Properties of a Surface

The most important radiation properties of a surface are:

• Irradiation

The irradiation, T, of a surface i is defined as the energy incident on the

surface from any other surface. This irradiation will be absorbed, reflected

or transmitted, hence:

r = aF + (3T + rr (1.16)

Page 141: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

104

were a is the absorptivity, (5 is the reflectivity and r the transmitivity. These

quantities are defined in such a way that:

a+0+T=1

The concept of the gray body supposes that all the energy going through the

body is absorbed and entirely re-emitted.

• Radiocivity

The radiocivity, J, of a surface is often considered uniform on the surface.

It is defined as the outgoing energy form the surface and it is the sum of the

reflected and emitted energies:

J = /3T + e (1.17)

• Radiative Heat Loss

Finally, the difference between the radiocivity and the irradiation of a surface

is defined as its radiative heat loss:

Qrad = Aqrad = A{J-T) (1.18)

1.2 Complement on Radiative Heat Transfer

Before presenting the radiative heat transfer model implemented in the assessment code,

a complement on this topic is presented in this section.

Page 142: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

105

1.2.1 Radiative Exchange Between Two Gray Bodies

We consider a gray body (surface 1) surrounded by another gray body (surface 2) The

two surfaces are separated by a non-participating gas. In this case, the net radiation can

be written as:

Q2 = A2F2_1(J2-J1), (1.19)

Qx = A F ! _ 2 (J, - J2) = - Q 2 . (1.20)

Using Equation (1.17) for surface 1, we have:

ri = Jl~fieb\ (i.2i) P:

^ = Jl-Tl = Jl-J^±. (1.22)

Since p\ = 1 — a.\ — 1 — £i for an opaque gray body we can write:

Qi = eJT=^, (1-23) &A

Q2 = ^ = A (1-24) i2A2

Equation 1.20 can therefore be re-written as:

6-^ = AlFl.2 (J, - J2) = - ^ p . (1.25)

This latest equation can be analyzed as follows:

Page 143: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

106

(efci — Ji), (Ji — J2) and (J2 — eb2) can be considered as equivalent electrical po­

tentials,

T~A~ ) ' ( A F - ) anc* (fel l ) c a n ^ e considered as electrical resistances

• Qi and Q2 can be considered as current passing through resistances 1 and 2

' U

With these analogies, the heat-transfer system can be represented as the equivalent elec­

tric circuit illustrated in Figure 1.1 where:

Ri = I^>R^ = Mkr2™*R2 = wM-

Jl J2

— JXI R l _ 2 rv-i —

Figure 1.1 Two Gray Bodies Equivalent Electric Circuit

Equation (1.25) can then be found from Kirchhoff's law applied to nodes J± and J2.

1.2.2 Radiative Exchange Between Three Gray Bodies

The equivalent circuit is used to describe the thermal radiation exchange between three

gray bodies (i.e. a cylinder 1 surrounded by a cylinder 2, both separated by a partic-

Page 144: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

107

ipating gaz, represented as a surface 3). In this case, the equivalent electric circuit is

represented in Figure 1.2 where:

J3 = ebl, R3 = 7 ^ , RA = A^— and R5 = ±-J|,

and others quantities have been presented previously.

Jl J2

1 Rl_3> >R2_3 J_

J3

R3

I

Figure 1.2 Three Gray Bodies Equivalent Electric Circuit

Applying Kirchhoff s law at nodes J\, J2 and J3, we easily find the following set of

equations:

en — J\ Ji — J\ Jz — J\ n

(i - 6 ) / ( ^ i ) i / (AiF i_ 2 ) 1 / ( ^ 1 ^ . 3 ) ~

^62 — Ji Jl ~ Jl J3 — Jl „

(1 - 6 ) / ( M 2 ) l / (^ iF i - 2 ) 1/(A2F2_3)

6ft3 — Ji Jl — Ji Jl~ Jl _ n

(1.26)

(1.27)

(1.28) ;i - &)/(£i4o 1/(^^1-3) V ( A 2 F 2 _ 3 )

Page 145: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

108

These equations are used in this work to calculate the radiative heat transfer in post-

dry out conditions.

1.2.3 Emissivity of the Vapor Film: Leckner's Method

The emissivity of the vapor film is calculated using the method presented by Leckner

(Leckner, 1972). According to this work, the ratio between the emissivity of a gas

(within a mixture of gases), £, and its emissivity at a reference pressure of 1 bar, £0,

is expressed as a function of a pressure correction function:

Co = f(PaLb,P,Tg,pe), (1.29)

where Lb is the mean-beam length, Tg, the temperature of gas, pa is the partial pressure

of the absorbing gas, p is the total pressure and pe is the gas equivalent pressure. pe is

calculated using:

Pe = p_ Po

1 + 4 . 9 ( ^ 1 ( ^ f V

273 \ 0 5

Y) (1.30)

and the mean-bean length can be estimated by:

Page 146: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

109

AVV Lb ^ 0.9Lo ^ 0.9—^, (1.31)

where Vv and Av are the total vapor phase volume and area.

The ratio ( | - J is limited by a maximum value of ( | - j . Equation 1.29 can then be

written as:

£o (paLb,p,Tg) 1 + 1

exp —c log 1(T (PaLb)r

PaLb

(1.32)

with

£o (a-l)(l-pE)

a + b- 1+PE (1.33)

Finally, the emissivity at reference state, £o> is calculated using the following correlation:

£o (paLb, P, Tg) = exp M N

EE _i=0 j=0

T, cJi \ j r ) \ l°9io

PaLb

(PaLb)0

(1.34)

Page 147: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

110

Table 1.1 Correlation Constants for Water Vapor Emissivity Constant

To Po t

(PaLb)0

(PaLb)m 1 (PaLb)0

a

b c

Value 1000 K 1 bar r/T0

1 bar cm 13.2£2

2.144 1.88 - 2.053 logwt

1.10/tL4

0.5

Restriction

t < 0.75 t > 0.75

Table 1.2 Coefficients for Water Vapor Emissivity Coefficient c,-j

COO Cifi C2,o

Coi c\,i c 2 , i

CQ3 Ci> 2 C 2 ; 2

Value -2.2118 -1.1987 0.035596 0.85667 0.93048 -0.14391 -0.10838 -0.17156 0.045915

The constants a, b, c, (paLb)0, (paLb)0 and T0 required to evaluate Equations 1.32,1.33

and 1.34 are given for water vapor in Table 1.1, while the coefficients Cji are given in

Table 1.2.

1.3 Radiative Heat Transfer Model

A radiative heat transfer model was implemented in the assessment code. It is restricted

to inverted annular film boiling but can be used for all the post-dryout regimes and can

provide estimates for other conditions. Radiative exchange between three gray bodies is

simulated and the following simplifying assumptions have been used:

Page 148: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

I l l

• The entrainment of droplets by the vapor film are neglected.

• The interface between the liquid and its vapor is smooth.

• There is no radiation heat transfer in the axial direction.

• The vapor film is completely transparent to the whole electromagnetic spectra.

• The wall is uniformly heated and the liquid phase temperature is homogeneously

distributed.

To develop the heat transfer model, Equations 1.26 to 1.28 are solved. The subscript 1

is replaced by w for the heated wall, subscript 2 b y / for the fluid core and subscript 3

by v for the vapor film. We assume that there is no gain or attenuation of the energy

within the vapor film. Hence, Qv, vanishes and there is only two unknown currents (i.e.

radiative heat transfer), Qw and Qf, thus:

"w &bw Jw Jf <Jw ^bv .-. ,-. ~<-N

Aw£w AwFw_f(l—£v) Aw£v

^j^+ Jf~/W + ^ ^ = 0. (1.36) Ajif

AfFf-w{^~iv) Af£,v

These equations can be grouped in the following system:

AJ = B (1.37)

Page 149: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

112

where:

A = -Ff-W (1 - &) (1 - C/) - $/ - ^ (1 - £/) F/-U, (1 - &) (1 - £/)

F^./ (1 - &) (1 - &,) - F w (1 - &) (1 - &,) - & , - & ( ! - &,) (1.38)

J Jf (L39)

B = - f«( l - £f) ebv - £febf

~S.v (,-t Sty J Cftti GwhH)W

(1.40)

The net heat transfer of the heated wall is finally given by:

(1.41)

where Jw calculated solving the system of equations 1.37.

In order to calculate the radiative heat flux in the assessment code, the following calcu­

lation steps are performed:

1. Find the liquid core diameter considering an inverted annular flow, i.e., Dt —

Page 150: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

113

2. Find the wall-to-fluid view factor as, Fw_f = -^- = ^ ^ = Dy^e = \A - e.

3. Calculate the emissivity of the liquid core. The emissivity of the water ranges from

0.85 to 0.7 at temperatures beyond 260°C a average value of 0.775 is taken.

4. Calculate the emissivity the heated wall. The emissivity of Inconel-600 is used to

simulate the emissivity of Nimonic-80a, then:

&, = 0.6275 + 0.000198 Tw .

This approximations is justified by the fact that both material compositions are

similar. Chemical approximative composition of Nimonic-80a and Inconel-600

are shown in Table 1.3 and are taken form (alloywire.com) (espi-metals.com).

5. Calculate the emissivity of the vapor film using Lencker's method presented in

Section 1.2.3.

6. Solve the system of equations (Equation 1.37).

7. Calculate the radiative heat flux by solving Equation 1.41.

The function implemented in the code can be found in Appendix III.2 p. 145.

Page 151: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

114

Table 1.3 Approximative Chemical Composition of Inconel-600 and Nimonic-80A

element Ni Cr Fe Si

Mn C Cu

s Al+Ti

Density [g/cm3]

Nominal Composition [%] Inconel-600

72.00 15.50 8.00 0.50 1.00

0.150 0.50 0.015

8.47

Nimonic-80A 76.00 20.00

4.00 8.19

Page 152: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

115

APPENDIX II

INFLUENCE OF THERMAL INERTIA AND TRANSIENT CALCULATIONS

ON THE PREDICTION OF STEADY-STATE FILM BOILING

The Temperature-Based Methodology was developed to be implemented in transient cal­

culation schemes. Such calculations involve heat conduction within the heated material.

It simulates steady state experiments in tubes, such as Bennett experiments (Bennett,

1967), with a transient calculation scheme involving a fixed power. Heat generation

within the tube wall and conduction through the tube is then computed and the remain­

ing internal wall temperature is used in the heat transfer calculations. As the heat flux

between the heated wall and the fluid increases, the fluid at a specific axial location will

follow all the heat transfer regimes including transition boiling (if the local value of the

CHF is exceeded).

The applicability of a Temperature-Based Methodology could therefore depend on the

thermal inertia, CHF predictions, transition boiling predictions and minimum film boil­

ing temperature predictions. The purpose of this appendix is to determine whether the

final steady state film boiling predictions depend on these parameters. This study is per­

formed using the transient thermalhydraulics computer code, CATHENA (Hanna, 1998)

Version 3.5d rev. 2 using the thermalhydraulic parameters from experiment no. 5251.

Since the objective is not to assess CATHENA's predictions, the results are only taken

qualitatively and no comparison to experimental data is carried out.

Page 153: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

116

II. 1 Thermal Inertia

In transient calculations, an electrical power is applied and heat is generated within the

tube (by Joules effect). Such calculations usually begin by solving the heat conduction

equation within the material. The wall temperature and the fluid properties will then de­

termine the heat transfer coefficient and consequently the heat flux between the heated

wall and the fluid. This quantity is defined as the ratio between the power transferred

from the heated wall to the fluid and the heated area presented to the fluid.

In order to study the evolution of the heat flux between the heated wall and the fluid

during transient conditions, this quantity is depicted in Figure II. 1 -i for two axial posi­

tions; at thermocouple no. 10, where nucleate boiling conditions are found during the

entire transient, and at thermocouple no.21, where post-dryout conditions are eventually

reached during the transient. This figure shows that, initially, both axial positions are

under nucleate boiling conditions. Under these conditions, the heat fluxes increases with

the applied power. Once the CHF is reached at thermocouple no. 21 (at approximatively

47 seconds), the heat transfer coefficient between the heated wall and the fluid suddenly

decreases at that position, resulting in a rapid wall temperature excursion. During the

next few seconds, the fluid undergoes transition boiling and reaches the minimum film

boiling temperature and film boiling conditions. Since the heat flux is a calculated pa­

rameter, the velocity of this transition can not be controlled. Finally, fully developed

heat transfer conditions are reached. When the applied power stops increasing, the heat

flux between the heated wall and the fluid remains constant (some numerical oscillations

can however be observed in post-dryout conditions but their study is beyond the scope

of this appendix).

Page 154: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

117

The heat flux is also shown as a function of the wall temperature in Figure II.l-ii. This

figure shows the computed boiling curve at the location of thermocouple no. 21.

x to the fluid at thermocouple no.21

T 1 1

Thermocouple #21 Thermocouple #10

i i i .. i 100 150 200 250 300

Time [s]

tiling curve at thermocouple no.21

P(0->100%)in50s J I . I 1 I

00 500 600 700 Wall Temperature [C]

Figure II. 1 Heat Flux to the Fluid Evolution as a Function of Time and Wall Temperature

The heat conduction through the tube would indeed influence the wall temperature evo­

lution during transient calculations. However, it remains unclear whether this parameter

can influence the final post-dryout steady state temperature distribution; a possible en­

ergy accumulation within the heated material could occur during the heat flux reduction

(corresponding to the transition boiling region and the beginning of the film boiling

conditions) and artificially overestimate the final wall temperature. This concern was in-

0) I

1200

1000 -

800 -

600 -

400

200

0 /

i- Heat f

50

ii- Be

I

1000 900 800 700 600 500 400 300 200 100

0

-

I

'^ ]

. . . j -

/ ./ / /

I 300 4'

Page 155: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

118

vestigated by simulating the same experiment with three different power insertion rates:

the power was applied form 0% to 100% in Is, 50 s and 500 s.

Figure II.2-i shows the temperature evolution at thermocouple no. 21 (i.e at 5.1308 m)

for the three different power application rates and Figure II.2-i shows the internal axial

temperature distribution for these cases. These figures show that the transient tempera­

ture evolution is affected by the applied power variation rate but, in all the cases studied,

the final temperature distribution is independent of the rate of change in power. This

suggests that thermal inertia does not affect the final wall temperature distribution.

Page 156: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

119

i- Internal wall temperature at thermocouple no.21

fo]

I fa

ll T

em

pe

•$•

ure

[C]

ipera

t

c

Wa

llT

800

700

600

500

400

300

200 0

900

800

700

600

500

400

300

200

• + - -

0

. . . .1 . .

1 • • / r

1 1 "! !

i

100

P(0 P(0-

P(0->

.. -_++.

-- I . . . .

I

200

_ I

i

300

L

1

400

Time [s]

L... . „ i J . .

-

-

P(0->100%)in1s P(0->100%) in 50s

P(0->100%)in500s i ' i i

500 600 700 8

i i - Internal wall temperature distribution

->100%) >100%)ir 100%) in

-; n

i

1

i in 1s -+ l 50s 500s

i

2

1

1-1. -- ;t~

i

3

. t

Axial Location [m]

1 | t- I /.. :.... %

' ' ';'"

i i

4 5

Figure II.2 Effect due to Power Variation Rate

The impact of thermal inertia was also investigated by modifying the thickness of the

tube (the external radius was doubled while maintaining constant the internal radius).

The internal wall temperature evolution at thermocouple no. 21 and the internal ax­

ial temperature distribution are shown in Figure II.3. Similarily to the power applica­

tion rate, the internal wall temperature evolution are different for the two radius and

results form the thermal inertia through the tube. The final temperature and internal

axial temperature distribution are again similar for both wall thicknesses. Finally, with

an increased wall thickness (which increases thermal inertia), the external surface wall

temperature converges to higher temperatures as shown in Figure II.4

Page 157: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

120

i - Internal wall temperature at thermocouple no.21

800

700

600

500

400

300

200

I

/ I I I I

I •' . j

i

Rext 2*Rext

i i i i i

0 50 100 150 200 250 300 350 400

Time [s]

i i - Internal wall temperature distribution 900

800

700

600

500

400

300

I I 1 Rext

- 2*Rext --• +

+.. H 1 H h-H H 4+4- n „ 1

1

r

i ] 1 ;

/ : i •

i — j — i —

2 3 Axial Location [m]

Figure II. 3 Wall Thickness Effect

Page 158: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

121

i i - Internal wall temperature distribution

920 i -

900 -

880 -

S 860 -

H 8. 840 -E

t-

I 820 -

800 -

780 '

760 -

0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015 Radius [m]

Figure II.4 Radial Wall Temperature Distribution for Different Wall Thicknesses

II.2 Critical Heat Flux

Under steady state conditions, the uncertainties of critical heat flux have a significant

impact on the maximum temperature and on the predicted temperature during the de­

veloping flow conditions, while predictions of the fully developed film boiling are not

affected by this parameter. Similarly to thermal inertia, the uncertainties of CHF could

possibly have an impact on the wall temperature evolution when a transient calculation

scheme is used. Consequently, the CHF uncertainties impact on the post-dryout predic­

tions was studied by performing a sensitivity analysis with CATHENA (Hanna, 1998);

the simulations were performed using the default CHF and using this default CHF mul­

tiplied by 0.3, 0.5 and 0.75 (a greater multiplication factor was also used but the fully

developed conditions were not reached and the results were not included in this analysis).

Rext 2*Rext

Page 159: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

122

1200

400

default CHF CHF*0.30 CHF'0.50 CHF*0.75

100 150 Time [s]

250

Figure II.5 Heat Flux to the Fluid for Several CHF Predictions

Figure II.5 shows the evolution of the heat flux between the heated wall and the fluid

for different CHF predictions. As expected, the lower the CHF prediction, the sooner

the dryout conditions are reached. All the simulations converge to the same final heat

flux (some numerical oscillations are however again observed). Since the heat fluxes

converge to the same final value, the final wall temperatures are also equal, as shown in

Figure II.6-i. For some CHF predictions, however, slight final temperature differences

can observed since film boiling conditions are not totally reached at this axial position.

Figure II.6-ii shows that for these cases, the final fully-developped film boiling temper­

atures, encountered further downstream, are the same.

Figure II.6-ii shows the final axial temperature distribution for these simulations, i.e.

Page 160: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

123

a similar parametric trend is observed in the fully developed region. In this case, the

behaviour is similar to the one observed experimentally under steady-state conditions.

As a result, CHF errors will have a significant impact the post-dryout predictions until

steady state fully developed film boiling conditions are reached. Once fully developed

film boiling conditions reached, no impact is observed on temperature predictions.

i- Internal wall temperature at thermocouple no.21

O

<D Q. E a> t -

I

900

800

700

600

500

400

300

200

1200 1100 1000 900 800 700 600 500 400 300

default CHF CHF*0.30 CHF*0.50 CHF*0.75

j i 50 100 150

Time [s]

200 250

2 3 Axial Location [m]

300

-

i i-

default CHF CHF*0.30 CHF*0.50 CHF*0 7K

Internal wall temperature

i |

distribution

i

•: i /

1

:J- i

Figure II.6 Effects due to uncertainties in CHF

Page 161: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

124

II.3 Transition Boiling

This section studies the possible effect of the uncertainty in the transition boiling re­

gion on the final steady state film boiling temperature. CATHENA (Hanna, 1998) uses

by default the Bjornard and Griffith's correlation which computes the transition boiling

heat flux as a transition function of the critical heat flux and stable film boiling heat flux.

The code does not allow the transition boiling heat flux to be directly modified but only

the relative importance of the critical and the film boiling heat fluxes can be actualized

during the calculations. For this case, the approach used was therefore to compare the

default transition boiling heat flux to the cases where this heat flux was computed based

only on the critical heat flux and on only the film boiling heat fluxes. It should also

be noted that these simulations were performed without including the developing post-

dryout modification factor. The temperature evolution at thermocouple no.21 and the

final axial wall temperature distribution for theses cases are are shown in Figure II.7-i

and II.7-ii.

Page 162: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

125

i- Internal wall temperature at thermocouple no.21

<S a. £

<5 a. E

900

800

700

600

500

400

300

200

i ^ -H I I I M I I I I I I I I M 11 11 I I I I 11

• • / • + •

tm*1* -M+^•^+t+^4•f^H+n4+^4^^444^4+^•!'^f4•H4•^•',

default qTB

'IFILM

20 40 60

Time [s]

i i - Internal wall temperature distribution

80 100

2 3 Axial Location [m]

Figure II.7 Transition Boiling Uncertainty Effect on the Internal Wall Temperature

These results show that a heat flux uncertainty in the transition boiling region will indeed

modify the temperature evolution but the temperatures will soon converge to the same

steady state value in the film boiling region. Hence, the transition boiling region does

not have a significant impact on the final steady state film boiling temperatures.

Page 163: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

126

II.4 Prediction of the Minimum Film Boiling Temperature

Since the minimum film boiling temperature separates the transition boiling region (where

the heat flux is reduced) from the film boiling region (where the heat flux begins to rise

again), its underprediction (or overprediction) could possibly influence the final steady

state temperature. This question was assessed by studying the temperature distribution

for a minimum film boiling temperature calculated using the default technique in CA-

THENA (Hanna, 1998), with a forced transition from nucleate boiling to film boiling

(i.e. by setting Tmin = TCHF + 5) and with the minimum film boiling temperature com­

puted using Rajan's correlation.

Figure II.8 shows the temperature evolution as a function of time at thermocouple no.21

(Figure II.8-i) and the final internal wall temperature distribution (Figure II.8-ii). The

figure shows that the prediction of the minimum film boiling temperature only has a

slight influence on the wall temperature evolution while the final temperature distribu­

tion is unchanged. This results from the fact that Tmin only bounds the beginning of the

film boiling conditions. Once these conditions are reached, the predictions remain the

same as depicted in the boiling curve computed for these Tmin predictions (i.e. Figure

II.9).

Page 164: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

127

i - Internal wall temperature at thermocouple no.21

o 9>

Q. E <D H

800

700

600

500

400

300

200

900

^H-l+l-H+H+f+++HH+H-l-H+H+«

o (!) tur

ra 0)

n E

Na\

800

700

600

500

400

300

~! 44+-H-H-HI II jHltH'!-H-H44444-H:t:

H-H+t+l* • default TM IN

T M I N _ T C H F + 5

Raian _i L!

20 40 60 Time [s]

i i - Internal wall temperature distribution

80 100

~~' j "" 'MIN

T M I N _ T C H F + 5

Rajan

-Is • • ! % • - -t+'+Kii

- M — l — \ J ~

2 3 Axial Location [m]

Figure II. 8 Influence of the Uncertainty of the Minimum Film Boiling Temperature on

the Internal Wall Temperature

Page 165: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

128

900

800

700

600

500

400

300

200

100

n

K - H.

+

. . -

•+ • .

.. I. + 1 - I

•i- . 4

• ^

. . + • '

..,:.::..*" _ .--+-'

. - • * - - '

' " * • ' "

-

-

-

TMIN - TCHF+ 5

Raian + I I I

500

wall temperature [C]

Figure II.9 Influence of the Minimum Film Boiling Temperature on the Boiling Curve

II.5 Developing Flow Film Boiling Conditions

The impact of including a correction factor that accounts for the developing PDO is

studied in this section. The reference case was therefore simulated using a correction

(slightly different that the one assessed in this thesis and assessed in section 4.1) with­

out using any correction. The internal temperature distribution for these simulations is

depicted in Figure 11.10. The figure shows that the developing flow correction may be

overestimated since it has an impact on a too large axial region when compared to the

experiment and has no impact only at the lasts points. The study of the developing PDO

uncertainty, however, is not the purpose of this section.

Figure 11.11 presents the heat flux evolution as a function of time (Figure Il.ll-i) and

Page 166: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

129

as a function of the internal wall temperature (Figure II.l 1-ii) for the same simulations.

These heat flux evolutions are taken at thermocouple no.27 since the correction factor

has no impact at that position at the end of the transient. The figure shows that the

correction factor is applied for all heat transfer regions beyond CHF. However, the fi­

nal steady-state heat flux converges to the same value and the same final temperature is

reached which validates the applicability of the correction factor for steady-state predic­

tions (using a transient calculation scheme). It is however difficult to determine whether

the correction should be applied during transient calculations. Experimental data under

transient conditions should be used to assess that concern.

800

700

600

500

400

default devPC without devPC

-

-

O O

-

1

^ i if

: ' ^ 1 i -

i 1

- i

i J 1 1 2 3 4

Axial Location [m]

Figure 11.10 Impact of the Developing PDO on Internal Wall Temperature Distributions

Page 167: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

130

i - Heat flux at evolution at thermocouple no.27 1000 900 800 700 600 500 400 300 200 100 0

< f b

1 X

flu

eat

X

1000 900 800 700 600 500 400 300 200 100

0 300

default devPDO without devPDO

20 40 60 80 Time [s]

i i - Boiling curve at thermocouple no.27

100

I

-

I

! ! I I . N I

i i

i i

i i

default devPDO without devPDO

i i i i i

400 500 600 700 wall temperature [C]

800 900

Figure II. 11 Impact of the Developing PDO Effect on the Heat Flux Evolution

II.6 Film Boiling Predictions

The purpose of this chapter is to study the applicability of a Temperature-Based Method­

ology in a transient calculation scheme such as the one used by CATHENA (Hanna,

1998). Therefore, the predictions obtained using this methodology should be compared

to the ones obtained using other methodologies.

The Figure 11.12 compares the internal wall temperature predictions computed using the

default T-Based LUT, the Q-Based LUT and Groneveld-Delorme's correlation (Groen-

Page 168: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

131

eveld, 1988). For this case, a 50°C temperature difference can be observed between

the T-Based LUT and the Q-Based LUT predictions while the T-Based LUT and the

Groenevled-Delorme correlation provide similar temperature predictions. Even if this

result can not be generalized (an assessment using a wide range of experimental data

would have to be performed to confirm the uncertainty of these predictions), it can be

stated that the temperature distributions and evolution in the three methodologies (and

therefore their applicability) in the current simulations are similar. The applicability of

the temperature based methodology however, can not be totally validated (or invalidated)

only based on these simulations. A complete assessment of this methodology using tran­

sient experimental data could eventually answer this concern.

Page 169: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

132

Internal wall temperature at thermocouple no.21

3 m a. £

900

800

700

600

500

400

300

200 I'-H-H-H-'44 +H-+H++H+H+H+++t+H4++H

w- mini rnrffHttH+HtHHttfa

o

a o. B a

"5 5

0

> H *

I T-LUT 44+4+H-4- Q - L U T

Groeneveld-Delorme i i i

20 40 60 Time [s]

i i - Internal wall temperature distribution

80 100

900

800

700

600

500

400

300 Li **-

1 r T-LUT Q-LUT

Groeneveld-Delorme

-44-+- . . .—U 1 U

2 3 4 Axial Location [m]

^ H + I ;

I

Figure II. 12 Impact of the LUT Technique on the Internal Wall Temperature

II.7 Conclusions

This appendix studies the applicability of the Temperature-Based Methodology in a tran­

sient calculation scheme such as that used in the CATHENA code. It is found that ther­

mal inertia, critical heat flux predictions, heat flux uncertainties under transition boiling

conditions and minimum film boiling temperature have no impact on the final steady

state wall temperature in the fully developed region. These results are essential to a

methodology used in transient calculations. It is also shown that when the modification

Page 170: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

133

factor that accounts for the developing PDO has no impact on the final steady state wall

temperature in the fully developed region even if it is applied to the entire boiling curve

(beyond CHF). However, it remains unclear whether this modification factor should be

used to simulate transient effects.

The results of this appendix are based on experimental data collected under steady-state

conditions (i.e. Bennett's experiments (Bennett, 1967)). Therefore, the transient heat

fluxes, temperatures and heat transfer coefficients can not be validated. As a result, even

if this study shows a similar applicability of the three deferent methods, the applicability

of the Temperature-Based Methodology in a transient calculation scheme could only be

determined by validating it using experimental data collected under transient conditions.

II.8 CATHENA Input File

' ELP Bennett experiment',

'insertion en 50s'/

'CONTROL GROUP'/

'SOLUTION CONTROL'/

0.0,1000.0,,0.001,0.001,0.50/

'PRINT CONTROL'/

1.0,1.0,1.0,,,,.TRUE.,'A'/

'RESTART CONTROL'/

,'bennett.rst',100.0,,.FALSE.,'C,'C,0/

'NUMERICS OPTION'/

/

'PROCESSING OPTION'/

Page 171: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

134

'RUN' /

'TIME STEP CONTROL'/

/

'END'/

'PIPING NETWORK' /

'RESIN' /

'PIPEBEN', 5.5626, 5.562

0.1016, 0.5080, 0.1016, 0.

0.1016, 0.5080, 0.1016, 0.

0.0508, 0.1016, 0.0508, 0.

'RESOUT'/

'END'/

'COMPONENT CONNECTIONS'/

'RESIN','L-PIPEBEN'/

'R-PIPEBEN', 'RESOUT'/

'END'/

'BOUNDARY CONDITIONS'/

'RESERVOIR B.C.','INCOND'/

'RESIN'/

6.893E+0 6, ,2 62.26,0.0000,'HG-BY-SAT','HF-BY-TEMP'/

'RESERVOIR B.C.','OUTCOND'/

'RESOUT'/

6.893E+06, , ,0.9, 'HG-BY-SAT' , 'HF-BY-SAT'/

'FLOW B.C.,'FLOWCON'/

'RESIN ','L-PIPEBEN'/

0.16911/

'END'/

' SYSTEM MODELS' /

'END'/

6, 0.000124689, 0.0126, 0.0, 0.0,'CIRC, ,'H20', , , /

5080, 0.1016, 0.5080, 0.1016, 0.5080, 0.1016, 0.5080,

5080, 0.1016, 0.2032, 0.1016, 0.2032, 0.1016,

1016, 0.0508, 0.1016, 0.0508, 0.0254, 0.0508/

Page 172: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

'SYSTEM CONTROL MODELS'/

'OUTPUT','GNUTEMP'/

1,'TEMPW.OUT','(F10.2,1X,2(IX, F10.3))',,1.0,,,'GNUPLOT'/

'TWALL:TUBE_B(21,1,1,1)'/

/

'OUTPUT','TDISIN'/

10,'DISTWI.OUT','(F10.2,1X,10(F10.3))',,1000.0,,,'GNUPLOT'/

'TWALL:TUBE_B(1,1,1,1)'/1

/

'TWALL:TUBE_B(2,1,1,1)'/2

/

'TWALL:TUBE_B(3,1,1,1)'/3

/

'TWALL:TUBE_B(4,l,l,l)'/4

/

'TWALL:TUBE_B(5,l,l,l)'/5

/

'TWALL:TUBE_B(6,l,l,l)'/6

/

'TWALL:TUBE_B(7, 1,1,1) ' II

I

'TWALL:TUBE_B(8,1,1,1) ' /8

/

'TWALL:TUBE_B(9,l,l,l)'/9

/

'TWALL:TUBE_B(10,1,1,1)'/10

/

'OUTPUT','TDISIN2'/

10,'DISTWI2.0UT','(F10.2,IX,10(F10.3))',,1000.0,,,'GNUPLOT'/

'TWALL:TUBE_B(11,1,1,1)'/l

/

'TWALL:TUBE_B(12, 1,1,1) '/2

/

'TWALL:TUBE_B(13,l,l,l)'/3

/

'TWALL:TUBE_B(14,l,l,l)'/4

/

Page 173: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

136

' T W A L L : T U B E _ B ( 1 5 , 1 , 1 , 1 ) ' / 5

/ ' T W A L L : T U B E _ B ( 1 6 , 1 , 1 , 1 ) ' / 6

/ ' T W A L L : T U B E _ B ( 1 7 , l , l , l ) ' / 7

/ ' T W A L L : T U B E _ B ( 1 8 , l , l , l ) ' / 8

/ ' T W A L L : T U B E _ B ( 1 9 , l , l , l ) ' / 9

/ ' T W A L L : T U B E _ B ( 2 0 , 1 , 1 , 1 ) ' / 1 0

/

'OUTPUT','TDISIN3' /

8,'DISTWI3.0UT',' (F10 . 2,IX,8(F10.3))',,1000.0,,,'GNUPLOT'/

'TWALL:TUBE_B(21,1,1,1)'/l

/

'TWALL:TUBE_B(22,1,1,1)'/2

I

'TWALL:TUBE_B(23,1,1,1)'/3

/

'TWALL:TUBE_B(24,1,1,1)'/4

/

' TWALL : TUBE_B (25,l,l,l)'/5

/

'TWALL:TUBE_B(26,l,l,l)'/6

/

'TWALL:TUBE_B(27,1,1,1)'/7

/

'TWALL:TUBE_B(28,l,l,l)'/8

/

'OUTPUT' , 'TDISR21' /

6,'DISTRAD21.0UT','(F10.2,1X,6(F10.3))',,1000.0,,,'GNUPLOT'/

'TWALL:TUBE_B(21,1,1,1)'/l

/

'TWALL:TUBE_B(21,2,1,1)'/2

/

'TWALL:TUBE_B(21,3,1,1)'/3

/

'TWALL:TUBE_B(21,4,1,1)'/4

Page 174: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

/ 'TWALL:TUBE_B(21,5,l,l)'/5

/

'TWALL:TUBE_B(21,6,l,l)'/6

/

'OUTPUT', 'TDISR5'/

6,'DISTRAD5.0UT','(F10.2,IX,6(F10.3))',,1000.0,,,'GNUPLOT'/

'TWALL:TUBE_B(5,1,1,1) '/l

/

'TWALL:TUBE_B(5,2,1,1) '/2

/

'TWALL:TUBE_B(5,3,1,1) ' /3

/

'TWALL:TUBE_B(5,4,l,l)'/4

/

'TWALL:TUBE_B(5,5,1,1) '/5

/

' TWALL : TUBE_B (5,6,l,l)'/6

/

'OUTPUT' , 'PWRT'/

8,'PWRT.OUT','(F10.2,IX,8(F15.3))',,1.0,,,'GNUPLOT'/

'TOT_FLUX:TUBE_B(1-28,6,1,1)'/tot applied flux

/

'TOT_FLUX:TUBE_B(21-21,6,1,1)'/applied flux to there #26

/

'TOT_FLUX:TUBE_B(10-10,6,1,1)'/applied flux to there #10

/

'TOT_FLUX:TUBE_B(l-28,1,1,1)'/total flux to fluid

/

'BC_FLUX:TUBE_B(21-21,1,1,1)'/flux to fluid in thermoc. #26

/

'BC_FLUX:TUBE_B(10-10,1,1,1)'/flux to fluid in thermoc. #10

/

'BC_FLUX:TUBE_B(l-28,1,1,1)'/average heat flux to fluid

/

'BC_HTC:TUBE_B(21-21,1,1,1)'/average heat flux to fluid

/

'END'/

Page 175: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

138

'HEAT TRANSFER PACKAGE'/

'MODEL:(TUBE_B)'/

'RADIAL: (1,0.0063, 6, 0.00794)', 'AXIAL: (5.5626, 28)-USER-BOUNDARY'/

0.1016,0.6096, 0.7112, 1.2192, 1.3208, 1.8288, 1.9304, 2.4384, 2.5400, 3.0480, 3.1496,

3.6576, 3.7592, 4.2672, 4.3688, 4.5720, 4.6736, 4.8768, 4.9784, 5.0292, 5.1308, 5.1816,

5.2832, 5.3340, 5.4356, 5.4864, 5.5118, 5.5626/

'BOUNDARY CONDITIONS:(1,1)'/

'INSIDE HYDRAULIC:(PIPEBEN)'/

'TUBE-CIR', 'HT-CRIT-DEFAULT' , ' HT-CORR-DEFAULT',,,,,,,,,,'DEV-PDO-5: ()'/

'OUTSIDE PRESCRIBED:(TAG)',,,,,'SURFACE OPTION:(1)'/

'SURF-FLUX: (0.0)'/

'INCONEL'/

'HQ-TIME:(214000.,3)'/

/

0.0, 0.0,

50.0, 1.0,

2000.0, 1.0/

'TEMP-0D: (262.26) ' /

'PRINT:(43111)'/

'END'/

'INITIAL CONDITIONS'/

'PIPEBEN','BY-ENDS','HG-BY-TEMP','HF-BY-TEMP' /

6.893E+06, , 262.26, 0.00000E+00,0.16911/

6.893E+06, , 262.26, 0 . 00000E+00,0.16911/

'RESIN ','L-PIPEBEN'/

0.16911/

'R-PIPEBEN', 'RESOUT'/

0.16911/

'END'/

Page 176: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

139

APPENDIX III

ALGORITHM OF THE ASSESSMENT CODE

III. 1 Main Function

PROGRAM slpdo

USE MODULE_FILES !(contains and modify MODULE_DATA)

USE MODULE_DATA

USE MODULE_LUT_T_based

USE MODULE_LUT_Q_based

USE MODULE_CHF_LUT

USE MODULE_PROP

CHARACTER*60 FicOutGraph

CHARACTER*4 NoRunChar

CALL DATA_SET_GEOM

CALL DATA_ASK_METHODOLOGY_AND_CORRELATION

IF(METHODOLOGY=='T') THEN

CALL GEN_HTABLE_T

ELSE

CALL GEN_HTABLE_Q

ENDIF

CALL CHF_INPUT_TABLE

DO 500 noLen=l,l

CALL DATA_SET_INPUT_DATA !Define some init parameters

CALL FILE_SET_INPUT_FILES !Define inp and out files

CALL FILE_INIT_FILES !Open and initialize inp and out files

CALL DATA_ALLOCATE_MEM_TUBE

c **********begin Loop for the nb of experiments in the fic************c

Page 177: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

140

DO 12 IK = l,idat

CALL FILE_GET_BENNETTexpi_VALUE

ptDO=100 ! begin of DO (after the end of the tube)

twloc=0

x=0

pow = ipow*1000.

pin = pout

flow=Gloc*AF

corrCHF=0

call proper(pin, 0.)

if (tin .It. tsat) then

CALL PROPER(PIN,TIN)

hin = hi

XIN = (HL - HF) / HFG

tbulk = tin

amu = UL; rho = rhol; cp = cpl

else

hin = hf; xin = 0.; tbulk = tsat

amu = uf; rho = rhof; cp = cpf

end if

rhoin = rho

dhini = (hf-hin)/1000 .

X(l) = xin; xa = 0.; POW1 = POW

do ij=l,(ntc+1)

ploc(i j) = pout

end do

qavg = powl/ah

twmax = 0.

imax = 1

qratioRad(l,1)=0

c **********begin of Loop for the nb of pts in the tube************c

DO 60 II = 2,(ntc)

QKW=qavg/1000

qratioRadd, ii)=0

CALL PROPER(Ploc(II),0.0) !TIN)

HRISE = POW1 * zlong(ii) /thl/ flow

Page 178: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

141

X(II) = (HIN + HRISE - HF) / HFG

if (x(ii) .It. 0.) then

tbulk = tsat - (hf - (hrise+hin))/((cp+cpf)/2)

call proper (ploc(ii),tbulk)

amu = ul; rho = rhol; cp = cpl

else

tbulk = tsat; amu = uf; rho = rhof; cp = cpf

end if

c find q_CHF in the look-up table

CALL CALCHF(ploc(ii) , Gloc, de,X (ii) ,CHF1 (ii) )

c calculate h_nb with chen correlation

call CHENNB(Ploc(ii),Gloc,De,x(ii),qavg,tbulk,TWnb,HTCnb)

htcnb = qavg/(twnb-tbulk)

qratio = qavg/chf1(ii)-1

if (ii<=nCHF) then !DO not reached (in the experimental data)

twloc(ii) = twnb

TwlocFD(ii) = twnb

correction=qavg/chf1(ii)

Xdo = x(ii)

if (Xdo >= 1.) then; Xdo=0.99; endif

Tchf = twloc(ii)

Tchf=Tsat+CHFl(ii)/htcnb

if (ii==nCHF) then

call ALP1(gloc,de,qavg,X(ii),alpha,xa, Re, Bo, slip, slip2)

alphaDO=alpha

corrCHF=correction

endif

else

chf1(ii)=chf1 (ii)*correction; ! modify chf with the est correct,

qratio = qavg/chf1(ii)-1

call CHENNB(Ploc(ii),Gloc,De,x(ii),chfl(ii),tbulk,TWnb,HTCnb)

Tchf=Tsat+CHFl(ii)/htcnb

if(Methodology == 'Q') then

temp=0

c******************Q based correlations************************

DO while(abs(QKW-temp) >0.001)

temp=QKW

c calculate h_PDO fully developped

Page 179: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

142

c (using look-up table or Groeneveld correlation)

call CALPDO(Ploc(ii),gloc,De,X(ii),QKW,HTC) !!look-up table

c calculate the correction factor and h_pdo developping film boiling

Bo=qavg/(gloc*Hfg) Iboiling number for the modification factor

htccor=l+(htcnb/htc-l)*exp(-0.2158*((x(ii)-Xdo)

& /Bo/(1-Xdo))**0.6) !!latest correlation from COG-98-193

htcbun = htc *htccor !!apply the correction factor

twloc(ii) = qavg/htcbun+tsat !!Tw_loc corrected for developping

TwlocFD(ii)=qavg/htc+tsat !!Tw_loc assuming fully developped film boinilg

if(corRad=='Y') then !correct for radiation

!calculate void fraction(alpha)

call ALP1(gloc,de,qavg,x(ii),alpha,xa,Re, Bo, slip, slip2)

Qrad=RADIATION(ploc(ii),Tsat,twloc(ii),alpha,de,thl)!calculate q radiation

Qconv=qavg-Qrad

qratioRad(1,ii)=Qrad/Qavg

QKW=Qconv/1000

endif

enddo

c*************** end Q based correlations**********************

elseif(Methodology == 'T') then

c******************T based correlations************************

! Find the Fully developped wall tempertature

Twguess(:)=1200

TwlocFD(ii)=0; test=0

call ALP1(gloc,de,qavg,X(ii),alpha,xa, Re, Bo, slip, slip2)

call PROPER(ploc(ii),Tsat)

ReynoldsG=de*gloc*x(ii)/ug

DO while(abs (Twguess(ii)-TwlocFD(ii)) >0.001)

delTwsat=Twguess(ii)-Tsat

TwlocFD(ii)=Twguess(ii)

call TableHT(Ploc(ii),gloc,De,X(ii),delTwsat,HTC)

Qconv=qavg

if(corRad=='Y') then !correct for radiation

!calculate void fraction(alpha)

call ALP1(gloc,de,qavg,x(ii),alpha,xa,Re, Bo, slip, slip2)

Page 180: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

143

Qrad=RADIATION(ploc(ii),Tsat,twloc(ii),alpha,de,thl)!calculate q radiation

Qconv=qavg-Qrad

qratioRad(1,ii)=Qrad/Qavg

endif

Twguess(ii) = Qconv/htc+tsat

test=test+l

if (test>100) then; go to 556; endif

END DO

TwlocFD(ii)=qavg/htc+tsat

! Find the developping film boiling wall Temperature

Twguess(:)=300

Twloc(ii)=0; test=0

DO while(abs(Twguess(ii)-Twloc(ii)) >0.001 .and. test<500 )

delTwsat=Twguess(ii)-Tsat

Twloc(ii)=Twguess(ii)

call TableHT(Ploc(ii),gloc,De,X(ii),delTwsat,HTC)

WSR=(Twguess(ii)-Tsat)/(Tchf-Tsat)

if (WSR<1.) then; WSR =1; endif

if(correlation=='G')then

a=-0.8 !initial value

b=0.6 ! initial value

htccor = 1 +(htcnb/htc-1)*exp(a*(WSR-1)**b)

! a = -0.000761511 ! +/- 0.0001378 (18.1%)

! b = 0.531791 ! +/- 0.01138 (2.14%)

! htccor = 1 +(htcnb/htc-1)*exp(a*((WSR-1)*ReynoldsG)**b)

elseif(correlation=='L')then

htccor = 1 +(htcnb/htc-1)*

& exp(((RHOF/RHOG)**-0.18)*-1.85*(WSR-1)**0.483)

endif

htcbun = htc*htccor

Qconv=qavg

if(corRad=='Y') then !correct for radiation

!calculate void fraction(alpha)

call ALP1(gloc,de,qavg,x(ii),alpha,xa,Re, Bo, slip, slip2)

Qrad=RADIATION(ploc(ii),Tsat,twloc(ii),alpha,de,thl)!calculate q radiation

Qconv=qavg-Qrad

Page 181: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

qratioRad(1,ii)=Qrad/Qavg

endif

Twguess(ii) = Qconv/htcbun+tsat

test=test+l

if (test>500) then

test=test+l

endif

END DO

Twloc(ii)=qavg/htcbun+tsat

c**************end T based correlations************************

endif

c**************Output for PDO region************************

call PROPER(ploc(ii),Tsat)

END IF

if (twloc(ii) .gt. twmax) then !!find the max temperature

imax = ii [position of the Max temperature

twmax = twloc (ii)

end if

IF ((ii>nchf) .and. (TwBEN(ii-1)>300.).and.(Tchf>286.))then

!Tchf=TwBEN(nchf)

IF (METHODOLOGY=='T" ) THEN

call TableHT(Ploc(ii),gloc,De,X(ii),delTwsat, hfdBen)

else

call CALPDO(Ploc(ii),gloc,De,X(ii),qavg, hfdBen)

end if

call ALP1(gloc,de,qavg,x(ii),alpha,xa,Re, Bo, slip, slip2)

tempHnb=HTCnb

tempTwBEN=TwBEN(ii-1)

call CHENNB(Ploc(ii),Gloc,De,x(ii),qavg,tsat,tempTwBEN,tempHnb)

CALL FILE_WRITE_TEMP_OUTPUT(ii)

call WRITE_PDO_OUTPUTS(ii,htccor, htcbun,twloc(ii) , TwBEN(ii-l),

& qratioRad(1,ii))

ENDIF

60 CONTINUE

c **********end of Loop for the nb of pts in the tube************c

DO i=l,ntc !for the outputs fie

Page 182: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

145

twbuf(1,i)=twloc(i)

xbuf (l,i)=x(i)

end do

CALL WRITE_FINAL_OUTPUTS

12 CONTINUE lend Loop for the nb of experiments in the fie

121 CONTINUE

CALL DATA_DEALLOCATE_MEM_TUBE

CALL FILE_CLOSE_FILES

IF(METHODOLOGY=='T') THEN

CALL DELETE_HTABLE_T

IELSE

ENDIF

IF(METHODOLOGY=='Q') THEN

CALL analyse(Methodology,'fic/FD_SLPDO_RESULT_Q'

& ,noLen,correlation)

ELSE

CALL analyse(Methodology,'fic/FD_SLPDO_RESULT_T'

S ,noLen,correlation)

ENDIF

500 END DO

CALL genGraphLen4(noLen)

55 6 STOP

END PROGRAM slpdo

III.2 Radiation Heat Transfer Model

c**************************************************************

c radiation.for

c

c Calculates the q radiation

Page 183: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

146

c assuming: - an inverted annular flow

c - circular tube

c - vapor T = (Tsat+Tw)/2

c - no pressures loss

c - fixed void fraction

c - fluid = water

c - gas = water vapor

c - wall material = Inconel-GO (or Ni-Cr alloy)

c autor: E-L Pelletier

c date: 15/11/06

c

c***************************************************************

REAL FUNCTION RADIATION(P,Tsat,Tw, void,dia,L)

c********* Data from main **************************************

c P= scalar, local pressure (kPa)

c Tsat= scalar, local sat temperature (C)

c Tw= scalar, local wall temperature (C)

c void=void fraction

c dia=tube inner diameter (m)

c L= nube lengh (m)

c********* Data declared in the function ***********************

c pa localpartial pressure of the participing gas

c po reference pressure (lbar)

c Tf fluid temperature (assumed as = Tsat)

c Tvap vapor phase temperature (mean value Tw Tsat)

c StefBol:Stefan-Boltzmann est

c emissF: emissivity of the fluid (water)

c emissW: emissivity of the wall (Inconel-60 or Ni-Cr alloy)

c emissV: emissivity of (water) the vapor film

c Ew: Black body emissive power at Tw

c Ef: Black body emissive power at Tf

c Evap: Black body emissive power at Tvap

c Fwf: View factor (wall to fluid core)

c Ffw: View factor ( fluid core to wall)

c Pe: Equivalent pressure of the gas

c a, b, c: correlations constants FOR WATER

c Cij: cij correlation constants FOR WATER

c tau: ratio Tvap/T (reference)

c Lmb: mean optical beam path

c frac: (ev/eo -l)/(ev/e0 -l)_max

Page 184: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

147

c maxV: (ev/eO -l)_max

c fracl: ev/eO

c maxfrac:(ev/eO)_max

C A, B, J: matrix for system resolution

c RADIATION: radiation heat flux

c********* Variables declaration ********************************

REAL P, pa, po, Tsat, Tw, Tf, Tvap, void, dia

REAL StefBol, emissF, emissW, emissV, Ew, Ef, Evap

REAL Fwf, Ffw, Pe, tau, a, b, c, Cij(3,3), Lmb

REAL frac, maxV, fracl, maxfrac

REAL tempm k, w, pi

REAL Am(2,2), Bm(2), Jm(2)

c********* Initialize variables **********************************

c*********** parameters from COG-90-86 example (validation)

c P=9500

c Tsat=307.2

c Tw=750

c Tvap=(Tf+Tw) /2

c void=0.2

c dia=0.009

c L=219*0.0254 !in->m

c emissF=0.775

c emissW=0.6275+0.000198*Tw Iwere Tw is in deg C

c********************************************

pi = 3.1415926

'flow properties

pa=P

po=100 !kPa

Tf=Tsat

Tvap=(Tf+Tw)12

c Geometry and material ppt

StefBol = 5.67/ (10** (8) ) !W*m"2*K"4

emissF=0.775;!if (fluid=='water')

!if (wall_material=='Inconel-60') then ! (or Ni-Cr alloy)

emissW=0.6275+0.000198*Tw Iwere Tw is in deg C

lelse; !calculate emissW

!endif

Page 185: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

148

c Convert temperatures in K

Tsat=Tsat+273.15

Tw=Tw+273.15

Tf=Tf+273.15

Tvap=Tvap+273.15

c Black Body emissive powers

Ew=StefBol*Tw**4

Ef=StefBol*Tf**4

Evap=StefBol*Tvap**4

c Calculate form factors

Fwf=(l-void)**0.5

Ffw=l

c Calculate correlation constants and variables

tau=Tvap/1000

Lmb=0.9*dia*void/(1+(1-void)**0.5)

Pe=(P/po)*(l+4.9*(pa/P)* (273/Tvap)**0.5)

c=0.5

a=l.888-2.053*logl0(tau)

if (tau < 0.75) then; a=2.144; endif

b=l.10*tau**-l .4

Cij(:,l)= [-2.118, 0.85667, -0.10838]

Cij(:,2)= [-1.1987, 0.93048, -0.17156]

Cij(:,3)= [0.035596, -0.14391, 0.048915]

c Calculate the vapor film emissivity

frac=exp(-c*(loglO(13.2*tau**2)-loglO(Lmb*P))**2)

maxV=logl0(Pe)*(1.149-0.412*tau)

fracl=l+maxV*frac

maxfrac=(a*Pe+b)/(Pe+a+b-1)

if(fracl>maxfrac) then

fracl=maxfrac

endif

emissV=0

c Calculate eo

temp=logl0(P*Lmb)

Do k=l,3

Do w=l,3

Page 186: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

emissV=emissV+Cij(k,w)*((tau)**(w-1))*(temp**(k-1))

enddo

enddo

emissV=exp(emissV)

emissV=fracl*emissV

c Solve the system

!Calculate the A matrix

Am(1,1)=-Ffw*(1-emissV)*(1-emissF)-emissF-emissV*(1-emissF)

Am(l,2)=Ffw*(1-emissV)*(1-emissF)

Am(2,1)=Fwf*(1-emissV)*(1-emissW)

Am(2,2)=-Fwf*(1-emlssV)*(1-emissW)-emissW-emissV*(1-emissW)

!Calculate the B matrix

Bm(1)=-emissV*(1-emissF)*Evap-emissF*Ef

Bm(2)=-emissV*(1-emissW)*Evap-emissW*Ew

!Solve the system

temp= (Am(l, 1) *Am (2, 2)-Am(l, 2) *Am(2,1) )

Jm(l) = (Bm(l)*Am(2,2)-Bm(2) * Am (1,2) ) /temp

Jm(2) = (Bm(2)*Am(l,l)-Bm(l) *Am(2,l) ) /temp

RADIATION=emissW*(Ew-Jm(2))/(1-emissW)

if(RADIATION<0) then

RADIATION=0

endif

Tsat=Tsat-273.15

Tw=Tw-273.15 !in order to return the same value

RETURN

END FUNCTION RADIATION

Page 187: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

150

APPENDIX IV

ASSESSMENT RESULTS

IV. 1 Heat-Flux-Based-Methodology

IV. 1.1 Errors and Maximum Temperatures

Table IV. 1: Errors and Maximum Temperatures for the 5.56 m Test Sec­

tion Using a Heat-Flux-Based Methodology

Run#

5239

5240

5241

5242

5243

5244

5245

5246

5247

5248

5249

5250

5251

5252

5253

5254

5255

G kg

m2s

1356.

1356.

1370.

1356.

1356.

1356.

1356.

1356.

1356.

1261.

1356.

1356.

1356.

1356.

1356.

1343.

1356.

Tin

[°C]

260.

260.

261.

261.

263.

262.

263.

260.

259.

261.

260.

263.

262.

263.

265.

267.

269.

Pwr

[kW]

166

167

168

170

174

174

177

180

186

189

194

202

214

209

199

185

176

CHFcor

0.5780

0.5948

0.5797

0.5620

0.6519

0.5722

0.5963

0.5437

0.5579

0.7188

0.6080

0.5428

0.5452

0.6205

0.6542

0.6318

0.6509

•L Max Exp

[°C]

485.8

492.6

507.4

527.9

549.3

554.5

566.3

577.5

596.1

604.2

616.3

627.2

650.8

638.2

610.7

579.6

552.7

-LmaxCode

[°C]

450.6

452.4

511.6

565.4

570.0

581.1

585.2

595.4

606.5

618.2

619.2

641.5

667.7

648.0

624.2

600.6

578.5

J^TT 1 max

[%]

-7.25

-8.15

0.84

7.10

3.78

4.80

3.33

3.10

1.74

2.32

0.46

2.27

2.60

1.54

2.22

3.62

4.68

Errpoo

[%]

-14.19

-16.23

-11.65

-2.24

-7.51

-1.13

-1.96

5.16

2.43

1.96

-0.54

2.29

1.24

0.63

0.09

3.80

-0.82

STD

[%]

6.94

8.07

10.78

8.33

12.18

7.94

9.76

1.81

3.56

4.45

4.68

4.65

5.48

1.89

4.64

4.15

10.12

...continued on next page.

Page 188: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

151

Run#

5256

5257

5258

5260

5261

5262

5263

5264

5265

5266

5267

5268

5269

5270

5271

5272

5273

5274

5275

5276

5277

5278

5279

5282

5283

5285

5286

5287

5288

5289

5290

G

1356.

1356.

1370.

1044.

1044.

1044.

1004.

1017.

1004.

1004.

1004.

1004.

1004.

1004.

1004.

1004.

1017.

1031.

1031.

1017.

1031.

1017.

1044.

1939.

1939.

1953.

1953.

1953.

1953.

1953.

1953.

Tin

270.

271.

271.

260.

260.

261.

261.

258.

260.

261.

260.

261.

262.

262.

261.

262.

260.

264.

261.

261.

260.

262.

261.

268.

268.

265.

264.

264.

264.

265.

265.

Pwr

172

169

163

147

150

150

152

153

155

155

157

160

164

168

176

184

203

215

189

175

155

153

152

190

193

197

203

206

209

213

218

CHFcor

0.6756

0.6706

0.6925

0.5959

0.5705

0.6008

0.6308

0.6065

0.6158

0.6249

0.6471

0.6095

0.5111

0.6152

0.5333

0.5023

0.5421

0.9306

0.6748

0.6995

0.6758

0.6735

0.6360

0.6284

0.6472

0.6500

0.6900

0.6662

0.6144

0.6741

0.6776

-* MaxExp

533.0

512.5

453.9

454.9

498.6

492.7

520.4

519.0

546.9

548.9

558.4

582.8

601.0

611.3

631.0

645.9

669.6

688.4

641.6

613.4

507.3

503.4

494.3

581.7

517.3

514.4

547.6

558.5

566.3

574.1

582.3

J- MaxCode

568.5

559.3

368.6

393.8

581.6

559.2

604.9

603.9

614.8

614.1

618.2

628.9

647.6

650.7

678.6

702.0

740.3

738.9

691.5

659.2

595.3

595.4

564.3

464.6

502.3

506.5

533.0

552.3

563.6

564.8

573.7

it/TV1 max

6.66

9.13

-18.79

-13.43

16.65

13.50

16.23

16.35

12.41

11.88

10.71

7.91

7.75

6.44

7.54

8.68

10.56

7.34

7.77

7.46

17.34

18.27

14.15

-20.13

-2.91

-1.54

-2.67

-1.10

-0.47

-1.61

-1.47

ErrpDo

-2.42

-1.28

-18.79

-13.43

4.02

-0.11

7.10

6.89

8.48

7.71

6.41

8.51

12.11

6.99

9.12

11.04

5.29

0.07

6.24

8.10

9.52

9.28

3.15

-27.95

-19.90

-12.69

-18.47

-11.22

-3.79

-6.05

-5.37

STD

11.83

11.08

0.00

0.00

12.53

13.63

12.22

12.76

10.96

11.59

11.97

4.10

7.79

3.38

6.82

18.54

9.45

5.36

4.74

4.04

12.65

14.44

16.27

12.16

8.55

4.35

10.79

11.81

6.46

8.39

7.91

...continued on next page.

Page 189: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

152

Run#

5291

5292

5293

5294

5295

5296

5297

5298

5302

5303

5304

5305

5306

5307

5308

5309

5310

5311

5312

5313

5314

5315

5316

5317

5318

5319

5367

5368

5369

5370

5371

G

1953.

1967.

1980.

1953.

1980.

1994.

1994.

1980.

2577.

2577.

2563.

2577.

2577.

2509.

2577.

2550.

2550.

2550.

2536.

2536.

2550.

2523.

2523.

2523.

2523.

2563.

3852.

3852.

3852.

3852.

3852.

Tin

263.

266.

265.

266.

264.

265.

266.

261.

266.

268.

267.

267.

267.

266.

264.

265.

266.

263.

265.

265.

267.

264.

265.

266.

264.

267.

274.

273.

271.

273.

274.

Pwr

229

233

237

242

230

219

213

210

223

219

226

229

231

232

241

243

249

250

257

265

259

246

239

230

229

229

281

287

290

298

300

CHFcor

0.7180

0.6061

0.7471

0.6852

0.8062

0.7318

0.7879

0.7353

0.7966

0.7819

0.8033

0.8323

0.8325

0.8677

0.8419

0.9061

0.7925

0.8427

0.8122

0.8186

0.7834

0.8228

0.8707

0.8686

0.8526

0.9400

1.1698

1.1105

1.0616

1.2303

1.1730

TMaxExp

602.7

607.9

601.0

618.6

586.3

566.7

552.2

535.3

494.7

492.0

511.8

517.2

531.5

538.4

546.7

554.2

565.2

567.6

581.9

595.1

579.2

557.0

573.4

519.2

501.7

494.1

424.3

493.6

495.3

509.6

515.5

•* MaxCode

588.3

608.5

595.2

612.7

579.8

566.8

552.2

539.3

399.3

397.1

487.4

488.6

510.8

515.2

537.0

537.3

554.8

551.7

565.0

575.4

569.6

550.1

536.5

492.2

456.6

403.0

337.8

460.2

482.6

484.5

503.3

"''f-'mdi

-2.38

0.11

-0.96

-0.96

-1.11

0.02

0.00

0.75

-19.28

-19.29

-4.77

-5.53

-3.90

-4.30

-1.77

-3.05

-1.83

-2.80

-2.91

-3.32

-1.65

-1.24

-6.43

-5.20

-8.98

-18.43

-20.38

-6.76

-2.56

-4.92

-2.36

ErrpDo

-5.63

0.36

-3.93

-2.02

-4.87

-3.88

-9.90

-12.13

-24.41

-24.72

-14.66

-17.15

-15.81

-15.99

-9.90

-10.76

-4.75

-5.87

-5.17

-5.26

-4.08

-4.08

-10.17

-16.79

-12.99

-24.12

-20.38

-17.18

-9.03

-14.12

-8.12

STD

7.36

3.66

6.26

1.74

7.60

7.57

11.93

6.52

5.12

5.71

7.95

10.39

11.52

12.24

12.05

12.63

7.96

9.09

8.01

7.67

6.98

8.51

14.18

10.88

4.77

5.69

0.00

11.61

8.84

12.72

11.85

.continued on next page.

Page 190: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

153

Run#

5372

5373

5374

5375

5376

5377

5378

5379

5380

5381

5382

5383

5384

5385

5386

5388

5389

5390

5391

5392

5393

5394

5395

5396

5397

G

3852.

3852.

3852.

3838.

3852.

3811.

3811.

3798.

3852.

3825.

3852.

3906.

3892.

3906.

3892.

5181.

5181.

5167.

5181.

5154.

5140.

5181.

5181.

5235.

5181.

Tin

274.

273.

274.

274.

271.

270.

272.

274.

273.

277.

271.

271.

274.

271.

271.

270.

270.

271.

270.

274.

270.

271.

271.

267.

270.

Pwr

307

309

323

322

341

344

348

377

373

344

322

316

305

300

291

359

358

368

366

367

374

388

394

404

406

CHFcor

1.1281

1.1418

1.1437

1.0631

1.0329

1.0522

0.9797

1.0862

1.1782

1.1935

1.1653

1.3102

1.3514

1.2710

1.2351

1.3156

1.2048

1.3011

1.2394

1.1918

1.1673

1.1405

1.1219

1.1024

1.0745

J- MaxExp

521.7

526.9

545.9

545.6

555.9

571.8

584.6

644.1

614.5

567.6

536.0

522.2

508.8

498.3

428.9

427.1

482.4

494.9

500.0

498.8

509.2

524.2

529.4

537.8

543.4

-* MaxCode

514.5

515.8

529.3

533.8

554.8

559.1

571.0

594.6

577.9

548.9

527.2

509.9

485.3

433.9

339.2

337.4

444.1

463.3

463.7

483.6

491.9

502.5

509.3

515.4

524.9

•EsTf'J- max

-1.38

-2.12

-3.04

-2.16

-0.21

-2.22

-2.32

-7.68

-5.96

-3.29

-1.64

-2.36

-4.62

-12.93

-20.91

-21.00

-7.94

-6.39

-7.25

-3.05

-3.39

-4.14

-3.79

-4.16

-3.40

ErrPDO

-3.32

-3.85

-1.83

-0.65

0.69

-1.07

1.52

-0.47

-0.19

-0.39

-3.64

-8.71

-13.97

-19.27

-20.91

-21.00

-9.77

-12.41

-13.48

-2.44

-4.32

-4.23

-1.50

-1.52

-2.00

STD

9.52

9.87

10.86

4.24

2.31

4.18

3.88

5.92

5.33

4.36

8.53

12.41

12.60

9.23

0.00

0.00

7.53

12.83

12.64

7.14

8.92

8.80

4.76

10.34

4.46

Page 191: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

154

IV. 2 Temperature-B ased-Methodology

IV.2.1 Errors and Maximum Temperatures

Table IV.2: Errors and Maximum Temperatures for the 5.56 m Test Sec­

tion Using a Temperature-Based Methodology

Run#

5239

5240

5241

5242

5243

5244

5245

5246

5247

5248

5249

5250

5251

5252

5253

5254

5255

5256

5257

5258

5260

5261

5262

G

kg m2s

1356

1356

1370

1356

1356

1356

1356

1356

1356

1261

1356

1356

1356

1356

1356

1343

1356

1356

1356

1370

1044

1044

1044

Tin

[°C]

260

260

261

261

263

262

263

260

259

261

260

263

262

263

265

267

269

270

271

271

260

260

261

Pwr

[kW]

166

167

168

170

174

174

177

180

186

189

194

202

214

209

199

185

176

172

169

163

147

150

150

CHFcor

0.5780

0.5948

0.5797

0.5620

0.6519

0.5722

0.5963

0.5437

0.5579

0.7188

0.6080

0.5428

0.5452

0.6205

0.6542

0.6318

0.6509

0.6756

0.6706

0.6925

0.5959

0.5705

0.6008

TMaxExp

[°C]

485.8

492.6

507.4

527.9

549.3

554.5

566.3

577.5

596.1

604.2

616.3

627.2

650.8

638.2

610.7

579.6

552.7

533.0

512.5

453.9

454.9

498.6

492.7

-*-maxCode

[°C]

552.1

552.3

554.9

565.0

563.8

573.7

577.7

596.1

610.9

616.6

624.0

660.2

697.0

661.5

629.8

596.7

568.5

557.2

551.0

527.0

575.2

587.9

583.8

• ^ ^ m a x

[%]

13.64

12.12

9.35

7.03

2.64

3.46

2.01

3.22

2.49

2.06

1.25

5.26

7.10

3.66

3.12

2.96

2.86

4.54

7.51

16.10

26.45

17.90

18.50

ErrpDo

[%]

15.97

12.70

10.66

13.83

4.96

10.06

6.85

9.98

4.96

3.45

1.25

2.48

1.83

0.72

2.01

5.32

6.79

7.23

10.95

16.10

26.45

20.97

20.16

STD

[%]

2.33

0.58

1.61

9.36

1.93

9.01

5.31

12.23

6.76

3.43

4.34

7.40

9.06

3.39

4.18

4.66

4.20

2.41

3.83

0.00

0.00

3.69

1.24

...continued on next page.

Page 192: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

155

Run#

5263

5264

5265

5266

5267

5268

5269

5270

5271

5272

5273

5274

5275

5276

5277

5278

5279

5282

5283

5285

5286

5287

5288

5289

5290

5291

5292

5293

5294

5295

5296

G

1004

1017

1004

1004

1004

1004

1004

1004

1004

1004

1017

1031

1031

1017

1031

1017

1044

1939

1939

1953

1953

1953

1953

1953

1953

1953

1967

1980

1953

1980

1994

Tin

261

258

260

261

260

261

262

262

261

262

260

264

261

261

260

262

261

268

268

265

264

264

264

265

265

263

266

265

266

264

265

Pwr

152

153

155

155

157

160

164

168

176

184

203

215

189

175

155

153

152

190

193

197

203

206

209

213

218

229

233

237

242

230

219

CHFcor

0.6308

0.6065

0.6158

0.6249

0.6471

0.6095

0.5111

0.6152

0.5333

0.5023

0.5421

0.9306

0.6748

0.6995

0.6758

0.6735

0.6360

0.6284

0.6472

0.6500

0.6900

0.6662

0.6144

0.6741

0.6776

0.7180

0.6061

0.7471

0.6852

0.8062

0.7318

T-MaxExp

520.4

519.0

546.9

548.9

558.4

582.8

601.0

611.3

631.0

645.9

669.6

688.4

641.6

613.4

507.3

503.4

494.3

581.7

517.3

514.4

547.6

558.5

566.3

574.1

582.3

602.7

607.9

601.0

618.6

586.3

566.7

TMaxCode

598.3

599.9

608.9

607.6

610.5

624.7

659.9

648.7

686.7

717.6

759.9

721.1

688.1

651.3

593.3

592.0

585.3

530.7

536.7

542.7

551.7

559.2

570.5

572.2

582.0

601.2

626.7

611.7

635.3

591.9

574.5

•CJTTlmax

14.96

15.59

11.34

10.70

9.32

7.19

9.80

6.11

8.83

11.10

13.49

4.75

7.24

6.18

16.96

17.60

18.41

-8.77

3.74

5.50

0.75

0.12

0.74

-0.34

-0.04

-0.26

3.09

1.78

2.71

0.95

1.38

ErrpDo

18.51

19.44

15.28

14.07

12.24

9.36

10.66

6.87

6.99

9.60

5.12

-6.89

4.19

7.17

24.30

23.13

22.67

-0.89

3.96

15.55

1.39

1.65

3.06

0.18

0.10

-0.42

2.59

1.31

0.16

0.73

2.55

STD

3.73

3.49

5.50

4.43

3.69

4.29

10.18

6.38

9.35

22.32

11.43

15.02

5.63

6.04

6.55

4.37

3.92

8.98

1.06

14.51

0.67

1.49

3.73

0.90

1.30

1.94

7.58

3.48

2.61

1.65

1.93

continued on next page.

Page 193: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

156

Run#

5297

5298

5302

5303

5304

5305

5306

5307

5308

5309

5310

5311

5312

5313

5314

5315

5316

5317

5318

5319

5367

5368

5369

5370

5371

5372

5373

5374

5375

5376

5377

G

1994

1980

2577

2577

2563

2577

2577

2509

2577

2550

2550

2550

2536

2536

2550

2523

2523

2523

2523

2563

3852

3852

3852

3852

3852

3852

3852

3852

3838

3852

3811

Tin

266

261

266

268

267

267

267

266

264

265

266

263

265

265

267

264

265

266

264

267

274

273

271

273

274

274

273

274

274

271

270

Pwr

213

210

223

219

226

229

231

232

241

243

249

250

257

265

259

246

239

230

229

229

281

287

290

298

300

307

309

323

322

341

344

CHFcor

0.7879

0.7353

0.7966

0.7819

0.8033

0.8323

0.8325

0.8677

0.8419

0.9061

0.7925

0.8427

0.8122

0.8186

0.7834

0.8228

0.8707

0.8686

0.8526

0.9400

1.1698

1.1105

1.0616

1.2303

1.1730

1.1281

1.1418

1.1437

1.0631

1.0329

1.0522

J-MaxExp

552.2

535.3

494.7

492.0

511.8

517.2

531.5

538.4

546.7

554.2

565.2

567.6

581.9

595.1

579.2

557.0

573.4

519.2

501.7

494.1

424.3

493.6

495.3

509.6

515.5

521.7

526.9

545.9

545.6

555.9

571.8

J- MaxCode

559.9

558.9

504.5

499.2

514.8

516.3

521.0

528.4

536.8

539.4

559.1

554.5

574.7

590.4

584.0

552.6

538.2

521.9

518.2

503.9

449.1

500.5

510.4

505.5

513.3

528.7

530.3

552.8

564.3

597.5

600.5

H/TTl max

1.39

4.41

1.98

1.47

0.59

-0.17

-1.97

-1.86

-1.81

-2.67

-1.08

-2.32

-1.24

-0.80

0.83

-0.80

-6.13

0.52

3.30

1.99

5.84

1.39

3.04

-0.81

-0.43

1.34

0.64

1.26

3.42

7.49

5.02

ErrpDo

2.70

10.87

2.39

1.25

4.09

0.51

-1.38

-1.37

-0.38

-1.46

-0.23

-0.97

-0.55

-0.49

0.49

0.94

-1.10

1.02

12.33

1.48

5.84

3.63

10.23

1.44

3.04

3.50

2.93

4.62

6.96

5.89

3.72

STD

1.26

9.94

0.40

0.58

5.80

1.18

1.49

2.01

1.83

2.10

1.70

1.61

1.55

1.74

2.40

1.56

3.66

1.53

12.53

0.51

0.00

2.87

9.68

3.71

2.99

2.75

2.95

5.23

9.68

5.28

2.79

...continued on next page.

Page 194: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

157

Run#

5378

5379

5380

5381

5382

5383

5384

5385

5386

5388

5389

5390

5391

5392

5393

5394

5395

5396

5397

G

3811

3798

3852

3825

3852

3906

3892

3906

3892

5181

5181

5167

5181

5154

5140

5181

5181

5235

5181

Tin

272

274

273

277

271

271

274

271

271

270

270

271

270

274

270

271

271

267

270

Pwr

348

377

373

344

322

316

305

300

291

359

358

368

366

367

374

388

394

404

406

CHFcor

0.9797

1.0862

1.1782

1.1935

1.1653

1.3102

1.3514

1.2710

1.2351

1.3156

1.2048

1.3011

1.2394

1.1918

1.1673

1.1405

1.1219

1.1024

1.0745

J- MaxExp

584.6

644.1

614.5

567.6

536.0

522.2

508.8

498.3

428.9

427.1

482.4

494.9

500.0

498.8

509.2

524.2

529.4

537.8

543.4

J MaxCode

616.0

636.8

617.7

585.4

548.6

520.0

502.8

498.5

468.7

320.8

453.6

462.6

463.8

482.1

491.5

505.5

514.1

524.7

535.2

H/TV1 max

5.37

-1.14

0.53

3.13

2.35

-0.42

-1.18

0.03

9.28

-24.90

-5.98

-6.52

-7.23

-3.35

-3.47

-3.58

-2.89

-2.44

-1.50

Errpoo

6.43

3.34

3.77

3.41

3.29

2.34

0.59

2.75

9.28

-24.90

-5.43

-9.18

-9.75

-0.19

-1.66

-0.69

3.12

3.39

1.49

STD

8.52

3.14

2.61

2.31

1.67

3.03

3.79

3.12

0.00

0.00

7.38

13.78

13.45

4.54

4.16

5.17

8.21

7.50

4.10

Page 195: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

IV. 3 Figures

158

O • •

ZJ

"CD i _ CD Q.

E CD CD O

CO

o CD i _

"co i_ CD Q.

E CD

+•> CD O

•i CO

o 0 1 _

* - <

2 CD Q.

E CD *-• CD O

•E CO

Experiment 5239: G=1356 kg/nrTs, P= 166 kW

800 700 600 500 400 300

I I I I I Bennett +

(WSR-1) Rea(WSR-1) L . . .

^

0 2 3 4

Heated Length [m]

Experiment 5240: G=1356 kg/rrTs, P= 167 kW

800 700 600 500 400 300

1 1 Bennett

(WSR-1) Rea(WSR-1)

+

• * - i

\r—\—+-^- •n+"-4^~+f =—I—'-+=—H— H—=^—j—hH-Hft*H=p - |

0 1 2 3 4

Heated Length [m]

)=L Experiment 5241: G=1369 kg/nrTs, P= 168 kW

800 700 600 500 400 300

1 1 Bennett

(WSR-1 Ren WSR-1

t ^H - -4 - - ^^ - ^+T^H- - -4H^~^~~ : t '

• • • # • - - - H

—HH~Hfoff^- - |

0 2 3 4

Heated Length [m]

Figure IV. 1 Experiments 5239, 5240 and 5241

Page 196: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

159

CD

o •§ CO

o i _

• - •

2 o CL E o CD O

€ CO

o CD i _

*-• 2 Q.

E CD

4—i

0 O

CO

800 700 600 500 400 300

& Experiment 5242: G=1356 kg/m2s, P= 170 kW CD i _

2 CD

E" 500 U ' " ^ ^ ^ : V ^

Bennett Q-based T-based

^ • H - - ^ — \ — + - -^—p. _ - j _ — ^ — ^ , —-)^4J^JJ^Sj±[L-

0 2 3 4

Heated Length [m]

h i Experiment 5243: G=1356 kg/nrTs, P= 174 kW

800 700 600 500 400 300

Bennett Q-based T-based .^ . .J

^-+-4"- + . . - ^ - ^ ^ - ^ ^ ~ ^ - ^ ^ - 4 ^ - H ~ i f f c p '

0 1 2 3 4 5 6 Heated Length [m]

Experiment 5244: G=1356 kg/m2s, P= 174 kW

800 700 600 500 400 300

1 1 — Bennett +

Q-based T-based

H/..

0 2 3 4

Heated Length [m]

6

Figure IV.2 Experiments 5242, 5243 and 5244

Page 197: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

160

O

CO

O

i _

2 CD Q.

E * - < <D O

CO

Experiment 5245: G=1356 kg/nrTs, P= 177 kW tu

re

pera

E CD

Sur

face

o

ture

pe

ra

E CD *-• <D O

800 700 600 500 400 300

E

800 700 600 500 400 300

Bennett Q-based T-based

+

• #

^-^P - ^-—ij~ -^. -^-4. j - r^~+- --f-p^- --~^~j H"H*4j

0 1 2 3 4 5 6

Heated Length [m]

fci Experiment 5246: G=1356 kg/m2s, P= 180 kW

I I Bennett +

Q-based T-based

l l l

r-+-+-4"-^-=t--+f^r -K-+n =r""f-~~=P*H

'$m— - + + - H H —

0 2 3 4

Heated Length [m]

6

h i Experiment 5247: G=1356 kg/rn^s, P= 186 kW

800 700 600 500 400 300

Bennett Q-based T-based

+

fi—i—^—r -^JT"r-~t~~"H=F~ t-~

HrV ^ r+

H-----]--

0 2 3 4

Heated Length [m]

Figure IV.3 Experiments 5245, 5246 and 5247

Page 198: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Surface temperature [C] Surface temperature [C] Surface temperature [C]

v TO C i-t a> HH

r< •t*

tn X

T3 CD 1-4

3 CD

s c« U l K> - J ,5

2

• & •

VC

3 &

Lrt O

I CD 0) «—H

CD Q.

I -

CD Z5

(Q I T , , 3

CO 4^CJl O) -<4 00 O O O O O O O O O O O O

ro

CO

en

o>

J T~i

i

4

i i i

- " D m i i ro

CTCT CD 0) 0) 3 Cfl CO 13 CD CD CD Q - Q - S

+

'-F<

I I I I I I

m X ~o CD

3 CD

I—I-

cn cn o

G) ii

CO

cn

CO

N> CO

"0 II

o ro

I CD 0) i - i -CD Q.

r~ CD Z>

CQ

N>

cn

o>

co ji* cn o> •< oo o o o o o o o o o o o o

4 I

1 1... 1 I I

4 4

t

T~T I I I

I I CD DTJTCD Q) Q) D C/> C/> Z3 CD CD CD Q . Q . S

m X

"O CD —t

3 CD 3 <—K

cn

CO

G) II

CO

cn O) 7?

(Q • ^ • s

3 IO

(n T3 II

_!. CD -&>

I CD 0) CD Q. I -

13 CQ

^ ^ 3 u—J

N>

CO

cn

a

co 4 cn o>-NI co o o o o o o o o o o o o

t[ I :

1 1

4 : <

1 I + : - f 1 :

-f ' 4 ! i-t-i ;

4 -I : ^r

i ' - t :

i i

i i i

1 1 GO C7CTCD 0) 0) 3 U) W D CD CD CD Q - Q - P t

1 j —

1 ! + i •

4

i

—;—

m x CD

3' CD 3_

cn N) -P* oo

Q II ho o 7T

CQ

tn

"0 II

00 CO

Page 199: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Surface temperature [C] Surface temperature [C] Surface temperature [C]

CD

1—K

CD Q .

I -

CD

CQ

N>

CO

co j * . en O) ~>J c» o ooooo o ooooo

en h

05

4 i i-+ + 4 i

i r i i i - < D m I I 00 C T C T CD QJ Qj 3 _ CO W 3 CD CD CD Q .Q . S

I I I I I I I

m X

•o CD

3' CD

«-• cn ro en co

CD ii

CO

en

CQ

CO

"0 II

i. CD CD

I CD

S-CD* Q .

I -

CD

CQ

KD

CO

en

O)

co 4 . en o> ->J c» o o o o o o o o o o o o

T~r

+

i

4.

i i i -I°m I I CD era -CD Q) Q) 3 co w ^ CD CD CD Q - Q - S

I I

I

m X

• a CD

1' CD •—f

en ro CJl ro CD II

CO

en

CQ

CO

T l II

ND O CD 7T

I CD Q}

CD Q . r -

CD 13

CQ I—K

ro

co

en

o>

co j ^ en a> -g oo o o o o o o o o o o o o

T 4 + H-4 4

t 4

+ i

T~T i i i

I I CD CTCT CD Q) Q) D CO CO 3 CD CD CD Q - Q - P t

+

^ - t - r

I I I I l _ L

m x

• a CD

3' CD

en ro en

CD I I

co en

CQ

ro CO

T l II ro

7T

Page 200: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

0 o •g =5

CO

£ Experiment 5254: G=1342 kg/m2s, P= 185 kW o u

Q.

£

800 700 600 500 400 300

Bennett + Q-based T-based

|r-^--^^r"^-^r-+f T~-^~-Hrti~ -—f--

-•V _4^Ff^-

0 2 3 4

Heated Length [m]

800 700 600 500 400 300

1 r Bennett

Q-based T-based

£ Experiment 5255: G=1356 kg/m2s, P= 176 kW i _ 13 03 i _ <D Q .

E CD O

f 0 1 2 3 4 w Heated Length [m]

•fl L f e ^ : . . . _

f^~^~^^~^+f^H^~H=~fo~ ,f~y'~'j—gH"f*Ht

^ Experiment 5256: G=1356 kg/m2s, P= 172 kW CD i _

-4-'

CD Q .

E

CD O

*§ 0 1 2 3 4 Heated Length [m]

800 700 600 500 400 300

1 1— Bennett +

Q-based T-based

-*-JT-K- -4^-"t--~r--+-j=H*t°

: ,'i

Figure IV.6 Experiments 5254, 5255 and 5256

Page 201: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5257: G=1356 kg/rrTs, P= 169 kW

800 700 600 500 400 300

I I Bennett +

Q-based T based

i i i

t—+-+-Hr""*7"~=t:r"+t ^r—t-

....*£*-... # ^

0 2 3 4

Heated Length [m]

Experiment 5258: G=1369 kg/nrTs, P= 163 kW

800 700 600 500 400 300

1 Bennett

Q-based T-based

+

^ ^ - t - - j-... .-.^-...-+T^.^^^ ....

0 1 2 3 4 Heated Length [m]

Experiment 5260: G=1044 kg/nrTs, P= 147 kW

800 700 600 500 400 300

1 1 — Bennett +

Q-based T-based

p~~i—-+—>i—K

+ 4*

--¥-f¥-^--~^r~j—hf-HHrt-^W 1

0 2 3 4

Heated Length [m]

Figure IV.7 Experiments 5257, 5258 and 5260

Page 202: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

165

CD

o

CO

& Experiment 5261: G=1044 kg/m2s, P= 150 kW

? CD Q .

£ CD

800 700 600 500 400 300

I I I I I Bennett +

Q-based T based /

/ J . . . . -itV~

7 i

, J. ; , M

+ : : : '-' 0 2 3 4

Heated Length [m]

Bennett Q-based T-based

£ Experiment 5262: G=1044 kg/m2s, P= 150 kW CD

cc 1 _

CD Q .

E CD

-t-> CD O

*§ 0 1 2 3 4 Heated Length [m]

800 700 600 500 400 300 ^ - i . * ^ * — =t— ™ji ~=|= - —=j= = -""1" "T±r—-J""- ~~-±:—pfc~ ^M—"=4="" "•

•if-

—N -H-Mtr- -' ~

£ Experiment 5263: G=1003 kg/m2s, P= 152 kW

"(D 1 _ CD Q .

E CD

+-> 0 O

f 0 1 2 3 4 Heated Length [m]

800 700 600 500 400 300

I I

Bennett + _ Q-based

T-based

I I I

_

=ti~-+-~=f="~l —HH-4-+|

...L:

IJ T

Figure IV.8 Experiments 5261, 5262 and 5263

Page 203: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

166

0 o

CO

£ Experiment 5264: G=1017 kg/m2s, P= 153 kW

cc 1 _ CD Q .

E CD

800 700 600 500 400 300

I I Bennett +

_Q-based T-based

I I I

^~~4-_+—Ip^'""=t=^~ =fy-=p-H=-

___i ' : : / ' : ; /-'

0 2 3 4

Heated Length [m]

o tL Experiment 5265: G=1003 kg/rrTs, P= 155 kW 8>

CO i _ CD Q .

E CD

•*->

CD O

• i CO

800 700 600 500 400 300

I I I I I Bennett +

Q-based T-based

\~' + + li )• + 4~j H- H~ + =(. ^ _ j _ —h+'t - !1^

,/W-/ ,' / ,

0 2 3 4

Heated Length [m]

£ Experiment 5266: G=1003 kg/m2s, P= 155 kW CD i _

* - >

CD Q .

E CD

-I—» CD O

| 0 1 2 3 4 5 Heated Length [m]

800 700 600 500 400 300

I I Bennett +

Q-based T-based

1 1 1

:

1—•+--+- f—t—-i=—+7-=l=— 1—+~ff~ *f-—-=(=- -| —hf -H«h

4/W 1 ' 1 , / . ' -

Figure IV.9 Experiments 5264, 5265 and 5266

Page 204: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Surface temperature [C] Surface temperature [C] Surface temperature [C]

31 OP* c i-t CD

o ffl X CD

3 CD 3 CO

to Os - J

Lft 268

I CD 0) 1—H CD Q. r— CD

CO

to ON

N>

CO

cn

CD

co -&»• cn CD 100 0 0 0 0 0 0 0 0 0 0 0 0

4 4

i 4

1

+

+

-i 4

•5- * i4

1 1 1 1

I I CD CTCTCD 0) 0) " 3 . CO CO 3 CD CD CD Q - Q - f l :

+

+ . -:H.

i. J I I I I I

X • 0 CD —1

3 CD 13 <— cn

CD CO

CD 11

0 0 CO 7T

CQ

I (D ID CD CL I -

CD 3

CD th

-0 II

CD

co j ^ cn CD -si 00 0 0 0 0 0 0 0 0 0 0 0 0

N>

CO

3 *

cn 1

CD

-f 1 1 1 1 1 4

1

"t 4-+ 4 +

— 1 —

4

\

4 - ) - - - -

1 i 4 4 -i -i ^ -

J

*" - -t

- l D m 1 1 CO CTC7CD 0) 0) "3 CO CO 3 CD CD CD Q . Q . S ; !

1 j —

1 1 +

\-Vl+^ Sr

$

1

m X

• 0 CD - i

3 0 3 <— Ul

CD 00

CD II

X.

0 0 CO

CQ • ^ ^ .

3 N3

w

"D II

_^ CD 0

I CD ID CD Q. I -

CD 3

CQ 3"

1 1

3 • — •

KD

CO

Ol

CD

co 4^ cn CD 1 c» 0 0 0 0 0 0 0 0 0 0 0 0

T I

4 U--

i

4 4 +

4 H-1

K I

1 1 1 1 - | D m I I CD CJCTCD

CO CO 3 CD CD CD Q - Q - S

^ i F

+

m x -o CD

3" 0

cn IV) CD ^s|

CD 11

o o CO

CQ

N> Cf)

TJ II

cn • s j

Page 205: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Surface temperature [C] Surface temperature [C] Surface temperature [C]

3 era'

I s

to - J p

-J

a. to

co -p*. cn a> -^i oo o o o o o o o o o o o o

(D

21 CD" Q . I -

CD

(Q

zr

N )

CO

^ h

en M

CT>

T~T

4

-+

T I I " < 0 m I I CO o-cr CD 0) CD ZJ . (/) C/) 3 CD CD CD Q . Q . S

+

I ' ' I I I

m x T3 0

3' CD ZJ

en

[O

Q I I

o o CO ?c

CO

(P

II

00 -p*

I CD 03 #-» CD Q .

I -

CD ZJ (£ zr

K3

cn

o>

w-P^ cn o) ^ i oo o o o o o o o o o o o o

r +

H 4 4 +

I 4

CO qt"

4 ^. 4-

i i i i

I I CO era-CD Q) Q) Z J . CO C/3 ZJ CD CD CD

+

J I L

m X

• a CD

3' CD ZJ

cn

o II o o CO 7T

CQ

IVJ (fi

0

2. CD" a . f— CD ZJ

CO

NO

co-P*. cn a> i oo o o o o o o o o o o o o

T + 4 rf 4 4 4 4

co |4 i

4 4

* 4

cn M

05

t.

I I I I

-l°m I I CD era -CD 0) Q> ZJ _ w w ZJ CD CD CD Q - Q - : = f

+

• + *

-p

I I I I I I

m X CD

3' CD ZJ r-t-

cn ^1 o

G) II

o o CO

(Q

_C/)

TJ II

00

Page 206: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

1

/

Surface temperature [C] Surface temperature [C] Surface temperature [C]

TI OQ C <-t n> >—i

t< | _ L

to ffl X

CD -s

3 3 f-+-t/1 527

U)

u i 274

to 3 &. U i ls> - J Lrt

I CD 0) ted

i -

o 3 CQ 1—K

3" • •

,3,

ro

w

oo 4 . cn o ^ i oo o o o o o o o o o o o o

+

4

oi h

05

1 +

i 4

H"

+ i i i i

I I I

i i CD CTC7CD

CO CO (D CD Q . Q .

3 =3 CD

f

+

m x • D CD

CD 3^

Cn

^1 cn O ii

V

o oo o

CO

"0 II

00 CD

I CD

CD Q.

I -

CD 3

CQ

N>

CO £» O I O) -*J C» O O O O O O O O O O O O

A 4

4 I

4

• ^ h

Ol

C)

T - r

4

k

I I I

-I°m I I CD CT CT CD 0) 03 3 1 / 1 ( 0 3 CD CD CD Q - Q - S

+

1/ I 'I 'I -F

I I I i l _ L

m X CD

CD 3

cn

CD II o CO

o 7T

CQ

W

"0 II

cn

co j ^ cn a) ^J oo o o o o o o o o o o o o

I CD 0) i—h CD Q. I -

CD 3

CQ

i

^ 1 _ i

4 4

- i + +

CO ^

•P^

Ol

+--

i

- • > . „

Ben

Q-ba

T-ba

C/) CO 3 CD CD CD 0 - 0 - 3

; ' +

+T-^

: ' : : +, : +

4 i i

Page 207: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5276: G=1017 kg/rr/s, P= 175 kW

800 700 600 500 400 300

Bennett Q-based T-based

|t--4—+—t"H—-=F-;

+

+ ^+-H#----J

+

--f^pf-Tp- .-^'

0 2 3 4

Heated Length [m]

6

Experiment 5277: G=1030 kg/rrTs, P= 155 kW

800 700 600 500 400 300

1 — 1— Bennett +

Q-based T-based #r-H

r—'—= —^ r— t—"'' —" r t=— °—H=—HF—^ - •f-"i=pH--trH1-

0 1 2 3 4

Heated Length [m]

Experiment 5278: G=1017 kg/nrTs, P= 153 kW

800 700 600 500 400 300

1 Bennett

Q-based T-based

+

" # f '

y—^.-^-^^-^^^^-+---^^1-^—-^-^^-^f-

0 1 2 3 4 5

Heated Length [m]

Figure IV. 13 Experiments 5276, 5277 and 5278

Page 208: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

171

£ Experiment 5279: G=1044 kg/m2s, P= 152 kW CD i _

0 Q. E

_CD

<D o

CO

o

"CD i _ CD Q . E £ o

CO

o CD i _

+-»

2 CD Q .

E CD

* - > CD O

•i CO

800 700 600 500 400 300

1 1 —

Bennett + Q-based T-based

"-ft-.+-• 1 ^ , ^ - ^ ^ . - ^ - - ^ - ^ . ^ . - ^ ^ - ^ - - ; ^ - ^ - = | = ^4 - -^4y^^

0 1 2 3 4

Heated Length [m]

b i Experiment 5282: G=1939 kg/nrTs, P= 190 kW

800 700 600 500 400 300

1 1 —

Bennett + Q-based T-based

l^_^.-^—|j—^_^—.^j

--+-• • * ~ ~ - \

-H+-4-——j—h+4~HrH^- 1

0 2 3 4 Heated Length [m]

y . Experiment 5283: G=1939 kg/nrTs, P= 193 kW

800 700 600 500 400 300

1 1 —

Bennett + Q-based T-based -H#.-J

—(--4.—hj-^|=—I—H~~[=^~ 4 = - — - j l-f - \ • I • -[-j-p .+--0 1 2 3 4

Heated Length [m]

Figure IV. 14 Experiments 5279, 5282 and 5283

Page 209: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5285: G=1953 kg/rrTs, P= 197 kW

800 700 600 500 400 300

Bennett Q-based T-based

+

-+~Hi™' -+j_

. . * . - - J

~H°—f=t — r ^—HHHH-pfH1 - '

0 2 3 4

Heated Length [m]

Experiment 5286: G=1953 kg/rrTs, P= 203 kW

800 700 600 500 400 300

Bennett Q-based T-based

+

^—|r"H-—•+•—K=|=—I—+~T+- -* f - "™ ~J" ~ H "

- f w

0 2 3 4

Heated Length [m]

Experiment 5287: G=1953 kg/rrTs, P= 206 kW

800 700 600 500 400 300

I I Bennett +

_ Q-based T-based

I

f-+-+—lj—I—•+—hf-=f=—I 1

1 1

+- + - - • IH"H~t i

+$* Li. '/ '{

0 2 3 4

Heated Length [m]

6

Figure IV. 15 Experiments 5285, 5286 and 5287

Page 210: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5288: G=1953 kg/rrTs, P= 209 kW

800 700 600 500 400 300

1 Bennett

Q-based T-based

|i—h-+-Hj—h

*, ,^-w+t-

•+~j+~^h" \'~ '\'+'\' f • ~ y

0 2 3 4

Heated Length [m]

Experiment 5289: G=1953 kg/rrTs, P= 213 kW

800 700 600 500 400 300

1 Bennett

Q-based T-based

+

++,-H^-

-^-Hj-—I—+~—I—|- t=—\—"h-pt- t-——j—HH"^" "j"'

0 2 3 4

Heated Length [m]

Experiment 5290: G=1953 kg/nrrs, P= 218 kW

800 700 600 500 400 300

Bennett + Q-based T-based -+^WJ---

+™f—\—-i—+f ^—i—+-J+-- + -|F — H ^ -

0 2 3 4

Heated Length [m]

Figure IV. 16 Experiments 5288, 5289 and 5290

Page 211: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

174

O o

2 CD Q. E £ CD

o -e CO

o ZJ

2 Q.

E CD

CO

Experiment 5291: G=1953 kg/m^s, P= 229 kW

800 700 600 500 400 300

Bennett Q-based T-based

-+-Hj"-t---t~+t^—1--+-ff—1~~ J"

M± - - | - l - h r - -

«7 :

0 2 3 4

Heated Length [m]

Experiment 5292: G=1966 kg/rrrs, P= 233 kW

800 700 600 500 400

Si Experiment 5293: G=1980 kg/nrTs, P= 237 kW

CD O m t 3 CO

o CD i _

=5 CD (D Q.

E -22 CD

o

300

F

800 700 600 500 400 300

1 r Bennett

Q-based T-based

-, *++++4tt .-

-+~Hj-' 4—H—H

0 2 3 4

Heated Length [m]

i i

Bennett + Q-based T-based

-^-HpH-H"JT^--H-+-H~--=h-

T i

--+-+-0 2 3 4

Heated Length [m]

Figure IV. 17 Experiments 5291, 5292 and 5293

Page 212: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5294: G=1953 kg/rrTs, P= 242 kW

800 700 600 500 400 300

I I Bennett +

Q-based T based

1

-

1—+"-+"Hj-"+"- - +~+j-=t- f + + 4- -

1

- - - - ^ t -w i fe^ - - - - . -

/

i i -0 2 3 4

Heated Length [m]

Experiment 5295: G=1980 kg/nrs, P= 230 kW

800 700 600 500 400 300

1 1 1 Bennett +

Q-based T-based t"

-3KHpH--ij---t"j- :—I—H=-|= -—=f" f~++-f--

j-v '±\-t\-

0 2 3 4

Heated Length [m]

Experiment 5296: G=1993 kg/nrTs, P= 219 kW

800 700 600 500 400 300

I I I I I Bennett +

Q-based T based

i—f—=KHJ"-H-"i=t'—+j-=t=—1—+-|

+&**** : "" " '/

l + - + ~ : i> :

0 2 3 4

Heated Length [m]

Figure IV. 18 Experiments 5294, 5295 and 5296

Page 213: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

CD O

€ CO

£ Experiment 5297: G=1993 kg/m2s, P= 213 kW CD i _

=1 cc l _

CD Q .

E (D

800 700 600 500 400 300

i r Bennett

Q-based T-based ;+: ,+fcH--

-^—fr"°t^~^~4j^—I—'-¥-j¥-^ - f -^f^H^H"

0 1 2 3 4

Heated Length [m]

6

O

-I—* CD i _ CD Q .

E CD

+-* CD O

•i CO

Experiment 5298: G=1980 kg/nrTs, P= 210 kW

800 700 600 500 400 300

I I I I I Bennett +

Q-based T based

\ \-~ =f"^j- -+- - -+~~ +J rjr~H 4=-

yi^rr • " " " , 7

i * ' .... : : v

0 2 3 4

Heated Length [m]

£ Experiment 5302: G=2576 kg/m2s, P= 223 kW

=3

CD Q . E £ CD O

•e D

CO

800 700 600 500 400 300

1 1 — Bennett +

Q-based T-based

-+~ • - 4 — 4 — +J.

" + l " —

-4-J+-4- p^.1H^4-+j+44^

0 2 3 4

Heated Length [m]

Figure IV. 19 Experiments 5297, 5298 and 5302

Page 214: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

177

O J i Experiment 5303: G=2576 kg/nrTs, P= 219 kW

<D Q.

£ CD O

•e ZJ

CO

o

*-» CD i _ CD Q .

E CD CD O

•§ CO

o

^—»

CD Q .

E CD

•*->

CD O

•S =3

CO

800 700 600 500 400 300

I I

Bennett + Q-based T based

I

-

1 \- ^r"-\—\—t- +f=F"H

1 1

-+Tt- +—

-n-

—1—h-+—t—i—hrf-H-H"—

0 2 3 4

Heated Length [m]

i Experiment 5304: G=2563 kg/rrTs, P= 226 kW

800 700 600 500 400 300

1 1 — Bennett +

Q-based T-based

~*t*—lj~~4—+—hj' -+- j^-^-——j—H-f-H

0 2 3 4

Heated Length [m]

Experiment 5305: G=2576 kg/rrTs, P= 229 kW

800 700 600 500 400 300

Bennett Q-based T-based

4"~Hj" "+- ~+*~+j- --^—I-—H=-j4— 4-—;—\ H"

.-F^-J

^h -\

0 2 3 4

Heated Length [m]

Figure IV.20 Experiments 5303, 5304 and 5305

Page 215: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Surface temperature [C] Surface temperature [C] Surface temperature [C]

•n era e <~i n> >—< ^ K> i— l

m X

t3 n> i-i

3 3 CO

LA

o ON

U I 307

»> 3 O-L/i OJ O oo

I CD 0) 1—K CD Q. I -

CD 13

CO •—K 3 "

• •

3 11 HI

M

CO

Ul

05

00 £» CJ1 Q) ->J 00 oooooo oooooo

T 1

f M-

k-

+ I

i

i

T~r 1—I—I

i i co CTCTCD Q) Q) ZJ CD CD CD Q - Q - S

+

H-

m x

• a CD

3' CD

Ul 00 o 00

o II ro en

CQ

V)

"0 II

I CD 0) i—^

CD Q.

r -

CD

C Q

K>

00

3 *

cn

O)

oo^aio joo o o o o o o o o o o o o

I l :

1 i + --4 : 1

t i i i 4 i + * ! T........ i f i

J, . . . : . . . .

} i i

1 1 1 H 0 m i i no C7CTCD Q) Q) 3 _ c/> c/> Z J CD CD CD Q-Q-i=t

1 1

• i + : ;

1 l_l i

m x

• a CD

CD ZJ

en oo o 7>j

CD II

on o

CD

CQ ^

3 3

"0 II

N> 00 K>

o o ^ - c n o ^ j oo o o o o o o o o o o o o

I CD 0) I—K CD Q. I -

CD ZJ

(Q

N>

00

t ! i i 4 1 K-4 i

Li 4

w I

•! 4-t

en

a>

FT I I CD

a - a - CD 0) Q) ZJ_ c/> c/> Z J CD CD CD Q - Q - P t

+

I I I l _ l L

m X

• a CD

3' CD Z£ cn oo o O)

O I I

cn

a> 7T

CQ

(/>

"0 II

00

Page 216: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

0 o

CO

£ Experiment 5309: G=2549 kg/m2s, P= 243 kW Q)

"oo <D

£

800 700 600 500 400 300

Bennett Q-based T-based

-'-i--y

•+-4-*-Hp--+—4""+j--^—h-+-jt--4-—+—j—H-H-^)'

0 2 3 4

Heated Length [m]

£ Experiment 5310: G=2549 kg/m2s, P= 249 kW

o Q.

E

o CO

800 700 600 500 400 300

1 1— Bennett +

Q-based T-based +*&*%

\—+^^-^^^—i^,-^—|—+_^_^___=^-_j^_++^,.

0 2 3 4

Heated Length [m]

£ Experiment 5311: G=2549 kg/m2s, P= 250 kW !_

E Q.

E o

j—>

<D O

| 0 1 2 3 4 Heated Length [m]

800 700 600 500 400 300

I I I I I Bennett +

Q-based T-based

•I \- - 4-"Hj" ™+- -4---4y (=—I—+" •+-+"-+—|

frM-% f z1

" • " • [ • * ! • - I - - - - -|

Figure IV.22 Experiments 5309, 5310 and 5311

Page 217: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Surface temperature [C] Surface temperature [C] Surface temperature [C]

Ti era c >-f a> HH

<: N> U>

tn X

T3 CT 1-1

3' 3

_N3

U\

p 3 D-U> U>

I CD 21 CD" Q .

r -

CD

( Q «—»• ^-

l •

,3,

N>

Ol

O

co •**• a i o> ^ i oo oooooo oooooo

4

4

4

T

f 4

i i i r

- < D m I I 03 crcrcD Q) Q) 3 . C/> 0) 3 CD CD CD

+

-+

• i

J i i i i

m X • o CD - i

3 CD 3 *-* O l CO

Ji>

O II

N> O l ^ to 7T

CO

I CD U) CD Q .

r~ CD 3

CQ

N) C/)

oi CD

CO -P^ Ol 0> -vj 00 oooooo oooooo

N>

CO

3 *

Oi M

o>

T~T

1 K-4

4 + 4

. 1

pr 4 f k,4i

- | D m I I TO era-CD Q) Q) 3 C/> W 3 CD CD CD Q - Q - S

I J I L

m X " O 0 - 1

3 CD 3 *- O l CO

(O

O II

O l CO

o> CQ

• " • ^ .

3 CO

U)

"0 II

N> O) O l

7 T

I CD Q)

CD a. i -

ZJ CQ th

1 1

3 • — '

C0-fc>Ol 0 5 ^ 1 0 0 oooooo oooooo C_)

NT

CO

-&»•

O l

t 1 4 ;

J :

4 : -4 : T : 4 i

t \ + : _,......... 4 !

i :

4 i 1 :

4 i f !

J....:.... T"

t.i

i i

1 1 1

1 1 00 era-CD CO CO 3 CD CD CD Q . Q . S

; I I i — 1 > + ; i

- + ^

• • ? • -

L J

-

m x • a CD

3' CD <—H

O l CO

O II

ro O l CO OJ

CQ

KJ C/>

O l

7T

Page 218: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Surface temperature [C] Surface temperature [C] Surface temperature [C]

era

a

w x O

B o s <-*•

v>

U>

U\ U>

a.

I CD

Q.

I -

0 Z5

CQ

CO -P^ O l O) ^J 00 oooooo oooooo o

M

OJ

-p»

en

V. 1 4...:.... T

4 i + — 1 — ' —

t 1

i i

1 1 1

1 1 CO

era -o Q) Q) ZJ _ C/) CO 3 CD CD CD C O - P S

• 1 ' ! i ' ™ "

1 + ' 1

t

m X • D CD - 1

3 CD Z5 «-^ cn CO

• ^ i

Q ii

N> cn N3 ho 7T

CQ

I CD 11) CD Q . I -

CD 3

CQ ZT

W

"D II

K> CO O

N>

CO

Ol

CD

co .&». cn CD -NJ oo o o o o o o o o o o o o

j ^ H-t

1

14-4

it

t +

- i - -

4

H

I I I I I

I I DO CTCTCD QJ Q) ZJ_ CO CO ZJ CD CD CD Q - Q - S

-H

f

i„:

+

$

m X • o CD ™"1

3 CD Z5 •—H

cn CO

CD

O II

cn N> ho 7T

CQ

I CD ID CD Q. I -

CD zs

CQ zr

CO

"0 II

CO CO 7T

CO -P*. O l CO ->J 00 oooooo oooooo

IO

00

I 1 K-4

Ol

O)

+ I

f

t.

T~T I I I

I I CD CTCT o Q) Q) ZJ co cn zs CD CD CD Q . Q . S

+

i i i i i

m X

" O CD

3' CD ZJ I—H

O l CO

Ol

O II

K> Ol N> N>

CQ

w

Tl II

N) -P* CD

Page 219: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Surface temperature [C] Surface temperature [C] Surface temperature [C]

|-o US) c i - t

o> I—1

:< K> ( J i

w X t3 re • - !

3 3 CO

oo <j\ 319

P3 B O-U l <_0 OS - J

I CD Q) r-l-CD QL

r~ CD 3

(Q

3 " I 1

3

GO .&. cn a> ^ i oo oooooo oooooo

en

O)

|NJ

oo

} J

-f J=-:--+ 1 "t 4 1

i

+ i-r-i : ^ i

4 - 4 -i i -t- :

l.i...

: 4 " i i

1 1 CD

era-CD Q) Q) 3 _ 0) 0) 3 CD CD 0 Q - Q - S

: * +

L J

—:—

-----

* - - - - -

I

m x

" O CD

3 CD 3 i—h

en CO ^ i

O n

CO 00 CJ1

CO

oo-^ en o ^ i o o o o o o o o o o o o o o

N> CO

CO

I CD 0) r-H CD a. i— CD 3

CO

N>

CO

* > H r

a i

O

J! i

1 i 4-f--4 i + : _ | L

l 4 : •%~T~

i : 1 ! 4 - 4 -i \ i i i :

It" i i

i i i

1 1 CD

era-CD Q) Q) 3 CO CO 3 CD CD 0 Q - Q . P *

1

1 i —

• i

I_I

,—

----:-i

m X • a CD -* 3 CD 3 *— cn CO

CO

O II

N>

cn c» CO 7T

CO

I CD 0) CD Q. I -

CD 3

CO th

c o ^ c n a i ^ j o o o o o o o o o o o o o o

V)

"0 II

CD

N)

CO

cn

O

1 ! i :

1 ! J,...:.... T :

i \ i

1 i + : 4 ! + : + : 4 1 f 4 - r - -

i L

Ben

Q-ba

T-ba

CO CO 3 CD CD CD

1 1

: i + •

l-i-i i i

-

-

m x

• o CD

3' CD 3 i—^

cn CO

P? O n

N> en N>

CQ

N> CO

CD

Page 220: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Surface temperature [C] Surface temperature [C] Surface temperature [C]

*d dQ C >-! n> 1—1

<! to ov ffl X

>T3 CD • ^

3 3 CO

o> 00

L*

ON

S3

3 &. <_* u> - J o

I CD 0)

CD Q. I -

CD 3

CO •-* 3"

• •

3 i i

co -fc-oi O) ^IOO o o o o o o o o o o o o

N>

T 4

3

t rf 4 f t

+

i

1

CJl

O)

I

I I I

- " D m i i ro

CTCTCD CO CO 3 CD CD CD Q - Q - P *

^

I I I l l l

m X T3 CD - i

3 CD 3 <— CJl CO

o CD ii co c» en — * •

CQ

I CD ID CD Q. |-~ CD -J

CQ 17

CO

"0 II

N> CD 00

N>

CJl

O)

CO .£> CJl O) -J 00 O O O O O O O O O O O O

r r4-4

i 1 4

co 4-

I*-H-

^

I I 0 0 CTCTCD

CD CD CD Q - Q - S

+

•J I ' I l I '

m X T3 CD - i

3 CD 3 1—H

CJl CO CD CO

CD II

CO 00 CJl — * •

CQ

I CD U) CD Q. I -

CD -J

CQ 1—H

3"

10 CO

T) II

N> CD O 7T

CJl

Gi

CO £». CJl O) ^ 1 00 O O O O O O o o o o o o

N> T

co

t 4

4 4 1 4 •i

4-1

1 1

4 4 K j

^r

| t-4 "

i

Ben

Q-ba

T-ba

CO CO 3 CD CD CD Q - Q - S

: •' +

; i

i

-

_

m X

• o CD

3' CD

3

CJl CO O) 00

CD 11

CO 00 CJl

7T CQ

N> CO

"0 II

00

Page 221: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

184

O bi Experiment 5371: G=3851 kg/nrTs, P= 300 kW i_ D

•*->

CD

<D

a. E

J—• CD o

CO

o 2

+•>

2 o a. E

CD

O

CO

o o 1 _ ZJ * - >

CD Q . E £ CD

o

CO

800 700 600 500 400 300

1 Bennett

Q-based T-based

i

+ i i i

f j i=-

• \ ~-frfc : / :' /

<~ *r ] r + | r=f-m—ry

0 2 3 4

Heated Length [m]

fci Experiment 5372: G=3851 kg/rrf s, P= 307 kW

800 700 600 500 400 300

Bennett Q-based T-based

-h-1"HJ- •+- ± r

-im%..

" h ~ f F ~ j - ~ ~ ~ ^ ~ j — h = H " - f - ' j

0 2 3 4

Heated Length [m]

Experiment 5373: G=3851 kg/m s, P= 309 kW

800 700 600 500 400 300

1

Bennett Q-based T-based

i ...i i r +

-+~t

-/£*$--\ ^—T=j — r^r—^ — i - —^^L-j^- - -j

0 2 3 4

Heated Length [m]

Figure IV.27 Experiments 5371, 5372 and 5373

Page 222: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5374: G=3851 kg/rr/s, P= 323 kW

800 700 600 500 400 300

Bennett Q-based T-based

+

.£+%£#§.

^-Hj"H---t-~+f^H--+--pt--r-±--j—H^

0 2 3 4

Heated Length [m]

Experiment 5375: G=3838 kg/nrrs, P= 322 kW

800 700 600 500 400 300

Bennett Q-based T-based

+

..'.+£4H*M I ¥--

'+--j—-f-Hj-H—h—hj^—|—+-jt-^--^—)—(-

0 2 3 4

Heated Length [m]

Experiment 5376: G=3851 kg/nrrs, P= 341 kW

800 700 600 500 400 300

Bennett Q-based T-based

+

--^Hf"H"~t~H -^—i~~+-H"-^--_ „ = ( = - .

,'+• ;H-+ : t fH^ ^ - J

0 2 3 4

Heated Length [m]

Figure IV.28 Experiments 5374, 5375 and 5376

Page 223: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

186

CD o

Z J CO

£ Experiment 5377: G=3811 kg/m2s, P= 344 kW

CD Q.

£ CD

800 700 600 500 400 300

i i

Bennett + Q-based T-based /P4^-&^+H-,

• - F - —

0 2 3 4

Heated Length [m]

O

"CD i _ CD Q.

E <D * - > CD O

€ CO

Experiment 5378: G=3811 kg/nrrs, P= 348 kW

800 700 600 500 400 300

I

Bennett _ Q-based

T-based

I

+ I

h-^K-^pHj"'--*"^—I^-J.—(._ +

I I

; 4 ;^w. //+

+ i

-I"1

I

1 1

1 1

1 1

0 2 3 4

Heated Length [m]

6

O CD i—

CD Q.

E CD

* - < CD O

•i CO

Experiment 5379: G=3797 kg/nrrs, P= 377 kW

800 700 600 500 400 300

1 1 —

Bennett + Q-based T-based

[t"-^^-^-Hj"+-H"+t^—

-h *~^*F4± **»-\

• + - * - * • r-

0 2 3 4 Heated Length [m]

Figure IV.29 Experiments 5377, 5378 and 5379

Page 224: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

187

CD O

€ CO

& Experiment 5380: G=3851 kg/m2s, P= 373 kW CD i _

CD Q.

E CD

800 700 600 500 400 300

i i

Bennett + Q-based T-based

,/:" : '•¥"

l ^ - ^ ^ . ^ r - . ^ p , ^ ^ ^ . ^ -H*-!-- _±...;.

0 2 3 4

Heated Length [m]

+

H Experiment 5381: G=3824 kg/m2s, P= 344 kW CD i _

CO

o Q.

E CD

•*->

<D O

•i CO

800 700 600 500 400 300

1 Bennett

Q-based T-based "££&£ V-J

^^=,-.^ •-•=|—H—+—hj- —I—+-fr~ tp--^ ~f-

0 2 3 4

Heated Length [m]

O fci Experiment 5382: G=3851 kg/rrrs, P= 322 kW 0)

Q.

E CD *-• CD O

•e CO

800 700 600 500 400 300

Bennett Q-based T-based ..t+sBrtp.. I

--y--!r"-h - ^ -+ t ^--t- -+-JFE~ y 4 " HF -J=H- - j

0 2 3 4

Heated Length [m]

Figure IV.30 Experiments 5380, 5381 and 5382

Page 225: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

& Experiment 5383: G=3906 kg/m2s, P= 316 kW

Q

CO CD Q .

E a)

* - < <D o

CO

o 2

* - > CO l _ <D Q.

E CD (D O

CO

o 2

"2 CD Q. E

* - > CD O

•i CO

800 700 600 500 400 300

1 1 Bennett +

Q-based T-based £-Wy.. . .J ^

...,:./

^ ^ ^ y ^ . , ^ , - . ^ , ^ ! ^ ^ ^ ^ , ^ , ^ , ^ ^ ^ ^ ^ ^ , ^ :

0 1 2 3 4

Heated Length [m]

b i Experiment 5384: G=3892 kg/nrrs, P= 305 kW

800 700 600 500 400 300

1 Bennett

Q-based T-based

- • ^ -

{ ^ • ^ " • - ^ - - H p ' H — ^ ~ + 7 " = t = — I — ^ ^ - y - ^ - ^ - ^ y f ^ j ^ 7

0 1 2 3 4

Heated Length [m]

b i Experiment 5385: G=3906 kg/nrrs, P= 300 kW

800 700 600 500 400 300

I I Bennett +

Q-based T-based

i =|—-=JL—=jj"~)—^r-+JT^=—H Jp-

I I

H i -T~ + ~1 K-=H~M=h

"'"W"'

4;

0 2 3 4

Heated Length [m]

Figure IV.31 Experiments 5383, 5384 and 5385

Page 226: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

o £ Experiment 5386: G=3892 kg/rrTs, P= 291 kW CD

=3

CD Q .

£ CD

* - > CD O

•g CO

o 2

"CD i _ CD a. E CD

* - » CD O

-E =3

CO

o CD

CD Q .

E CD

+-< 0 O

CO

800 700 600 500 400 300

1 1 — Bennett +

Q-based T-based

+ | p ^ „ y - . ^ , , ^ _ = ^ ^ _ ^ ^ _ ^ . _ ^ _ ^ _ _ + . _ ^ _ ; ^ ^ ^ ; ^

0 1 2 3 4

Heated Length [m]

fci Experiment 5388: G=5180 kg/irTs, P= 359 kW

800 700 600 500 400 300

i i Bennett +

Q-based T-based

4^Hp H-- H—hj -H—+-ft"~ j---^—j ( ^ ^ ^ ^ . p f 1 1

0 1 2 3 4 Heated Length [m]

b i Experiment 5389: G=5180 kg/nrTs, P= 358 kW

800 700 600 500 400 300

1 Bennett

Q-based T-based w

" 4 / p—h-^-Hj " "4-—+—hj~^=—I—+-j=fr~-=t-~^—j—N^-'H'HfH1-" •

0 1 2 3 4

Heated Length [m]

Figure IV.32 Experiments 5386, 5388 and 5389

Page 227: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Surface temperature [C] Surface temperature [C] Surface temperature [C]

T1 OQ c >-! a 1—1

<i Lti U>

tn X

*o n> >-t

3 CO 3

LA

VO

p <-* LO VO

S3 3 P. < - * U> v© to

I CD 03 CD Q. I -

0

CQ ^ I T

I" t in 1

co -Pi. cn o ->i oo o o o o o o o o o o o o

i

I 4

N3 M

4 co 4--

en h

CD

4

t-

I I I I -I°m I I 00 CTCX CD 01 Q3 3 _ CO CO 3 CD CD CD Q - Q - S

^

+

.1 J _ l L J L

m X • D CD —\ 3 CD 3 < — ^ cn CO CO N3

O ii cn cn CO 7?

CQ

I (D ID i—H CD Q. r~ CD 3

CQ 3 "

N3 CO

TJ II

CO CD - ^

N>

CO

cn

O)

co -fs> cn O) ->i oo o o o o o o o o o o o o

T i

Mr-4

Li

4

T - r

4

1 [f

H-

!

.4"

I I I H D m I I DO CTC7 CD 03 03 3 CO CO 3 CD CD CD Q - Q - t f

*

I ' l l

m X • o CD - i

3 CD D * " - * •

en CO CO

• •

CD n en 00

o 7C

CQ

I CD 03 CD Q. r~ CD 3

CQ

zx

M CO

CO

03

co -&» cn a ) ^ i oo oooooo oooooo C_J

M

CO

-U

O l

t 1 + i

1" ; 4—-4 i

t ! JT . . .L - . .

1 ! + i 4 : I :

i ! J ......

I I I - " D m I I DD CTCX CD 03 0) 3 _ CO CO 3 CD 0 CD Q - Q - S

: | _ i +

LJ i

m x CD

3' CD

en co co o

CD n

cn

O)

CQ

CO

"0 II

CO o> 00

Page 228: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5393: G=5140 kg/rrrs, P= 374 kW

800 700 600 500 400 300

1 1— Bennett +

Q-based T-based ••f&fifr-

|f-—t"~4-~-Hp +-'-+—+-j-^-4- --j=-jfr- ^_—±—^—-i^p^- - -j-

0 2 3 4

Heated Length [m]

Experiment 5394: G=5180 kg/nrTs, P= 388 kW

800 700 600 500 400 300

1 Bennett

Q-based T-based

+

--'-/ _±._ '+-^--HpH"-4~-+f ^-+-+-jt--^-—±---j—hf -j-

0 2 3 4

Heated Length [m]

6

Experiment 5395: G=5180 kg/nrTs, P= 394 kW

800 700 600 500 400 300

1 1— Bennett +

Q-based T-based

}f-H--1-—if- -+-j+-—^-_±._

• • - T

-if-

0 2 3 4 5

Heated Length [m]

Figure IV.34 Experiments 5393, 5394 and 5395

Page 229: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Surface temperature [C] Surface temperature [C]

31 era'

n I—I

.< ffl X

a

3

ON

§

VO -J

I CD 0) 1—H CD Q . I -

CD 13

CQ

K>

CO

3 *

ai

05

00 -^ oi a> ^J 00 0 0 0 0 0 0 0 0 0 0 0 0

l l l l l

1 Ooo C7CT CD

CD CD CD Q . Q . S

1

4 w--4

+. +

m X

T3 CD

3' CD

co £». cn a> ->J 00 0 0 0 0 0 0 0 0 0 0 0 0

CO ^ 1

CD 11

cn CO 0

CO

1 CD U) CD Q. I -

CD 3

CQ « — * IT

W

"0 II

o CD 7T

N>

CO

cn -1-

O)

t 4-:i

t 4 -+ 4 t 4 4 4 4 4 4 1 T" U

—: —

i

1 1 1 1 H O m 1 1 0D CTC7 CD

...:Q> 0) 3 !W W 3 CD CD CD Q - Q - ? *

: ; +

+ ;

$ •

i

. —._

j

m x • a CD

CD 3 ^

U l CO CD p? CD II on N3 CO cn

CQ

"0 11

o 7s-

Page 230: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

193

APPENDIX V

IMPROVED CORRELATION RESULTS

V. 1 Errors and Maximum Temperatures

Table V.l: Errors and Maximum Temperatures for the 5.56 m Test Sec­

tion Using a Temperature-Based Methodology

Run#

5239

5240

5241

5242

5243

5244

5245

5246

5247

5248

5249

5250

5251

5252

5253

5254

5255

5256

5257

G

m2s

1356

1356

1370

1356

1356

1356

1356

1356

1356

1261

1356

1356

1356

1356

1356

1343

1356

1356

1356

Tin

[°C]

260

260

261

261

263

262

263

260

259

261

260

263

262

263

265

267

269

270

271

Pwr

[kW]

166

167

168

170

174

174

177

180

186

189

194

202

214

209

199

185

176

172

169

CHFcor

0.5780

0.5948

0.5797

0.5620

0.6519

0.5722

0.5963

0.5437

0.5579

0.7188

0.6080

0.5428

0.5452

0.6205

0.6542

0.6318

0.6509

0.6756

0.6706

J- MaxExp

[°C]

485.8

492.6

507.4

527.9

549.3

554.5

566.3

577.5

596.1

604.2

616.3

627.2

650.8

638.2

610.7

579.6

552.7

533.0

512.5

•LmaxCode

[°C]

552.1

552.3

554.9

565.0

563.8

573.7

577.7

596.1

610.9

616.6

624.0

660.2

697.0

661.5

629.8

596.7

568.5

557.2

551.0

•C'TJ- max

[%]

13.64

12.12

9.35

7.03

2.64

3.46

2.01

3.22

2.49

2.06

1.25

5.26

7.10

3.66

3.12

2.96

2.86

4.54

7.51

ErrPDO

[%]

15.97

12.70

10.66

13.83

4.96

10.06

6.85

9.98

4.96

3.45

1.25

2.48

1.83

0.72

2.01

5.32

6.79

7.23

10.95

STD

[%}

2.33

0.58

1.61

9.36

1.93

9.01

5.31

12.23

6.76

3.43

4.34

7.40

9.06

3.39

4.18

4.66

4.20

2.41

3.83

...continued on next page.

Page 231: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

194

Run#

5258

5260

5261

5262

5263

5264

5265

5266

5267

5268

5269

5270

5271

5272

5273

5274

5275

5276

5277

5278

5279

5282

5283

5285

5286

5287

5288

5289

5290

5291

5292

G

1370

1044

1044

1044

1004

1017

1004

1004

1004

1004

1004

1004

1004

1004

1017

1031

1031

1017

1031

1017

1044

1939

1939

1953

1953

1953

1953

1953

1953

1953

1967

Tin

271

260

260

261

261

258

260

261

260

261

262

262

261

262

260

264

261

261

260

262

261

268

268

265

264

264

264

265

265

263

266

Pwr

163

147

150

150

152

153

155

155

157

160

164

168

176

184

203

215

189

175

155

153

152

190

193

197

203

206

209

213

218

229

233

CHFcor

0.6925

0.5959

0.5705

0.6008

0.6308

0.6065

0.6158

0.6249

0.6471

0.6095

0.5111

0.6152

0.5333

0.5023

0.5421

0.9306

0.6748

0.6995

0.6758

0.6735

0.6360

0.6284

0.6472

0.6500

0.6900

0.6662

0.6144

0.6741

0.6776

0.7180

0.6061

•L MaxExp

453.9

454.9

498.6

492.7

520.4

519.0

546.9

548.9

558.4

582.8

601.0

611.3

631.0

645.9

669.6

688.4

641.6

613.4

507.3

503.4

494.3

581.7

517.3

514.4

547.6

558.5

566.3

574.1

582.3

602.7

607.9

J-MaxCode

527.0

575.2

587.9

583.8

598.3

599.9

608.9

607.6

610.5

624.7

659.9

648.7

686.7

717.6

759.9

721.1

688.1

651.3

593.3

592.0

585.3

530.7

536.7

542.7

551.7

559.2

570.5

572.2

582.0

601.2

626.7

HJTT 1 max

16.10

26.45

17.90

18.50

14.96

15.59

11.34

10.70

9.32

7.19

9.80

6.11

8.83

11.10

13.49

4.75

7.24

6.18

16.96

17.60

18.41

-8.77

3.74

5.50

0.75

0.12

0.74

-0.34

-0.04

-0.26

3.09

ErrpDo

16.10

26.45

20.97

20.16

18.51

19.44

15.28

14.07

12.24

9.36

10.66

6.87

6.99

9.60

5.12

-6.89

4.19

7.17

24.30

23.13

22.67

-0.89

3.96

15.55

1.39

1.65

3.06

0.18

0.10

-0.42

2.59

STD

0.00

0.00

3.69

1.24

3.73

3.49

5.50

4.43

3.69

4.29

10.18

6.38

9.35

22.32

11.43

15.02

5.63

6.04

6.55

4.37

3.92

8.98

1.06

14.51

0.67

1.49

3.73

0.90

1.30

1.94

7.58

continued on next page.

Page 232: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

195

Run#

5293

5294

5295

5296

5297

5298

5302

5303

5304

5305

5306

5307

5308

5309

5310

5311

5312

5313

5314

5315

5316

5317

5318

5319

5367

5368

5369

5370

5371

5372

5373

G

1980

1953

1980

1994

1994

1980

2577

2577

2563

2577

2577

2509

2577

2550

2550

2550

2536

2536

2550

2523

2523

2523

2523

2563

3852

3852

3852

3852

3852

3852

3852

Tin

265

266

264

265

266

261

266

268

267

267

267

266

264

265

266

263

265

265

267

264

265

266

264

267

274

273

271

273

274

274

273

Pwr

237

242

230

219

213

210

223

219

226

229

231

232

241

243

249

250

257

265

259

246

239

230

229

229

281

287

290

298

300

307

309

CHFcor

0.7471

0.6852

0.8062

0.7318

0.7879

0.7353

0.7966

0.7819

0.8033

0.8323

0.8325

0.8677

0.8419

0.9061

0.7925

0.8427

0.8122

0.8186

0.7834

0.8228

0.8707

0.8686

0.8526

0.9400

1.1698

1.1105

1.0616

1.2303

1.1730

1.1281

1.1418

J- Max Exp

601.0

618.6

586.3

566.7

552.2

535.3

494.7

492.0

511.8

517.2

531.5

538.4

546.7

554.2

565.2

567.6

581.9

595.1

579.2

557.0

573.4

519.2

501.7

494.1

424.3

493.6

495.3

509.6

515.5

521.7

526.9

1 MaxCode

611.7

635.3

591.9

574.5

559.9

558.9

504.5

499.2

514.8

516.3

521.0

528.4

536.8

539.4

559.1

554.5

574.7

590.4

584.0

552.6

538.2

521.9

518.2

503.9

449.1

500.5

510.4

505.5

513.3

528.7

530.3

H/VT1 max

1.78

2.71

0.95

1.38

1.39

4.41

1.98

1.47

0.59

-0.17

-1.97

-1.86

-1.81

-2.67

-1.08

-2.32

-1.24

-0.80

0.83

-0.80

-6.13

0.52

3.30

1.99

5.84

1.39

3.04

-0.81

-0.43

1.34

0.64

ErrPDO

1.31

0.16

0.73

2.55

2.70

10.87

2.39

1.25

4.09

0.51

-1.38

-1.37

-0.38

-1.46

-0.23

-0.97

-0.55

-0.49

0.49

0.94

-1.10

1.02

12.33

1.48

5.84

3.63

10.23

1.44

3.04

3.50

2.93

STD

3.48

2.61

1.65

1.93

1.26

9.94

0.40

0.58

5.80

1.18

1.49

2.01

1.83

2.10

1.70

1.61

1.55

1.74

2.40

1.56

3.66

1.53

12.53

0.51

0.00

2.87

9.68

3.71

2.99

2.75

2.95

...continued on next page.

Page 233: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

196

Run#

5374

5375

5376

5377

5378

5379

5380

5381

5382

5383

5384

5385

5386

5388

5389

5390

5391

5392

5393

5394

5395

5396

5397

G

3852

3838

3852

3811

3811

3798

3852

3825

3852

3906

3892

3906

3892

5181

5181

5167

5181

5154

5140

5181

5181

5235

5181

Tin

274

274

271

270

272

274

273

277

271

271

274

271

271

270

270

271

270

274

270

271

271

267

270

Pwr

323

322

341

344

348

377

373

344

322

316

305

300

291

359

358

368

366

367

374

388

394

404

406

CHFcor

1.1437

1.0631

1.0329

1.0522

0.9797

1.0862

1.1782

1.1935

1.1653

1.3102

1.3514

1.2710

1.2351

1.3156

1.2048

1.3011

1.2394

1.1918

1.1673

1.1405

1.1219

1.1024

1.0745

J MaxExp

545.9

545.6

555.9

571.8

584.6

644.1

614.5

567.6

536.0

522.2

508.8

498.3

428.9

427.1

482.4

494.9

500.0

498.8

509.2

524.2

529.4

537.8

543.4

•L MaxCode

552.8

564.3

597.5

600.5

616.0

636.8

617.7

585.4

548.6

520.0

502.8

498.5

468.7

320.8

453.6

462.6

463.8

482.1

491.5

505.5

514.1

524.7

535.2

ErrT J-J i i -L max

1.26

3.42

7.49

5.02

5.37

-1.14

0.53

3.13

2.35

-0.42

-1.18

0.03

9.28

-24.90

-5.98

-6.52

-7.23

-3.35

-3.47

-3.58

-2.89

-2.44

-1.50

ErrpDo

4.62

6.96

5.89

3.72

6.43

3.34

3.77

3.41

3.29

2.34

0.59

2.75

9.28

-24.90

-5.43

-9.18

-9.75

-0.19

-1.66

-0.69

3.12

3.39

1.49

STD

5.23

9.68

5.28

2.79

8.52

3.14

2.61

2.31

1.67

3.03

3.79

3.12

0.00

0.00

7.38

13.78

13.45

4.54

4.16

5.17

8.21

7.50

4.10

Page 234: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

V.2 Figures

197

O CD i _

CD Q . E o <D o

•E CO

o <D D

+-< cc 1 _

CD Q . E £ O

•g CO

o CD i _

CD i _

CD

a. E CD

* - » 0 O

•E CO

Experiment 5239: G=1356 kg/rrTs, P= 166 kW

800 700 600 500 400 300

n 1 — Bennett

(WSR-+

Rea(WSR =11 #

- +—\—)r -4—+T ^r~~l- -+TF~ 4-~^t-j- —t-H-Hf+H#

0 2 3 4

Heated Length [m]

b i Experiment 5240: G=1356 kg/rrTs, P= 167 kW

800 700 600 500 400 300

"i 1 r~ Bennett +

(WSR-1) ReJWSR-1)

-+-^r~+- 1 r—|- -+-T4- +—-t-j- -

0 2 3 4

Heated Length [m]

tL Experiment 5241: G=1369 kg/rrTs, P= 168 kW

800 700 600 500 400 300

1 1 r -

Bennett + (WSR-1)

Rea(WSR-1) ¥*• H

t t - t - -4 -Hr -+ - | - -+T^"~^ '+T t L " ^ -^^~-H-4^ - f tW^ H

0 1 2 3 4

Heated Length [m]

Figure V.l Improved Correlation: Experiments 5239, 5240 and 5241

Page 235: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

198

O CD i_ 13

* ->

CD

£

CD

o •g CO

o 2

"TO 1 _ CD Q .

E CD +-• CD O

•g CO

o CD i_ =}

•4—•

CD CD Q .

E CD

* -> CD O

13 CO

Experiment 5242: G=1356 kg/nrTs, P= 170 kW

800 700 600 500 400 300

i i Bennett

(WSR-1) Rea(WSR-1) '9

[ ^ ^ - ^ - ^ ^ - - ^ ^ j ^ ^ - - ^ ^ - ^ - - - - ^ - - ^—t * t *H~ t t f f - '

0 1 2 3 4

Heated Length [m]

b i Experiment 5243: G=1356 kg/rrTs, P= 174 kW

800 700 600 500 400 300

1 1 — Bennett

(WSR-1 ReJWSR-1 '9V

| r ^ - ^ ^ - ^ ' i - - + f ^ -H - - - t n r i 1 ~" t - " ' " : r

.m. —HH-Hftp

0 2 3 4

Heated Length [m]

±L Experiment 5244: G=1356 kg/rrTs, P= 174 kW

800 700 600 500 400 300

1 1 r~ Bennett +

(WSR-1) Rea(WSR-1)

fK~H=~4-—ij~

'k. . _|_—^„—^_pj. _ _^—^—^, ^ ^ ^ ^ ^

0 2 3 4

Heated Length [m]

Figure V.2 Improved Correlation: Experiments 5242, 5243 and 5244

Page 236: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

0 o

CO

£ Experiment 5245: G=1356 kg/m2s, P= 177 kW

CD

Q.

£

800 700 600 500 400 300

n 1 r Bennett +

(WSR-1 Rea(WSR ' 9 =J) l, , ^ ., -- ^ .- , ,,

-—HH"+4j' •

0 2 3 4

Heated Length [m]

- I - ' CD i _ CD Q.

E CD

* - > CD O

• i CO

Experiment 5246: G=1356 kg/m2s, P= 180 kW

800 700 600 500 400 300

1 1 1— Bennett +

(WSR-1) Rea(WSR-1)

•JS.

jr-t—i---ij—t—=r-+j -^- i—^-p^-^--r-f--M-t4 -1

0 1 2 3 4

Heated Length [m]

£ Experiment 5247: G=1356 kg/m2s, P= 186 kW CD i _

-4->

£ CD Q.

E CD +-* CD O

CO

800 700 600 500 400 300

0

Bennett (WSR-1)

Rea(WSR-1)

+

=h

2 3 4

Heated Length [m]

gure V.3 Improved Correlation: Experiments 5245, 5246 and 5247

Page 237: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

200

o Si Experiment 5248: G=1261 kg/nrrs, P= 189 kW CD

"CO CD Q.

E CD

+-> CD O

•8 CO

o 8> 13

•4-»

(0 1 _ CD Q.

E CD

-i—>

CD O

•i CO

o CD i _

<D Q .

E CD CD O

CO

800 700 600 500 400 300

1 1 —

Bennett (WSR-1)

Rea(WSR-1)

+

^ # * * % •

l^_^-.| ;--^| r- .- — .- — _ _ _. __ .—^—| . f

0 2 3 4

H e a t e d L e n g t h [ m ]

1± Experiment 5249: G=1356 kg/nrrs, P= 194 kW

800 700 600 500 400 300

1 1 r~ Bennett +

(WSR-1 Rea(WSR-1 g

ir.

| j — ^ . - - - ^ ^ - ^ . - - ^ - - ^ j - ^ - ^ . - ^ - ^ , ^ , - ^ - . ^ --^-——--l--. - ^ V ^ _ , _ ^ J T -

0 2 3 4

Heated Length [m]

y . Experiment 5250: G=1356 kg/nTs, P= 202 kW

800 700 600 500 400 300

i i i i i Bennett +

(WSR-1) ~ Reg(WSR-1)

f- + •+ "-if + • + +j + + + j+ + +• ~

' 4 - '• ..JJT •

i :

1

0 2 3 4

Heated Length [m]

Figure V.4 Improved Correlation: Experiments 5278, 5249 and 5250

Page 238: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

o l i — A

CD i _

D

2 CD Q.

E CD *-• CD O

•g u

CO

O

2 "co l _

CD Q.

E CD o

•g CO

o

CD Q. E £ CD o

•g CO

Experiment 5251: G=1356 kg/rrrs, P= 214 kW

800 700 600 500 400 300

1 1— Bennett

(WSR-1 Rea(WSR-1

f , -+>H=:

-K--lj—I—I—hf - + - T t - ^ _ + . . . r

0 2 3 4

Heated Length [m]

hL Experiment 5252: G=1356 kg/rrTs, P= 209 kW

800 -700 -600 -500 -400 -300

"i 1 r~ Bennett + (WSR-1)

Rea(WSR-1) .p^+rta^,.

'"+"" 1—H-t—j—t—=t=—+f^—I—f-jt-tT-t'

0 2 3 4

Heated Length [m]

Experiment 5253: G=1356 kg/rrTs, P= 199 kW

800 700 600 500 400 300

1 1 r -

Bennett + (WSR-1)

Reg(WSR-1)

' "fr—f " ^ ~^~+f f—I—+"TF~ T~ ~jf- •

if-"

4-

^^-- fH+H^-

0 2 3 4

Heated Length [m]

gure V.5 Improved Correlation: Experiments 5251, 5252 and 5253

Page 239: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5254: G=1342 kg/rrTs, P= 185 kW

800 700 600 500 400 300

"i 1 r Bennett +

(WSR-1 Re9(WSR-1

-^-: "£fi^~

'--*• H-—~-**,|i-'^'T^irr~ ^ " ^ T ^ " ^ T - ^ j ^~" "~^p^ ' ~~*~ •f*" " I "i*—*~-m-\*---*' ••»-••- • r ifc~*---'|^IEJI.-S^..- -

0 2 3 4 Heated Length [m]

Experiment 5255: G=1356 kg/nTs, P= 176 kW

800 700 600 500 400 300

1 1 1 -

Bennett + (WSR-1)

Reg(WSR-1) -#? Sf^.-.J

ft^i=^+'^^~^~+f^~+---+'^~^~-^^""4^4--~Mi-

0 1 2 3 4

Heated Length [m]

Experiment 5256: G=1356 kg/rrTs, P= 172 kW

800 700 600 500 400 300

"i 1

Bennett (WSR-1

+

ReJWSR 'g -A) ' + \~ *+• ~:;t::r~+T' " ^ -^~Tf-~ 4-~-y -f' ~a)a±pf^ - f - #

0 2 3 4

Heated Length [m]

V.6 Improved Correlation: Experiments 5254, 5255 and 5256

Page 240: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

CD i _

2 CD

£

CD

o

CO o cu

-I—•

CD i _ CD Q.

E CD

o -g CO

o 0

1 _

CD

E CD

+-< CD O

•g CO

Experiment 5257: G=1356 kg/rrTs, P= 169 kW

800 700 600 500 400 300

i i

Bennett (WSR-1)

Rea(WSR-1)

+

- ^ - H

fr—t°-^-Hj--l"F-H^r~^~-Hl1~^"T'~^*,gHL^Hja1ttsf

0 1 2 3 4

Heated Length [m]

!=i Experiment 5258: G=1369 kg/nrTs, P= 163 kW

800 700 600 500 400 300

1 1 r Bennett

(WSR-1) Rea(WSR-1)

T

^^^-^^+j-^-^~-^^~n-~^~t'^Ff^^^m¥iz — I

0 1 2 3 4

Heated Length [m]

!£. Experiment 5260: G=1044 kg/nrrs, P= 147 kW

800 700 600 500 400 300

1 1 1 -

Bennett + (WSR-1)

Rea(WSR-1) '9>

|^-H— 4-—lj—°t°—4^~+T "f—H-~ "4r~p^~ 4-—4=—'j—'•

T

0 2 3 4

Heated Length [m]

gure V.7 Improved Correlation: Experiments 5257, 5258 and 5260

Page 241: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5261: G=1044 kg/rrTs, P= 150 kW

800 700 600 500 400 300

1 i— Bennett

(WSR-1 Rea(WSR-1

4

¥ ift—-\

^•~t~+ [ J =^-^- j -^ 1 --^r-p^-^-—^ ^—^s^^j^Jfr

0 1 2 3 4

Heated Length [m]

Experiment 5262: G=1044 kg/nTs, P= 150 kW

800 700 600 500 400 300

i 1 r Bennett

(WSR-1) Reg(WSR

- j ^ -

fh""+ ~ +—Ip+~'i^~+j- -^—\—:tr~f^~ 4---^- -f- "^»!!f*f-H^=.

0 2 3 4 Heated Length [m]

Experiment 5263: G=1003 kg/nTs, P= 152 kW

800 700 600 500 400 300

i 1 Bennett

(WSR-1 +

ReQ(WSR '9 -V fr~+- +

-tf*-H +• ~=K~+j ~f—H- ~4;~p^~ ^t-—^—j—-Hf'-HH'iy

0 1 2 3 4

Heated Length [m]

V.8 Improved Correlation: Experiments 5261, 5262 and 5263

Page 242: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

o bi Experiment 5264: G=1017 kg/rrTs, P= 153 kW CD i _

o Q. E £ O

-E CO

o 2

* - > 2 CD Q.

E CD

o •g CO

CD i _ = 5

CD Q. E £ CD O

•s Z5

CO

800 700 600 500 400 300

1 1 r Bennett +

(WSR-1 Rea(WSR-1 'a: +—tj--t- -^-°tf r ~ + ~"H^-

-#^-H ' • j^ -H-f fF r

0 2 3 4

Heated Length [m]

b i Experiment 5265: G=1003 kg/rrTs, P= 155 kW

800 700 600 500 400 300

I I I I I Bennett +

(WSR-1) Rea WSR-1

r~r + ~t[ + + +j + T + |+ + +" " •'•+i-+ t,Jp

15L. -

0 2 3 4

Heated Length [m]

6

Experiment 5266: G=1003 kg/nrTs, P= 155 kW

800 700 600 500 400 300

I I I I I Bennett +

(WSR-1) ~ Rea(WSR-1)

1—•+—+- f—f—=+— +f-4=—1—-t—1= —t—=t=—-] Hf-H^f

S*L." 1 ' 1 '

-

0 2 3 4

Heated Length [m]

gure V.9 Improved Correlation: Experiments 5264, 5265 and 5266

Page 243: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5267: G=1003 kg/nrrs, P= 157 kW

800 700 600 500 400 300

T Bennett

(WSR-1) Rea WSR-1

-•+• .-+%

+t ^ -+-Hr^ - - j—+TT^~- t^~^~^^~ i , i "H-~ i '

0 2 3 4

Heated Length [m]

Experiment 5268: G=1003 kg/nrrs, P= 160 kW

800 700 600 500 400 300

1 1 r~ Bennett +

(WSR-1) Reg(WSR-1)

f^—H~+—Ip-t*"i=—+i"-^—t—'+~p^~"t-'"Jt,;"*i—"*H"f ~ j JkU-

0 2 3 4

Heated Length [m]

Experiment 5269: G=1003 kg/nrrs, P= 164 kW

800 -700 -600 -500 -400 -300

"i 1 1 -

Bennett + (YVSR-1)

ReJWSR 'g / /+

^ w ^ -"F"

\—I—+—IpH—-+—+7^1=—I—+-pt^-"f—4^—f—

0 2 3 4 5

Heated Length [m]

V.10 Improved Correlation: Experiments 5267, 5268 and 5269

Page 244: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

207

O u—.J

2 03 Q.

0 *-» (D O

•g CO

o S 13

• * — »

2 CD Q .

£ CD O

-g CO

o (D i _

* - »

E CD Q .

E (D

• 4 - *

O

•e CO

Experiment 5270: G=1003 kg/rrTs, P= 168 kW

800 700 600 500 400 300

T Bennett

(WSR-1) Rea(WSR-1)

|l—H—+—lj—h- =—+f

+

L - f'- -;

+' >t^%-H

"-^'Yir~ "4-""^—j|—~*r?~''

0 2 3 4 Heated Length [m]

h i Experiment 5271: G=1003 kg/nrrs, P= 176 kW

800 700 600 500 400 300

1 1 —

Bennett (WSR-1

Reg(WSR-1

f—f—+—lj—I—+~-+j^-~*-~+-\=¥-^*~jr-

-+ ^ • ^ % . . - J

0 2 3 4

Heated Length [m]

fci Experiment 5272: G=1003 kg/rrTs, P= 184 kW

800 h 700 600 500 400 300

1

Bennett (WSR-1)

+

ReJWSR X^±M+*V--J

*-+--+—4j—I K-—hf^-H—+-j+—°t*-4- - -f •

0 2 3 4 5

Heated Length [m]

Figure V.ll Improved Correlation: Experiments 5270, 5271 and 5272

Page 245: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

208

0 o

CO

800 700 600 500 400 300

T T

£ Experiment 5273: G=1017 kg/m2s, P= 203 kW 0 i _

i_ (D Q. E 0

1 1— Bennett

(WSR-1 Rea(WSR-1

+ +"W+4HH=H^'

'-+

[^^-^•-^•^:---^---+J-T^---|---+--"p^-4'

0 2 3 4

Heated Length [m]

• + . . . . _

o 0 i _ +-• TO i _ (D Q. E 0 *-> 0 O

•i CO

Experiment 5274: G=1030 kg/nrTs, P= 215 kW

800 700 600 500 400 300

'g

Bennett (WSR-1)

+

ReJWSR - 1 4 -

_^ !.. ^ ^ - - p ~ ^ - ^ -^— +j - p - ^ , --fr-pp- ^ X

0 2 3 4

Heated Length [m]

O y . Experiment 5275: G=1030 kg/rrTs, P= 189 kW i _

D

0 Q. E 0

o

CO

800 700 600 500 400 300

0

Bennett (WSR-1)

Rea(WSR-1) *f+r*^h.. I

+

2 3 4

Heated Length [m]

Figure V.12 Improved Correlation: Experiments 5273, 5274 and 5275

Page 246: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

o y . Experiment 5276: G=1017 kg/nrTs, P= 175 kW CD v_

- I - '

<D Q.

E CD +-» CD

o •i CO

a i _

* - > 03 i _ CD Q. E o CD O

•e CO

o •

CD Q .

E _CD CD O

•s ZJ

CO

800 700 600 500 400 300

i i r Bennett + (WSR-1)

Rea(WSR-1)

-+—f- -+£ -+TF-T--

+7 : +

•cjfcr-^=^r+- "

0 2 3 4

Heated Length [m]

Experiment 5277: G=1030 kg/nrTs, P= 155 kW

800 -700 -600 -500 -400 -300

i i r^ Bennett + (WSR-1)

Rea(WSR-1)

^ ^ - ^ - ^ ^ - - ^ ^ j ^ ^ ^ - ^ ^ - ^ ^ ^ - ^ ^ ^ ^ ^ L -

0 1 2 3 4

Heated Length [m]

Experiment 5278: G=1017 kg/nrTs, P= 153 kW

800 700 600 500 400 300

Bennett (WSR-1)

Re WSR-1 "$t+

fr—°t° - +—if- - t - ~1 - -+ t ~-F~° " ~ - H f - ^- 1 -^-t^Mfrt'

0 1 2 3 4

Heated Length [m]

6

gure V.13 Improved Correlation: Experiments 5276, 5277 and 5278

Page 247: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

210

o •g CO

£ Experiment 5279: G=1044 kg/m2s, P= 152 kW CD i _

? <D Q.

E CD

800 700 600 500 400 300

1 1 r Bennett +

(WSR-1) — Rea(WSR-1) '& w

+,' -^-+~^' '^~1^^tT^~^~^TT~y''"~^'^^^gHfH f

0 1 2 3 4

Heated Length [m]

o CD

"CO i _ CD Q.

E CD

*—> CD

o CO

Experiment 5282: G=1939 kg/nrTs, P= 190 kW

800 700 600 500 400 300

i i

Bennett (WSR-1)

Rea(WSR-1) 'gy

|i—l-~+~lj—H-"i"-—t-j^=—I—-t^-ft—»f

--+--' ""'+'

-+• - +1+ -- —|

0 2 3 4

Heated Length [m]

& Experiment 5283: G=1939 kg/m2s, P= 193 kW CD i _

CD Q.

E CD

+ - • CD O

*§ 0 1 2 3 4 m Heated Length [m]

800 700 600 500 400 300

i 1 r— Bennett +

(WSR-1) Reg(WSR

+—i—4n+-^ 1

-£*-

J-..

Figure V.14 Improved Correlation: Experiments 5279, 5282 and 5283

Page 248: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

CD *—> CD O

€ CO

£ Experiment 5285: G=1953 kg/m2s, P= 197 kW CD

CD Q .

800 700 600 500 400 300

i i

Bennett (WSR-1)

Rea(WSR-1)

+-J- 1 •+"t-j^r—t—:4=-ft~4- ~ j M"

0 2 3 4

Heated Length [m]

-,#--— •A-

6

O CD i _

CD

CD Q.

E * - > CD O

CO

Experiment 5286: G=1953 kg/nrTs, P= 203 kW

800 700 600 500 400 300

1 1 Bennett

(WSR-1) Rea(WSR-1)

+

|j—-l—^—1|-—j—•=h-ffj^—I—+-jt-4-~—|—•

0 2 3 4

Heated Length [m]

.ir*..J

"cc i _ CD

E £ CD O

•i CO

Experiment 5287: G=1953 kg/rrTs, P= 206 kW

800 700 600 500 400 300

0

1 1 1 -

Bennett + (WSR-1)

Rea(WSR-1) -g> &" - H *

-+-j+-^ h H-H-f-

2 3 4

Heated Length [m]

gure V.15 Improved Correlation: Experiments 5285, 5286 and 5287

Page 249: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

o i _

CD Q . E CD *-• CD o

•i CO

o

CO i_ CD Q . E CD

+-• CD O

€ CO

O CD L _

2 CD Q . E CD * - > CD O

•g ZJ

CO

Experiment 5288: G=1953 kg/m s, P= 209 kW

800 700 600 500 400 300

1 1 r Bennett +

(WSR-1 ReQ(WSR-1 r£+Ht"

-¥.

-+-HJ-H—-t"hf^=—H-+-j^-+- 1 — H H ~ 4 - y •

0 1 2 3 4

Heated Length [m]

b i Experiment 5289: G=1953 kg/rrTs, P= 213 kW

800 700 600 500 400 300

i 1 r~ Bennett +

(WSR-1) Rea(WSR-1) --.££wr

~+""=^"-K-+—hj--=|^H—' -+-j^- _-— - j — t

-HH"'-

0 2 3 4 Heated Length [m]

b i Experiment 5290: G=1953 kg/rrrs, P= 218 kW

800 700 600 500 400 300

— i 1 1— Bennett +

(WSR-1 Rea(WSR-1 -g

-™ip-»i~-

- f ^T^' : !H-^-

-'^~-H^ -+f ^—t—+-pfc-4- .^-,-H^f- -

0 2 3 4

Heated Length [m]

Figure V.16 Improved Correlation: Experiments 5288, 5289 and 5290

Page 250: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

& Experiment 5291: G=1953 kg/m2s, P= 229 kW

D *-> CO CD Q.

E CD

-4-» CD o

•g CO

o e

+-> CD i _ <D Q.

E CD * - < CD O

CO

o CD

*-•

CD Q .

E CD CD O

CO

800 700 600 500 400 300

Bennett (WSR-1

Rea(WSR-1 • # N H

-4--Hj—-h ~+—hj- =—f- --+—j=fr~ +——j—\-t-

0 2 3 4

Heated Length [m]

b i Experiment 5292: G=1966 kg/rrTs, P= 233 kW

800 700 600 500 400 300

Bennett (WSR-1)

Rea(WSR-1) v^H-H+^tf.------^ ./^.

[t—-+--+-Hp-4-H-—hj^r~4—H-7+—+ j1- -

0 2 3 4

Heated Length [m]

yL Experiment 5293: G=1980 kg/rrTs, P= 237 kW

800 700 600 500 400 300

"i 1 r—

Bennett + (WSR-1)

Rea(WSR-1) -f ^ - H T H * ^ -

0 2 3 4

Heated Length [m]

gure V.17 Improved Correlation: Experiments 5291, 5292 and 5293

Page 251: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

214

Q Experiment 5294: G=1953 kg/m2s, P= 242 kW CD

CD

E CD

* • >

CD O

•g CO

o CD s _

+-» 03 i _ CD O L

E CD *-> CD O

€ CO

O

2 D

+-« CD <D Q .

E <D *-• 0 o

CO

800 700 600 500 400 300

I I Bennett

(WSR-1) " ReJwSR-1) -

1—+-+-HJ™'+—K"+f =-H-

1 +

-+-j+--+~

1 1

...J.-.^^wlfe^. : t

7 -*- i -

0 2 3 4

Heated Length [m]

b i Experiment 5295: G=1980 kg/rrfs, P= 230 kW

800 700 600 500 400 300

n 1 r~ Bennett + (WSR-1)

ReJWSR-1) - ^ H W p

- »f~Hp"-+-"41—hj -^—I—+~ft-~ -~ f' ~^r^. 4~

0 2 3 4

Heated Length [m]

t i Experiment 5296: G=1993 kg/rrTs, P= 219 kW

800 700 600 500 400 300

1 1 Bennett

(WSR-1) Reg(WSR-1)

+

— t - '

\ i \ /-.

0 1 2 3 4

Heated Length [m]

Figure V.18 Improved Correlation: Experiments 5294, 5295 and 5296

Page 252: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

O

CO

£ Experiment 5297: G=1993 kg/m2s, P= 213 kW

+->

Q.

E

800 700 600 500 400 300

"i 1 —

Bennett (WSR-

Reg(WSR =l) ^^ij,, ^ „ ^ . | . -^—1_ _^_^_ _p

i .=*#?

~f r~i=f'HJ dt 0 2 3 4

Heated Length [m]

o Si Experiment 5298: G=1980 kg/rrTs, P= 210 kW 2 13 * - <

Q.

E o * - <

O

CO

800 700 600 500 400 300

i 1 r~ Bennett +

(WSR-1 ReJWSR 3)

p—h-^-Hf-H-^-H-T

m...J ±.

~+~jt~^-~ ^"^•'H^tf^'

0 2 3 4

Heated Length [m] 6

O •

ZJ

2 a. E o *-• (D O •§ CO

Experiment 5302: G=2576 kg/rrTs, P= 223 kW

800 700 600 500 400 300

0

i 1 r Bennett (WSR-1

Reg(WSR-1 ••*•-—]

^—l_„^^.H—H—h-j-^r—|—+-]+- 4- — ) — - I - • ! • • ( • < • -l-j-- H ± A

2 3 4

Heated Length [m]

6

gure V.19 Improved Correlation: Experiments 5297, 5298 and 5302

Page 253: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5303: G=2576 kg/rrTs, P= 219 kW

800 700 600 500 400 300

i i Bennett

(WSR-1 +

ReJWSR 1 ) -+~Hj-H~- -+• j -3=—I—4—pfr- 4-~ j 1

..^.

4

0 2 3 4

Heated Length [m]

Experiment 5304: G=2563 kg/nrTs, P= 226 kW

800 700 600 500 400 300

"i 1 Bennett

(WSR-1 Rea(WSR 'g

-+-HJ""

-W -'(*"

-+--pp- —„—j l l

o 2 3 4 Heated Length [m]

Experiment 5305: G=2576 kg/nrTs, P= 229 kW

800 700 600 500 400 300

"i 1 1 r

Bennett + (WSR-1

Rea(WSR-1 -0 • r

l i—i . -^ .^ . .^^—^^—i—^_^_^_——p^.^^^^ppf

o 2 3 4

Heated Length [m]

V.20 Improved Correlation: Experiments 5303, 5304 and 5305

Page 254: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5306: G=2576 kg/rrTs, P= 231 kW

800 700 600 500 400 300

1 1 —

Bennett (WSR-1

Rea(WSR-1

+

-+-Hj-H-~

•f*-H •+t^—I—+-]+-+—:—j—\-+-+-Hy>r

0 2 3 4

Heated Length [m]

Experiment 5307: G=2509 kg/rrTs, P= 232 kW

800 700 600 500 400 300

1 1 — Bennett

(WSR-1 Reg(WSR-1

+

Jf-~~-tj" *4—•+—bj ~j=-—f- ~+~j°t-~ t*—^°—j H*H

-i&fc.

0 2 3 4

Heated Length [m]

Experiment 5308: G=2576 kg/rrTs, P= 241 kW

800 700 600 500 400 300

— i 1 Bennett

(WSR-1) Reg WSR-1 #*fe..J

"h—lj—I—h—l-f -=F—I—+—jH—f'—I-—)—HH~Hf -

0 1 2 3 4

Heated Length [m]

V.21 Improved Correlation: Experiments 5306, 5307 and 5308

Page 255: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

218

O CD

i _

* - > E o Q.

E C D

<*—• CD O

-e CO o CD

CD Q .

E CD CD O

•§ CO

o 2

s CD Q .

E ^CD CD O

=3 CO

Experiment 5309: G=2549 kg/nrrs, P= 243 kW

800 700 600 500 400 300

1 1 Bennett

(WSR-1) " Rea WSR-1

1

+ 1 1

1-—t—+--Hp-*h~K—hjl=—-t +-+

:-t^ttHf

,-w - + ^ . r -T -pr -T - ,

0 2 3 4

Heated Length [m]

Si Experiment 5310: G=2549 kg/nrTs, P= 249 kW

800 700 600 500 400 300

i 1 T -

Bennett + (WSR-1)

Rea(WSR-1) 'g> +-^+^-

./-

^ • ^ ^ ^ ^ - ^ j . - ^ - ^ , _+_|=t,_^._^._j 1^.|.

0 2 3 4

Heated Length [m]

Si Experiment 5311: G=2549 kg/rrTs, P= 250 kW

800 700 600 500 400 300

1 1 r~ Bennett +

(WSR-1 Reg(WSR-1 -jyfc--±#(r|_

^ t 0 2 3 4

Heated Length [m]

Figure V.22 Improved Correlation: Experiments 5309, 5310 and 5311

Page 256: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

219

O fei Experiment 5312: G=2536 kg/nrTs, P= 257 kW CD

CD Q . E o CD O

•E =5

CO

o L — J

CD Q .

E CD

+-> CD O

-i CO

o CD

CD Q .

E CD

•+-> CD O

-i CO

800 700 600 500 400 300

Bennett (WSR-1)

Rea(WSR-1)

+

'a: t*-^+44^_

^ - — H f — I — h — h - p ^t=—I—H-^—pt— H

0 2 3 4

Heated Length [m]

6

Experiment 5313: G=2536 kg/nrTs, P= 265 kW

800 700 600 500 400 300

1 1 1— Bennett +

(WSR-1) Reg(WSR-1j

-i-'-^f—-<-- -t—+j f—t - -+- t t - -1 - -

"f .;M^4

J..

0 2 3 4

Heated Length [m]

i Experiment 5314: G=2549 kg/nrTs, P= 259 kW

800 700 600 500 400 300

1 1 r— Bennett +

(WSR-1) Rea(WSR-1)

fr-~t-"^—1"+-~t—+f -+-T^~^

f^+^H^;-

0 2 3 4

Heated Length [m]

Figure V.23 Improved Correlation: Experiments 5312, 5313 and 5314

Page 257: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

!_ 13

CD Q .

E CD CD O

•e u

CO

o <D l _

CD i _ CD Q .

£ CD

o

CO

o CD 13

2 0 Q.

£ CD

+-• CD O •§ CO

Experiment 5315: G=2522 kg/rcTs, P= 246 kW

800 700 600 500 400 300

1 1 — Bennett

(WSR-1) Rea WSR-1

+

'9

^•~^"+--~t—+j-^—+~--+~ffr-*t-._+--

^ H + t ^

± -7t

0 2 3 4

Heated Length [m]

b i Experiment 5316: G=2522 kg/m"s, P= 239 kW

800 700 600 500 400 300

1 1 -

Bennett + (WSR-1)

Rea(WSR-1) '9V + *+fc. . J

frfc— ' I T z f e . - — - 1 | j - - • t s j ^ - - ™ d = ^ T " ~=lr H~" M^—P^ ~ "~jr =4*: '-±? —"^r^^J-J -~H{

0 2 3 4

Heated Length [m]

b i Experiment 5317: G=2522 kg/nrTs, P= 230 kW

800 700 600 500 400 300

1 r Bennett

(WSR-1) Rea(WSR-1)

^,^, ^ - ^ ^ - ^ - j - -^—|—^=-j^- ^~- -^-^^^^rfF^--

-fUt-

0 2 3 4

Heated Length [m]

gure V.24 Improved Correlation: Experiments 5315, 5316 and 5317

Page 258: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

221

O •

CD i _

CD i— CD Q.

E o o

CO

o

+-> CD i _ CD Q.

£ CD 0 O

•i CO

o CD i _ 13

-t->

CD

a. E CD

-i—> CD O

CO

Experiment 5318: G=2522 kg/rrrs, P= 229 kW

800 700 600 500 400 300

n i Bennett (WSR-1

ReJWSR-1 '9 -n

p—^-^-Hp-+-"°tJ"+j--1=-H—-+^-^-^--f~^=f^^ff^-

0 1 2 3 4 5 6

Heated Length [m]

Experiment 5319: G=2563 kg/m2s, P= 229 kW

800 700 600 500 400 300

1 1 r~ Bennett +

(WSR-1) Rea(WSR-1)

, ^ • ^ • ^ ^ , - ^ 1

..^.

-•j^-^-^-^-^r^H-jfrw"

0 2 3 4

Heated Length [m]

b i Experiment 5367: G=3851 kg/nrTs, P= 281 kW

800 700 600 500 400 300

— i 1 r~ Bennett +

(WSR-1 Rea(WSR-1 '9

^-—lj~H H—hj^—I—+-pi*-^-—^—j h^f~Hyt"tf^- 1

0 1 2 3 4

Heated Length [m]

Figure V.25 Improved Correlation: Experiments 5318, 5319 and 5367

Page 259: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

222

0 i _

0 CL

£

0

o

CO

o 2

* • »

0 Q.

£ 0

* -» CD O

•e CO

o CD i _

2 0 Q. £ _0

0 o

•g CO

Experiment 5368: G=3851 kg/nrTs, P= 287 kW

800 700 600 500 400 300

1 1 —

Bennett (WSR-1)

Re (WSR-1)

•+• "^pHp H—•+—h j --t

"f+ --t^-^-^4''^ML'H-trP"- -+ -

0 2 3 4

Heated Length [m]

h i Experiment 5369: G=3851 kg/nrTs, P= 290 kW

800 700 600 500 400 300

1 1 1 -

Bennett + (WSR-1

Rea(WSR-1 '9V

| i — h „ ^ . H | „ H - -+-rt—r- "• t^-H-tT^'

0 2 3 4

Heated Length [m]

h i Experiment 5370: G=3851 kg/nrTs, P= 298 kW

800 700 600 -500 -400 -300

i i r^ Bennett +

(WSR-1 Rea(WSR-r '9V

- ^ - — l j — I — \ — + Y ' -

f*---tnr^-^-—^- "+=f+,i"i'i,tj'

0 2 3 4

Heated Length [m]

Figure V.26 Improved Correlation: Experiments 5368, 5369 and 5370

Page 260: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5371: G=3851 kg/rrTs, P= 300 kW

Bennett (WSR-1

800 700 600 500 400 3 0 0 +"t---;pHj"~t—[—hyj^H—-+-T+-^-~ - j — H H - H f

Rea(WSR ' 9 3) Pfr

0 2 3 4

Heated Length [m]

Experiment 5372: G=3851 kg/rrTs, P= 307 kW

800 700 600 500 400 300

n 1 r -

Bennett + (WSR-11 ReJWSR 'g

H-H-=

..***fca-...J * & •

4-^Hp-l-H-—hj t=—I—H--ft-"t—^—|—hft4

0 2 3 4

Heated Length [m]

Experiment 5373: G=3851 kg/rrTs, P= 309 kW

800 700 600 500 400 300

Bennett (WSR-1)

Rea(WSR-1)

+

— > " - - ^ t ^ - — - — i j — — i — t - — t — | — = < = — i — ^ - i — — p = t = - — ^ i ^ k_^__±.-

.#*9~-J / •

•• " * | -^ . -pr - -

0 2 3 4

Heated Length [m]

V.27 Improved Correlation: Experiments 5371, 5372 and 5373

Page 261: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

0 o

CO

800 700 600 500 400 300

Q Experiment 5374: G=3851 kg/m2s, P= 323 kW CD i _

CD Q.

E CD

Bennett (WSR-1)

ReJwSR-1)

+

++^ +F^.

|t"^t'^-^-Hj"H--+—h-|-^|=-—h -+-pf-T^—±~-j—+4-- -

0 2 3 4

Heated Length [m]

o tL Experiment 5375: G=3838 kg/rrTs, P= 322 kW CD

+-< CO

CD Q .

E CD

* - > CD O

•g D

CO

800 700 600 500 400 300

1 1 -

Bennett + (WSR-1)

Rea(WSR-1)

^¥ - "Hp H- -+—l-j —I—+-pfr- f-— —t- zt_-/+.

4 0 2 3 4

Heated Length [m]

*n$....j

6

O bi Experiment 5376: G=3851 kg/rrTs, P= 341 kW a?

CD Q.

E CD CD O

• i CO

800 700 600 500 400 300

1 r Bennett

(WSR-1 Rea(WSR g 3) /r++¥^4(*--, "1

4 |hH—-- -HpH--4—hj- '+Tt- -T .-*--

0 2 3 4

Heated Length [m]

gure V.28 Improved Correlation: Experiments 5374, 5375 and 5376

Page 262: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5377: G=3811 kg/rrTs, P= 344 kW

800 700 600 500 400 300

1 1 r Bennett +

(WSR-1) Rea(WSR-1) X + T ^ ^

y--}/ ^ ^ - ^ - ^ ^ - - ^ ^ • ^ - ^ - + - j ^ - - y - - = f c - - j ' -

0 2 3 4

Heated Length [m]

Experiment 5378: G=3811 kg/nrTs, P= 348 kW

800 700 600 500 400 300

"i 1 1 -

Bennett + (WSR-1

Ren(WSR-1 -/i-

^-H^P^T

/+ * - - H

L ^ = - --y Hp-I- -4—+f ^ — I - - t - f t - - y .-4.

0 2 3 4

Heated Length [m]

Experiment 5379: G=3797 kg/nrTs, P= 377 kW

800 700 600 500 400 300

'g

1 —

Bennett (WSR-1) Rea(WSR 'P-r-t

| ^ f r - ^ H p H - - ~h—hj- -I-—I—H—ft"-7"

-+-

"+!- , • W £ £*$--

0 2 3 4

Heated Length [m]

V.29 Improved Correlation: Experiments 5377, 5378 and 5379

Page 263: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

CD O

•i CO

Q Experiment 5380: G=3851 kg/m2s, P= 373 kW

"CO i_ CD Q .

E CD

800 700 600 500 400 300 t

I I I

I I

I I

Bennett (WSR-1)

Rea(WSR-1)

=t=^--^---=^H—-+—I4"=I=—f~

i

+

-H+- -

1 1

j 1

1

J -

1

^ - t - f f l ^ * % j - F

1 1

1

1

1

1

0 2 3 4

Heated Length [m]

O i=i Experiment 5381: G=3824 kg/nrTs, P= 344 kW CD

s _

CD

CL

E CD CD O

C/3

800 700 600 500 400 300

0

1 1 -

Bennett + (WSR-1)

Rea(WSR-1) ~/*B^^~ - / -

--*t -H("+—H—hj-^-+- - 4 ^ - y -4—

2 3 4 Heated Length [m]

O CD i _

CD CD Q .

E CD

4-> CD O

CO

Experiment 5382: G=3851 kg/nrTs, P= 322 kW

800 700 600 500 400 300

1 1 -

Bennett + (WSR-1

ReQ(WSR -g 3) .^esA.

. , ^ ^ ^ - - ^ H = - - ^ + - - + T . ^ H _ ^ ^ „ _ r _ 4 ^ .,^.^^4,- (

0 2 3 4 5

Heated Length [m]

gure V.30 Improved Correlation: Experiments 5380, 5381 and 5382

Page 264: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

227

& Experiment 5383: G=3906 kg/m2s, P= 316 kW o u CO CD Q . E £ CD O

•E 13

CO

800 700 600 500 400 300

i i r Bennett +

(WSR-1' Rea WSR-1

--^-Hf"+—f—+f ^=—I—-+-jf-—T~^~--f-^rt-^H

! 4 ^ - — I

0 2 3 4

Heated Length [m]

O

S>

CD Q. E o CD O

•6 CO

Experiment 5384: G=3892 kg/m s, P= 305 kW

800 700 600 500 400 300

1 1 r~ Bennett +

(WSR-1 Rea(WSR-1 '9V

"f -[l—~F"Jp--~|p-f-^ tjzf 1 ^-j^-^-^.-^-^p^^

0 1 2 3 4

Heated Length [m]

O bi Experiment 5385: G=3906 kg/nrrs, P= 300 kW 9> *-• CD CD Q . E ®

CD

o

•E CO

800 700 600 500 400 300

1 1 r -

Bennett + (WSR-1)

Rea(WSR-1) -0>

p—-tj--^-"°tr,-t"-4—+f - - t n ^ - y

# - H

0 2 3 4

Heated Length [m]

Figure V.31 Improved Correlation: Experiments 5383, 5384 and 5385

Page 265: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

o bi Experiment 5386: G=3892 kg/rrrs, P= 291 kW <D i_

o Q. E £ CD

o ZJ

CO

CD

"co 1 _ CD Q.

£ CD

+-» CD O

•§ CO

O

2

2 (D Q.

E +-» CD O

•i CO

800 700 600 500 400 300

Bennett (WSR-1)

Rea(WSR-1)

p—t--- —f"+--t— -f-

0 2 3 4

Heated Length [m]

Experiment 5388: G=5180 kg/rrrs, P= 359 kW

800 -700 -600 -500 -400 300

1 1 r~ Bennett +

(WSR-1 Rea(WSR-1 '9V

^ H p -~h- H hr =—H—+T+~ r +

-'+^+-Hfr-f^¥ 1

0 2 3 4 Heated Length [m]

t i Experiment 5389: G=5180 kg/rri s, P= 358 kW

800 700 600 500 400 300

1 1 r~ Bennett +

(WSR-1) Rea(WSR-1) '9V

*KHp- t -H hp-^-H—+-pjz-^-—

. tP &

--H^H^tyH1"

0 2 3 4

Heated Length [m]

gure V.32 Improved Correlation: Experiments 5386, 5388 and 5389

Page 266: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5390: G=5167 kg/m s, P= 368 kW

800 700 600 500 400 300

I I

Bennett (WSR-1)

" Rea(WSR-1)

I

+ I I

^—H- "• =f~-=lf* ~h- H hj- ^=—^

- - - - • • • • • T - t e : - -

0 2 3 4

Heated Length [m]

Experiment 5391: G=5180 kg/rrTs, P= 366 kW

800 700 600 500 400 300

Bennett (WSR-1

Reg(WSR-1

+

P 1—^ -- H > hf |=—I- ~+-fr ~^-~-±- ~f

- & % • • ~ \

"+=f4jBH;r^-

0 2 3 4

Heated Length [m]

Experiment 5392: G=5153 kg/nrrs, P= 367 kW

800 700 600 500 400 300

1 r~ Bennett + (WSR-1)

ReJwSR-1) ,+T -F

L . - ^ , - . ^ . ^Hj—h- -+—+y p—I—+~r+~ ~ ~ ~ * i — ^ * H ^

0 2 3 4

Heated Length [m]

V.33 Improved Correlation: Experiments 5390, 5391 and 5392

Page 267: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

Experiment 5393: G=5140 kg/nrTs, P= 374 kW

800 700 600 500 400 300

i 1 — Bennett

(WSR-1) Rea(WSR-1)

+

'Q,

$—h^^H—4~+T^-^~4H^-"^-~±~f-+w4-j-

0 1 2 3 4

Heated Length [m]

Experiment 5394: G=5180 kg/m s, P= 388 kW

800 700 600 500 400 300

1 1 r Bennett

(WSR-1 Rea(WSR-1 ?g>

|HH—^—lj"+-~t—+f ^H—-^-ff-^---^—JK--H- j

0 2 3 4

Heated Length [m]

6

Experiment 5395: G=5180 kg/nrTs, P= 394 kW

800 700 600 500 400 300

i 1 Bennett

(WSR-1 +

ReJWSR '9 3)

H—+• - • ^ . r - . T ^ : ^ . ^ ^ - ^ . . ^ — | - - ^ — j - j . - ^

ft | +

0 2 3 4

Heated Length [m]

V.34 Improved Correlation: Experiments 5393, 5394 and 5395

Page 268: UNIVERSITE DE MONTREAL COMPARISON OF HEAT FLUX AND … · 2021. 8. 3. · dans des programmes informatiques de calculs d'etats permanents. Similairement aux tableaux de valeurs d'ebullition

o bi Experiment 5396: G=5235 kg/rrTs, P= 404 kW CD i—

? CD Q.

£ CD O

-g CO

o CD i—

CO t— CD Q.

£ CD

*—> CD O

•e CO

800 700 600 500 400 300

1 1 r~

Bennett + (WSR-1'

Reg WSR-1 TT _ zH^jZp •tfrf:..

---+---+^H^H~—H-Hj-'f—I—1—j+-j-—^—j—^-

0 2 3 4

Heated Length [m]

!=i Experiment 5397: G=5180 kg/nTs, P= 406 kW

0 2 3 4

Heated Length [m]

Figure V.35 Improved Correlation: Experiments 5396 and 5397