unit - 8: implementation of discrete-time systemsproakis11

151
UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?] Dr. Manjunatha. P [email protected] Professor Dept. of ECE J.N.N. College of Engineering, Shimoga October 18, 2016

Upload: others

Post on 16-Nov-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIT - 8: Implementation of Discrete-time SystemsProakis11

UNIT - 8: Implementation of Discrete-timeSystems[?, ?, ?, ?]

Dr. Manjunatha. [email protected]

ProfessorDept. of ECE

J.N.N. College of Engineering, Shimoga

October 18, 2016

Page 2: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Unit 8 Syllabus Introduction

Implementation of discrete-time systems::

[?, ?, ?, ?, ?, ?]

Slides are prepared to use in class room purpose, may be used as areference material

All the slides are prepared based on the reference material

Most of the figures/content used in this material are redrawn, someof the figures/pictures are downloaded from the Internet.

This material is not for commercial purpose.

This material is prepared based on Digital Signal Processing forECE/TCE course as per Visvesvaraya Technological University (VTU)syllabus (Karnataka State, India).

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 2 / 151

Page 3: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Unit 8 Syllabus Introduction

Unit 8: Implementation of Discrete-time Systems:

PART - B

Realization of FIR system

Direct form structure of FIR system

Linear phase FIR structure

Cascade form structure for FIR system

Frequency sampling structure for FIR system

Lattice structure for FIR system

Realization of IIR systemDirect form structure for IIR system

1 Direct form-I structure of IIR system2 Direct form-II structure of IIR system

Cascade form structure for IIR system

Parallel form structure for IIR system

Lattice structure of IIR systemDr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 3 / 151

Page 4: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Implementation of Discrete-time Systems Introduction

Implementation of Discrete-time Systems

System: A system is a physical device which consists of interrelated and interdependent elementswhich process the input signal and transform into output signal. Example: Filters, Amplifiers.

Linearity:If input x1(n) produces response y1(n)and if x2(n) produces response y2(n) andax1(n) + bx2(n) = ay1(n) + by2(n) then thesystem is called Linear system.

System1( )x n 1( )y n

System2 ( )x n 2 ( )y n

System1 2( ) ( )ax n bx n+ 1 2( ) ( )ay n by n+

Figure 1: Linearity

Time invariance: A system is said to be time invariant if its behavior and characteristics doesnot change with time.If input x(n) produces response y(n) then if x(n − n0) produces response y(n − n0), then thesystem is called as time invariantCausality: A system is causal if the output depends only on present and past, but not futureinputs. All memoryless systems are causal.

y [n] = x[n] + x[n − 1] + x[n − 2] . . .

Some of the examples for such analog systems are Oscillator, regulated power supply.,,

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 4 / 151

Page 5: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Realization of FIR system

Digital filters are discrete Linear Time Invariant (LTI) systems and described by differenceequations and are implemented in hardware or software.The discrete time sytems can be of finite impulse response (FIR) or infinite impulseresponse IIR type.A FIR filter is a filter whose impulse response is of finite duration, because it settles tozero in finite time, because there is no feedback in the FIR system.

The basic components of discrete-time system are, delay element, multiplier, and adder. Thedetails of these components and their symbols with its input output relationship is as shown inFigure 2.

1Z −( )x n ( ) ( 1)y n x n= −

Delay Element

a( )x n ( ) ( )y n ax n=

Multiplier

+2 ( )x n

1( )x n

1 2( ) ( ) ( )y n x n x n= +

Adder

Figure 2: Basic Elements

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 5 / 151

Page 6: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Realization of FIR system

Realization of FIR system

The difference equation is a formula for computing an output sample at time n based on pastand present input samples and past output samples in the time domain. The general, causal,LTI difference equation is as follows:

y(n) = b0x(n) + b1x(n − 1) + . . . bk x(n − k)− a1y(n − 1)− a2y(n − 2) . . .− ak y(n − k)

=M∑

k=0

bk x(n − k)−N∑

k=1

ak y(n − k)

where x is the input signal, y is the output signal ak and bk are called the coefficients.

The second term in this equation is usually termed as feedback for the system. This is theequation used to represent Infinite Impulse Response (IIR) system.

If the feedback term is absent then this equation is used to represent Finite ImpulseResponse (FIR) system.

y(n) =M∑

k=0

bk x(n − k)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 6 / 151

Page 7: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Realization of FIR system

LTI systems are represented by the following difference equation.

y(n) = −N∑

k=1

ak y(n − k) +M∑

k=0

bk x(n − k)

By taking z-transform on both sides

Y (z) = −N∑

k=1

ak z−k Y (z) +M∑

k=0

bk z−k X (z)

Y (z)

[1 +

N∑k=1

ak z−k

]=

M∑k=0

bk z−k X (z)

The system function H(z) is defined as

H(z) =Y (z)

X (z)

H(z) =

M∑k=0

bk z−k

1 +N∑

k=1ak z−k

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 7 / 151

Page 8: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Realization of FIR system

An FIR system does not have feedback. Hence y(n− k) term is absent in the system. FIRoutput is expressed as

y(n) =M∑

k=0

bk x(n − k)

If there are M coefficients then

y(n) =

M−1∑k=0

bk x(n − k)

By taking z-transform on both sides

Y (z) =M∑

k=0

bk z−k X (z)

System function H(z) is defined as

H(z) =Y (z)

X (z)=

M−1∑k=0

bk z−k

By taking inverse z transform

h(n) =

{bn for 0 ≤ n ≤ M − 10 otherwise

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 8 / 151

Page 9: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Direct form Structure of FIR System

Direct form Structure of FIR System

Structures in which the multiplier coefficients are precisely the coefficients of the transferfunction are called direct form structure.

Since h(n) = bn then y(n) is

y(n) =

M−1∑k=0

h(k)x(n − k)

Expanding the summation

y(n) = h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2) + . . . h(M − 1)x(n −M + 1)

Z-1

h(0)

+

Z-1

h(1)

+

Z-1

h(M-2)

+

Z-1

h(2)

+

h(M-1)

( )x n

+( ) (0)x n h (1) ( 1)h x n − (2) ( 2)h x n − ( 1) ( 1)h M x n M− − +

( ) (0)(1) ( 1)

x n hh x n+ −

( ) (0)(1) ( 1)(2) ( 2)

x n hh x nh x n

+ −+ −

1

0( ) ( ) ( )

M

ky n h k x n k

=

= −∑

Figure 3: Direct form realization of FIR system

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 9 / 151

Page 10: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Direct form Structure of FIR System

Realize a direct form FIR filter for the following impulse response.

h(n) = δ(n) +1

2δ(n − 1)−

1

4δ(n − 2) + δ(n − 4) +

1

2δ(n − 3)

Solution: h(n) = δ(n) + 12δ(n − 1)− 1

4δ(n − 2) + 1

2δ(n − 3) + δ(n − 4)

H(z) = 1 +1

2z−1 −

1

4z−2 +

1

2z−3 + z−4

Y (z) = X (z)H(z) =

[1 +

1

2z−1 −

1

4z−2 +

1

2z−3 + z−4

]X (z)

= X (z) +1

2z−1X (z)−

1

4z−2X (z) +

1

2z−3X (z) + z−4X (z)

y(n) = x(n) +1

2x(n − 1)−

1

4x(n − 2) +

1

2x(n − 3) + x(n − 4)

Z-1

+

Z-1 Z-1

+

Z-1

+y(n)

( )x n

+

(0) 1h = (4) 1h =1(1)2

h =1(2)

4h −

=1(3)2

h =

( 1)x n − ( 4)x n−( 3)x n −( 2)x n−

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 10 / 151

Page 11: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Direct form Structure of FIR System

DEC-2010 EERealize the system function H(z) = 1 + 3

2z−1 + 4

5z−2 + 5

9z−3 + 1

9z−4 using direct form II

Solution:

H(z) = 1 +3

2z−1 +

4

5z−2 +

5

9z−3 +

1

9z−4

Y (z) = X (z)H(z) =

[1 +

3

2z−1 +

4

5z−2 +

5

9z−3 +

1

9z−4

]X (z)

= X (z) +3

2z−1X (z) +

4

5z−2X (z) +

5

9z−3X (z) +

1

9z−4X (z)

y(n) = x(n) +3

2x(n − 1) +

4

5x(n − 2) +

5

9x(n − 3) +

1

9x(n − 4)

Z-1

+

Z-1

+

Z-1( )x n

(0) 1h = 3(1)2

h =4(2)5

h =

Z-1

++

5(3)9

h =1(4)9

h =

y(n)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 11 / 151

Page 12: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Direct form Structure of FIR System

June 2012 ECA FIR filter is given by y(n) = x[n] + 2

5x[n − 1] + 3

4x[n − 2] + 1

3x[n − 3] draw the direct form.

Solution:

Z-1

+

Z-1

+

Z-1

y(n)

( )x n

+

(0) 1h = 2(1)5

h =3(2)4

h =1(3)3

h =

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 12 / 151

Page 13: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Direct form Structure of FIR System

Determine a direct form realization for the following linear phase filters

h(n) = [1, 2, 3, 4, 3, 2, 1]

Solution:H(z) = 1 + 2z−1 + 3z−2 + 4z−3 + 3z−4 + 2z−5 + 1z−6]

Y (z) = X (z)H(z) =[1 + 2z−1 + 3z−2 + 4z−3 + 3z−4 + 2z−5 + 1z−6

]X (z)

= X (z) + 2z−1X (z) + 3z−2X (z) + 4z−3X (z) + 3z−4X (z) + 2z−5X (z) + 1z−6X (z)

y(n) = x(n) + 2x(n − 1) + 3x(n − 2) + 4x(n − 3) + 3x(n − 4) + 2x(n − 5) + 1x(n − 6)

Z-1

+

Z-1

+

Z-1( )x n

(0) 1h = (1) 2h = (2) 3h =

Z-1

++

(3) 4h =

Z-1

+

(5) 2h =(4) 3h =

Z-1

+y(n)

(6) 1h =

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 13 / 151

Page 14: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Direct form Structure of FIR System

Determine a direct form realization for the following linear phase filters

h(n) = [1, 2, 3, 3, 2, 1]

Solution:H(z) = 1 + 2z−1 + 3z−2 + 3z−3 + 2z−4 + 1z−5]

Y (z) = X (z)H(z) =[1 + 2z−1 + 3z−2 + 3z−3 + 2z−4 + 1z−5

]X (z)

= X (z) + 2z−1X (z) + 3z−2X (z) + 3z−3X (z) + 2z−4X (z) + 1z−5X (z)

y(n) = x(n) + 2x(n − 1) + 3x(n − 2) + 3x(n − 3) + 2x(n − 4) + 1x(n − 5)+

Z-1

+

Z-1

+

Z-1( )x n

(0) 1h = (1) 2h = (2) 3h =

Z-1

++

(3) 3h =

Z-1

+

(5) 1h =(4) 2h =

y(n)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 14 / 151

Page 15: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Direct form Structure of FIR System

For the following FIR filter system function sketch a direct form

H(z) = 1 + 2.88z−1 + 3.4048z−2 + 1.74z−3 + 0.4z−4

Solution:

Z-1

+

Z-1

+

Z-1( )x n

(0) 1h = (1) 2.88h = (2) 3.4048h =

Z-1

++

(3) 1.74h = (4) 0.4h =

y(n)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 15 / 151

Page 16: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Direct form Structure of FIR System

Realize direct form FIR filter with impulse response h(n) is givenh(n) = 4δ(n) + 5δ(n − 1) + 6δ(n − 2) + 7δ(n − 3). With input x(n) = [1, 2, 3] calculate outputy(n)Solution:

h(n) = 4δ(n) + 5δ(n − 1) + 6δ(n − 2) + 7δ(n − 3)

H(z) = 4 + 5z−1 + 6z−2 + 7z−3

Y (z) = X (z)H(z) =[4 + 5z−1 + 6z−2 + 7z−3

]X (z)

= 4X (z) + 5z−1X (z) + 6z−2X (z) + 7z−3X (z)

y(n) = 4x(n) + 5x(n − 1) + 6x(n − 2) + 7x(n − 3)

0 1 2 3

2

3

n

1

( )x n

Figure 4: Input x(n) to the FIR filter

Z-1

+

Z-1

+

Z-1( )x n

(0) 4h = (1) 5h = (2) 6h =

+

(3) 7h =

y(n)

( 1)x n − ( 3)x n −( 2)x n−

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 16 / 151

Page 17: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Direct form Structure of FIR System

y(n) = 4x(n) + 5x(n − 1) + 6x(n − 2) + 7x(n − 3)

y(0) = 4x(0) + 5x(0− 1) + 6x(0− 2) + 7x(0− 3) = 4× 1 = 4

y(1) = 4x(1) + 5x(0) = 4× 2 + 5× 1 = 13

y(2) = 4x(2) + 5x(1) + 6x(0) = 4× 3 + 5× 2 + 6× 1 = 28

y(3) = 4x(3) + 5x(2) + 6x(1) + 7x(0) = 4× 0 + 5× 3 + 6× 2 + 7× 1 = 34

y(4) = 4x(4) + 5x(3) + 6x(2) + 7x(1) = 0 + 0 + 6× 3 + 7× 2 = 32

y(5) = 4x(5) + 5x(4) + 6x(3) + 7x(2) = 0 + 0 + 0 + 7× 3 = 21

y(n) = [4, 13, 28, 34, 32, 21]

0 1 2 3 4 5

n

( )y n

4

13

21

34 3228

Figure 5: Output y(n) of the FIRfilter

Z-1

+

Z-1

+

Z-1( )x n

(0) 4h = (1) 5h = (2) 6h =

+

(3) 7h =

y(n)

( 1)x n − ( 3)x n −( 2)x n−

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 17 / 151

Page 18: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Direct form Structure of FIR System

June 2015 Obtain the direct form realization of linear phase FIR system given by

H(z) = 1 +2

3z−1 +

15

8z−2

Solution:

Z-1

+

Z-1

+

( )x n

(0) 1h = 2(1)3

h =15(2)8

h =

y(n)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 18 / 151

Page 19: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

Linear Phase FIR structure

Linear phase is a property of afilter, where the phase responseof the filter is a linear functionof frequency. The result is thatall frequency components of theinput signal are shifted in time(usually delayed) by the sameconstant amount, which isreferred to as the phase delay.And consequently, there is nophase distortion due to the timedelay of frequencies relative toone another.

Linear-phase filters have asymmetric impulse response.

The FIR filter has linear phase ifits unit sample response satisfiesthe following condition:

h(n) = h(M−1−n) n = 0, 1, 2, . . . ,M−1

0 1 2 3 4 5 6 7 8 n

h[n]

-2 -1

0 1

2

3 4

Center of Symmetry

0 1 2 3 4 5 6 7 8 n

h[n]

-2 -1

0 1

2

3 4

Center of Symmetry

0 1 2 3 4 5 6 7 8 n

h[n]-2

-1 0

1 2

3

4

Center of Symmetry

0 1 2 3 4 5 6 7 8 n

h[n]

-2 -1

0 1

2

3 4

Center of Symmetry

Symmetry: h(n)=h(M-1-n) Odd M Symmetry: h(n)=h(M-1-n) Even M

Antisymmetry: h(n)=-h(M-1-n) Odd M Antisymmetry: h(n)=-h(M-1-n) Even M

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 19 / 151

Page 20: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

The Z transform of the unit sample response is expressed as H(z) =M−1∑n=0

h(n)z−n

For even M h(n) = h(M − 1− n)

H(z) =

M/2−1∑n=0

h(n)[z−n + z−(M−1−n)

]The system expression is

H(z) =Y (z)

X (z)

Y (z)

X (z)=

M/2−1∑n=0

h(n)[z−n + z−(M−1−n)

]

Y (z) =

M/2−1∑n=0

h(n)[z−n + z−(M−1−n)

]X (z)

By expanding the summation

Y (z) = h(0)[1 + z−(M−1)

]X (z) + h(1)

[z−1 + z−(M−2)

]X (z) + . . .

+ h(M/2− 1)[z−(M/2−1) + z−(M/2)

]X (z)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 20 / 151

Page 21: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

By taking inverse z transform

y(n) = h(0)[x(n) + x(n − (M − 1))] + h(1)[x(n − 1) + x(n − (M − 2))] + . . .

+ h(M/2− 1)x [n − (M/2− 1)] + x [n − (M/2)]

By considering M=8 then y(n) is

y(n) = h(0)[x(n) + x(n − 7)] + h(1)[x(n − 1) + x(n − 6)] + . . .

+ h(2){x(n − 2) + x(n − 5)}+ h(3){x(n − 3) + x(n − 4)}

Z-1( )x n

Z-1

+

Z-1

Z-1

+

+

+

Z-1

Z-1

+ Z-1

++( )y n

h(1) h(2) h(3)h(0)

( 1)x n − ( 2)x n − ( 3)x n −

( 1)x n −

( 6)x n− ( 5)x n − ( 4)x n −( 7)x n −

Figure 6: Direct form realization of FIR system

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 21 / 151

Page 22: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

For Odd M h(n) = h(M − 1− n)

H(z) = h

(M − 1

2

)z−(

M−12

)+

(M−3)/2∑n=0

h(n)[z−n + z−(M−1−n)

]

H(z) =Y (z)

X (z)

Y (z)

X (z)= h

(M − 1

2

)z−(

M−12

)+

(M−3)/2∑n=0

h(n)[z−n + z−(M−1−n)

]

Y (z) = h

(M − 1

2

)z

(−M−1

2

)X (z) +

(M−3)/2∑n=0

h(n)[z−n + z−(M−1−n)

]X (z)

By expanding the summation

Y (z) = h

(M − 1

2

)z−(

M−12

)X (z) + h(0)

[1 + z−(M−1)

]X (z)

= +h(1)[z−1 + z−(M−2)

]X (z) + . . .

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 22 / 151

Page 23: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

By taking inverse z transform

y(n) = h

(M − 1

2

)x

[n −

M − 1

2

]+ h(0)[x(n) + x(n − (M − 1))] +

+ h(1)[x(n − 1) + x(n − (M − 2))] + . . .

+ h

(M − 3

2

)[x

[n −

M − 3

2

]+ x

[n −

M + 1

2

]]for M=9

y(n) = h(4)x(n − 4) + h(0)[x(n) + x(n − 8)] + h(1)[x(n − 1) + x(n − 7)] + . . .

+ h(2){x(n − 2) + x(n − 6)}+ h(3){x(n − 3) + x(n − 5)}

Z-1( )x n

Z-1

+

Z-1

Z-1

+

+

+

Z-1

Z-1

+

Z-1

++( )y n

h(1) h(2) h(3)h(0)

( 1)x n − ( 2)x n − ( 3)x n −

( 1)x n −

( 6)x n − ( 5)x n −

( 4)x n−

( 7)x n−Z-1

h(4)

( 8)x n −

Figure 7: Linear phase FIR structure

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 23 / 151

Page 24: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

Realize a linear phase FIR filter with the following impulse response. Give necessary equationsh(n) = δ(n) + 1

2δ(n − 1)− 1

4δ(n − 2) + δ(n − 4) + 1

2δ(n − 3)

Solution: h(n) = {1, 12,−1/4, 1

2, 1}. Here M=5 h(0) = h(4), h(1) = h(3)

h(n) = δ(n) +1

2δ(n − 1)−

1

4δ(n − 2) +

1

2δ(n − 3) + δ(n − 4)

H(z) = 1 +1

2z−1 −

1

4z−2 +

1

2z−3 + z−4

Y (z) = X (z)H(z) =

[1 +

1

2z−1 −

1

4z−2 +

1

2z−3 + z−4

]X (z)

Y (z) = X (z) +1

2z−1X (z)−

1

4z−2X (z) +

1

2z−3X (z) + z−4X (z)

y(n) = x(n) +1

2x(n − 1)−

1

4x(n − 2) +

1

2x(n − 3) + x(n − 4)

y(n) = [x(n) + x(n − 4)] +1

2[x(n − 1) + x(n − 3)]−

1

4x(n − 2)

Z-1( )x n

Z-1

+ +

+ +( )y n

h(1)=1/2 h(3)=-1/4h(0)=1

( 1)x n − ( 2)x n−

( 3)x n −( 4)x n−

Z-1

Z-1

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 24 / 151

Page 25: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

DEC 2010,2011, 2012 Realize a linear phase FIR filter having the following impulse responseh(n) = δ(n) + 1

4δ(n − 1)− 1

8δ(n − 2) + 1

4δ(n − 3) + δ(n − 4)

Solution: h(n) = {1, 14,−1/8,+ 1

4, 1}. Here M=5 h(0) = h(4), h(1) = h(3)

h(n) = δ(n) +1

4δ(n − 1)−

1

8δ(n − 2) +

1

4δ(n − 3) + δ(n − 4)

H(z) = 1 +1

4z−1 −

1

8z−2 +

1

4z−3 + z−4

Y (z) = X (z)H(z) =

[1 +

1

4z−1 −

1

8z−2 +

1

4z−3 + z−4

]X (z)

Y (z) = X (z) +1

4z−1X (z)−

1

8z−2X (z) +

1

4z−3X (z) + z−4X (z)

y(n) = x(n) +1

4x(n − 1)−

1

8x(n − 2) +

1

4x(n − 3) + x(n − 4)

y(n) = [x(n) + x(n − 4)] +1

4[x(n − 1) + x(n − 3)]−

1

8x(n − 2)

Z-1( )x n

Z-1

+ +

+ +( )y n

1

( 1)x n − ( 2)x n−

( 3)x n −( 4)x n−

Z-1

Z-1

18

−14

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 25 / 151

Page 26: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

May 2010 Realize a linear phase FIR filter having the following impulse responseh(n) = δ(n)− 1

4δ(n − 1) + 1

2δ(n − 2) + 1

2δ(n − 3)− 1

4δ(n − 4) + δ(n − 5)

Solution: h(n) = {1,− 14, 1

2, 1

2,− 1

4, 1}. Here M=6 h(0) = h(5), h(1) = h(4), h(2) = h(3)

h(n) = δ(n)−1

4δ(n − 1) +

1

2δ(n − 2) +

1

2δ(n − 3)−

1

4δ(n − 4) + δ(n − 5)

H(z) = 1−1

4z−1 +

1

2z−2 +

1

2z−3 −

1

4z−4 + z−5

Y (z) = X (z)H(z) =

[1−

1

4z−1 +

1

2z−2 +

1

2z−3 −

1

4z−4 + z−5

]X (z)

Y (z) = X (z)−1

4z−1X (z) +

1

2z−2X (z) +

1

2z−3X (z)−

1

4z−4X (z) + z−5X (z)

y(n) = x(n)−1

4x(n − 1) +

1

2x(n − 2) +

1

2x(n − 3)−

1

4x(n − 4) + x(n − 5)

y(n) = [x(n) + x(n − 5)]−1

4[x(n − 1) + x(n − 4)] +

1

2[x(n − 2) + x(n − 3)]

Z-1( )x n

Z-1

+

Z-1

Z-1

+

+

+ Z-1

++( )y n

1

( 1)x n − ( 2)x n −

( 3)x n −( 4)x n−( 5)x n −14

−12

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 26 / 151

Page 27: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

May 2010Obtain the direct form Realization of linear phase FIR system given byH(z) = 1 + 2

3z−1 + 15

8z−2 + 2

3z−3 + z−4

Solution: h(n) = {1, 23, 15/8, 2

3, 1}. Here M=5 h(0) = h(4), h(1) = h(3)

H(z) = 1 +2

3z−1 +

15

8z−2 +

2

3z−3 + z−4

Y (z) = X (z)H(z) =

[1 +

2

3z−1 +

15

8z−2 +

2

3z−3 + z−4

]X (z)

Y (z) = X (z) +2

3z−1X (z) +

15

8z−2X (z) +

2

3z−3X (z) + z−4X (z)

y(n) = x(n) +2

3x(n − 1) +

15

8x(n − 2) +

2

3x(n − 3) + x(n − 4)

y(n) = [x(n) + x(n − 4)] +2

3[x(n − 1) + x(n − 3)] +

15

8x(n − 2)

Z-1( )x n

Z-1

+ +

+ +( )y n

1

( 1)x n − ( 2)x n−

( 3)x n −( 4)x n−

Z-1

Z-1

158

23

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 27 / 151

Page 28: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

Realize the following system function by linear phase FIR structure

H(z) =2

3z + 1 +

2

3z−1

Solution:

H(z) = 1 +2

3(z + z−1)

Y (z) = X (z)H(z) =

[1 +

2

3(z + z−1)

]X (z)

Y (z) = X (z) +2

3(z + z−1)X (z)

y(n) = x(n) +2

3[x(n − 1) + x(n + 1)]

( )x n

Z-1

+

( 1)x n −

( 1)x n +Z

+23

( )y n

Figure 8: Linear phase FIR structureDr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 28 / 151

Page 29: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

Realize the following system function by linear phase FIR structure

H(z) = 1 +z−1

4+

z−2

4+ z−3

Solution:

H(z) = 1 +1

4(z−1 + z−2) + z−3

Y (z) = X (z)H(z) =

[1 +

1

4(z−1 + z−2) + z−3

]X (z)

= X (z) +1

4(z−1X (z) + z−2X (z)) + z−3X (z)

y(n) = [x(n) + x(n − 3)] +1

4[x(n − 1) + x(n − 2)]

Z-1( )x n

Z-1

+ +

+

Z-1

( )y n

h(0)=1

( 1)x n −

( 2)x n −( 3)x n −

1(1)4

h =

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 29 / 151

Page 30: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

Realize the following system function by linear phase FIR structure: h(n) = [1, 2, 3, 4, 3, 2, 1]Solution:

H(z) = 1 + 2z−1 + 3z−2 + 4z−3 + 3z−4 + 2z−5 + 1z−6

Y (z) = X (z)H(z) =[1 + 2z−1 + 3z−2 + 4z−3 + 3z−4 + 2z−5 + 1z−6

]X (z)

= X (z) + 2z−1X (z) + 3z−2X (z) + 4z−3X (z) + 3z−4X (z) + 2z−5X (z) + 1z−6X (z)

y(n) = x(n) + 2x(n − 1) + 3x(n − 2) + 4x(n − 3) + 3x(n − 4) + 2x(n − 5) + 1x(n − 6)

y(n) = 1[x(n) + x(n − 6)] + 2[x(n − 1) + x(n − 5)] + 3[x(n − 2) + x(n − 4)] + 4x(n − 3)

Z-1( )x n

Z-1

+

Z-1

Z-1

+

+

+

Z-1

Z-1

++( )y n

2 3 41

( 1)x n − ( 2)x n− ( 3)x n −

( 5)x n − ( 4)x n−( 6)x n−

 Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 30 / 151

Page 31: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Linear Phase FIR structure

Realize a direct form for the following linear phase filters

h(n) = [1, 2, 3, 3, 2, 1]

Solution:H(z) = 1 + 2z−1 + 3z−2 + 3z−3 + 2z−4 + 1z−5]

Y (z) = X (z)H(z) =[1 + 2z−1 + 3z−2 + 3z−3 + 2z−4 + 1z−5

]X (z)

= X (z) + 2z−1X (z) + 3z−2X (z) + 3z−3X (z) + 2z−4X (z) + 1z−5X (z)

y(n) = x(n) + 2x(n − 1) + 3x(n − 2) + 3x(n − 3) + 2x(n − 4) + 1x(n − 5)

y(n) = 1[x(n) + x(n − 5)] + 2[x(n − 1) + x(n − 4)] + 3[x(n − 2) + x(n − 3)]

Z-1( )x n

Z-1

+

Z-1

Z-1

+

+

+ Z-1

++( )y n

1

( 1)x n − ( 2)x n −

( 3)x n −( 4)x n−( 5)x n −

2 3

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 31 / 151

Page 32: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Frequency Sampling for FIR Systems

Frequency Sampling for FIR Systems

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 32 / 151

Page 33: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Frequency Sampling for FIR Systems

Frequency sampling realization is used when an FIR filter is to operate on some desiredfrequency.

The desired frequency may be defined and this reduces the complexity of the system.

Consider a frequency ω

ωk =2π

Mk k = 0, 1, . . .M − 1

where ωk is the frequency at discrete points.

Let the unit sample response of FIR system be h(n). The fourier transform of the h(n) isdefined as

H(ω) =

M−1∑n=0

h(n)e−jωn

H(ω) at ω=ωk = 2πM

k

H(ωk ) = H

(2π

Mk

)=

M−1∑n=0

h(n)e−j2πkn/M

H(ωk ) is also written as H(k) and defined as

H(k) =

M−1∑n=0

h(n)e−j2πkn/M k = 0, 1, . . .M − 1

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 33 / 151

Page 34: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Frequency Sampling for FIR Systems

This equation represents the M point DFT of h(n) and it is defined as

h(n) =1

M

M−1∑n=0

H(k)e j2πkn/M n = 0, 1, . . .M − 1

z transform is defined as

H(z) =

M−1∑n=0

h(n)z−n

substituting the value of h(n)

H(z) =

M−1∑n=0

(1

M

M−1∑n=0

H(k)e j2πkn/M

)z−n

Interchanging the order of summations in the above equation

H(z) =

M−1∑n=0

H(k)

(1

M

M−1∑n=0

e j2πk/M z−1

)n

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 34 / 151

Page 35: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Frequency Sampling for FIR Systems

The geometric series formula is

N∑n=0

an =1− aN+1

1− a

Using the formula where a = e2πkn/M z−1

H(z) =

M−1∑k=0

H(k)1

M

(1− e j2πk/M z−1

)M

1− e j2πk/M z−1

=

M−1∑k=0

H(k)1

M

1− e j2πk z−M

1− e j2πk/M z−1

e j2πk = cos(2πk) + jsin(2πk) = 1

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 35 / 151

Page 36: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Frequency Sampling for FIR Systems

H(z) =

M−1∑k=0

H(k)1

M

1− z−M

1− e j2πk/M z−1

H(z) =1− z−M

M

M−1∑k=0

H(k)

1− e j2πk/M z−1

The equation can be considered as multiplication of two systems and defined as

H(z) = H1(z).H2(z)

where

H1(z) =1− z−M

M

H2(z) =

M−1∑k=0

H(k)

1− e j2πk/M z−1

H1(z) and H2(z) are realized independently. H(z) is obtained by multiplication of H1(z)and H2(z).

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 36 / 151

Page 37: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Frequency Sampling for FIR Systems

H(z) =1− z−M

M

M−1∑k=0

H(k)

1− e j2πk/M z−1

Z-M

+( )x n

Z-1

+ +H(2)

4 /j Me π

Z-1

+ +H(0)

Z-1

+ +H(1)

2 /j Me π

Z-1

+ +H(M-1)

2 ( 1)/j M Me π −

( )y n

Realizationof H1(z)

1M

Realizationof H2(z)

1

-

Figure 9: Frequency sampling FIR structure

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 37 / 151

Page 38: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Frequency Sampling for FIR Systems

Determine the transfer function H(z) of an FIR filter to implementh(n) = δ(n) + 2δ(n − 1) + δ(n − 2). Using frequency sampling technique

Solution:h(0) = 1, h(1) = 2, h(2) = 1 The DFT of h(n)

H(k) =

M−1∑n=0

h(n)e−j2πkn/M

With M=3

H(k) =2∑

n=0

h(n)e−j2πkn/3

H(k) =2∑

n=0

h(n)e−j2πkn/3

= h(0) + h(1)e−j2πk/3 + h(2)e−j4πk/3

k=0,1,2

H(0) = 1 + 2 + 1 = 4

H(1) = 1 + 2e−j2π/3 + e−j4π/3 = −0.5− j0.866 = e−j2π/3

H(2) = 1 + 2e−j4π/3 + e−j8π/3 = −0.5− j0.866 = e−j2π/3

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 38 / 151

Page 39: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Frequency Sampling for FIR Systems

The system function is

H(z) =1− z−M

M

M−1∑k=0

H(k)

1− e2πk/M z−1

For M=3

H(z) =1− z−3

3

2∑k=0

H(k)

1− e2πk/3z−1

=1− z−3

3

[H(0)

1− z−1+

H(1)

1− e−j2π/3z−1+

H(2)

1− e−j4π/3z−1

]= H1(z)× H2(z)

where

H1(z) =1− z−3

3

H2(z) =

[4

1− z−1+

e−j2π/3

1− e−j2π/3z−1+

e−j4π/3

1− e−j4π/3z−1

]

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 39 / 151

Page 40: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Frequency Sampling for FIR Systems

Z-1

+ +

4 /3je π

Z-1

+ +4

1

Z-1

+ +

4 /3je π−

Z-3

+( )x n

13

2 /3je π−

2 /3je π

( )y n

Figure 10: Frequency sampling FIR structure

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 40 / 151

Page 41: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Realization of IIR system

Realization of IIR system

Direct form structure for IIR system

1 Direct form-I structure of IIR system2 Direct form-II structure of IIR system

Cascade form structure for IIR system

Parallel form structure for IIR system

Lattice structure of IIR system

An Infinite Impulse Response (IIR) filters are digital filters with infinite impulse response.Unlike FIR filters, they have the feedback (a recursive part of a filter) and are known asrecursive digital filters therefore.

IIR filters are computationally more efficient than FIR filters as they require fewercoefficients due to the fact that they use feedback.

If the coefficients deviate from their true values then the feedback can make the filterunstable.

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 41 / 151

Page 42: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Realization of IIR system

LTI systems are represented by the followingdifference equation.

y(n) = −N∑

k=1

ak y(n − k) +M∑

k=0

bk x(n − k)

By taking z-transform on both sides

Y (z) = −N∑

k=1

ak z−k Y (z) +M∑

k=0

bk z−k X (z)

Y (z)

[1 +

N∑k=1

ak z−k

]=

M∑k=0

bk z−k X (z)

The system function H(z) is defined as

H(z) =Y (z)

X (z)=

M∑k=0

bk z−k

1 +N∑

k=1ak z−k

The general expression of an IIRfilter can be expressed as follows:

H(z) =

M∑k=0

bk z−k

1 +N∑

k=1ak z−k

H1(z) =M∑

k=0

bk z−k

H2(z) =1

1 +N∑

k=1ak z−k

H(z) = H1(z).H2(z)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 42 / 151

Page 43: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form-I Structure of IIR System

Direct form Structure of IIR SystemStructures in which the multiplier coefficients are precisely the coefficients of the transferfunction are called direct form structure.

The direct form structures for H1(z) H2(z) are

H1(z) =M∑

k=0

bk z−k

= b0 + b1z−1 + . . . bM z−M

H1(z) is defined as

H1(z) =Y1(z)

X1(z)

Y1(z) = b0X1(z)+b1z−1X1(z)+. . . bM z−M X1(z)

Its inverse z transform is

y1(n) = b0x1(n)+b1x1(n−1)+. . . bM x1(n−M)

Z-1

+b0

Z-1

+

1( )y n

b1

+b2

Z-1

( )x n

bM

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 43 / 151

Page 44: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form-I Structure of IIR System

H2(z) is the all pole system and is given by

H2(z) =1

1 +N∑

k=1ak z−k

H2(z) is also expressed in terms of system function

H2(z) =Y2(z)

X2(z)=

1

1 +N∑

k=1ak z−k

Y2(z)[1 +N∑

k=1

ak z−k ] = X2(z)

Y2(z) = −N∑

k=1

ak z−k Y2(z) + X2(z)

Z-1

+

Z-1

+-a1

+-a2

Z-1

-aN

2 ( )x n 2 ( )y n

Expanding the above function

Y2(z) = −a1z−1Y2(z)− a2z−2Y2(z)− a3z−3Y2(z) + . . .− aN z−N Y2(z) + X2(z)

Its inverse z transform is

y2(n) = −a1y2(n − 1)− a2y2(n − 2)− a3y2(n − 3)− . . .− aN y2(n − N) + x2(n)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 44 / 151

Page 45: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form-I Structure of IIR System

11

1

( )( )( )

Y zH zX z

= 22

2

( )( )( )

Y zH zX z

=1( ) ( )x n x n= 1 2( ) ( )y n x n= 2 ( ) ( )y n y n=

Figure 11: Direct form I realization of IIR system

Z-1

+

Z-1

+-a1

Z-1

+-a2

Z-1

+-a3

+-aN-1

-aN

2 ( )x n 2 ( ) ( )y n y n=

Z-1

+b0

Z-1

+

1( )y n

b1

Z-1

+b2

Z-1

+

1( ) ( )x n x n=

b3

+bM-1

bM

All zero system All pole system

Figure 12: Direct form I realization of IIR system

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 45 / 151

Page 46: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

Direct form-II Structure of IIR SystemDirect form II is also called as canonic form because the number delay elements is same asthe order of difference equation.

H(z) =

M∑k=0

bk z−k

1 +N∑

k=1ak z−k

H(z) =Y (z)

X (z)=

Y (z)

X (z)

W (z)

W (z)=

W (z)

X (z)

Y (z)

W (z)= H1(z).H2(z)

H1(z) =W (z)

X (z)=

1

1 +N∑

k=1ak z−k

W (z)[1 +N∑

k=1

ak z−k ] = X (z)

W (z) = X (z)−N∑

k=1

ak z−k W (z)

= X (z)− a1z−1W (z)− a2z−2W (z)−− . . . aN z−N W (z)

w(n) = x(n)− a1w(n − 1)− a2w(n − 2)− . . .− aN w(n − N)

By inverse z transform

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 46 / 151

Page 47: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

H2(z) =Y (z)

W (z)=

M∑k=0

bk z−k

Y (z) =M∑

k=0

bk z−k W (z)

= b0W (z) + b1z−1W (z) + b2z−2W (z) + . . .+ bM z−M W (z)

By inverse z transform

y(n) = b0w(n) + b1w(n − 1) + b2w(n − 2) + . . .+ bM w(n −M)

Z-1

+

Z-1

+-a1

+-a2

Z-1

-aN

( )x n ( )w n

Z-1

+b0

Z-1

+

( )y n

b1

+b2

Z-1

( )w n

bM

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 47 / 151

Page 48: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

1( )( )( )

W zH zX z

= 2( )( )( )

Y zH zW z

=( )x n ( )w n ( )y n

Figure 13: Cascade connection of H1(z) H2(z)

( )w n( )x n

All zero system All pole system

Z-1

+

Z-1

+-a1

Z-1

+-a2

Z-1

+-a3

+-aN-1

-aN

( )y n

Z-1

+b0

Z-1

+b1

Z-1

+b2

Z-1

+b3

+bM-1

bM

Figure 14: Direct form-II Structure

( )w n( )x n

Z-1

+

Z-1

+-a1

Z-1

+-a2

Z-1

+-a3

+-aN-1

-aN

( )y n+

b0

+b1

+b2

+b3

+bM-1

bM

Figure 15: Direct form-II Structure

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 48 / 151

Page 49: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

A difference equation describing a filter is given below

y(n)−3

4y(n − 1) +

1

8y(n − 2) = x(n) +

1

2x(n − 1)

Draw the direct form I and direct form II structures

Solution:

y(n) =3

4y(n − 1)−

1

8y(n − 2) + x(n) +

1

2x(n − 1)

( )y n

Z-1

+1

0.5

( )x n

Z-1

+

Z-1

+

18

34

Figure 16: Direct form-I

( )w n( )x n

Z-1

+

Z-1

+

( )y n+

1

+

34

18

12

Figure 17: Direct form-II

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 49 / 151

Page 50: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

[July 2013]:y(n) = −0.1y(n − 1) + 0.2y(n − 2) + 3x(n) + 3.6x(n − 1) + 0.6x(n − 2)obtain the the directform I and direct form II structures

Solution:

y(n) = −0.1y(n − 1) + 0.2y(n − 2) + 3x(n) + 3.6x(n − 1) + 0.6x(n − 2)

( )y n

Z-1

+3

3.6

( )x n

Z-1

+

Z-1

+

0.2

0.1−

Z-1

+

0.6

Figure 18: Direct form-I

( )w n( )x n

Z-1

+

Z-1

+-0.1

0.2

( )y n+

3

+3.6

0.6

Figure 19: Direct form-II

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 50 / 151

Page 51: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

June 2010 ECObtain direct form I and direct form II for the system described by

y(n) = −0.1y(n − 1) + 0.72y(n − 2) + 0.7x(n)− 0.252x(n − 2)

Solution:y(n) = −0.1y(n − 1) + 0.72y(n − 2) + 0.7x(n)− 0.252x(n − 2)

( )y n

Z-1

+0.7( )x n

Z-1

+

Z-1

+0.1−

0.72

( 1)y n −

( 2)y n −

( 1)x n −

Z-1

-0.252( 2)x n−

Figure 20: Direct form-I

( )w n( )x n

Z-1

+

Z-1

+-0.1

0.72

( )y n+

0.7

-0.252

Figure 21: Direct form-II

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 51 / 151

Page 52: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

A system is represented by transfer function H(z) is given by

H(z) = 3 +4z

z − 12

−2

z − 14

(i) Does this H(z) represent a FIR or IIR filter ? Why ?

(ii) Give a difference equation realization of this system using direct form I

(iii) Draw the block diagram for the direct form II canonic realization, and give thegoverning equations for implementation

Solution:

H(z) = 3 +4z

z − 12

−2

z − 14

= 3 +4z

z − 0.5−

2

z − 0.25

=7z2 − 5.25z + 1.375

z2 − 0.75z + 0.125

(i): By observing the system function it has numerator of polynomial of order 2 as well as

denominator of polynomial of order 2. The system function has poles as well zeros, hence it

represents IIR filter.

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 52 / 151

Page 53: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

(ii): Direct form I

H(z) =7z2 − 5.25z + 1.375

z2 − 0.75z + 0.125=

7− 5.25z−1 + 1.375z−2

1− 0.75z−1 + 0.125z−2=

Y (Z)

X (Z)

Y (Z)[1− 0.75z−1 + 0.125z−2] = 7X (Z)− 5.25z−1X (Z) + 1.375z−2X (Z)

y(n)− 0.75y(n − 1) + 0.125y(n − 2) = 7x(n)− 5.25x(n − 1) + 1.375x(n − 2)

y(n) = 0.75y(n − 1)− 0.125y(n − 2) + 7x(n)− 5.25x(n − 1) + 1.375x(n − 2)

( )y n

Z-1

+

Z-1

+

7

-5.25

1.375

( )x n

Z-1

+

Z-1

+

-1.25

0.75

Figure 22: Direct form-I Structure

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 53 / 151

Page 54: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

(iii): Direct form II canonic realization

H(z) =7− 5.25z−1 + 1.375z−2

1− 0.75z−1 + 0.125z−2=

Y (z)

X (z)

H(z) =Y (z)

W (z)

W (z)

X (z)=

7− 5.25z−1 + 1.375z−2

1− 0.75z−1 + 0.125z−2

H(z) = H1(z).H2(z) =1

1− 0.75z−1 + 0.125z−2[7− 5.25z−1 + 1.375z−2]

H1(z) =W (z)

X (z)=

1

1− 0.75z−1 + 0.125z−2

W (z)[1− 0.75z−1 + 0.125z−2] = X (z)

W (z) = X (z)+0.75z−1W (z)−0.125z−2W (z)

Taking inverse z transform

w(n) = x(n) + 0.75w(n − 1)− 0.125w(n − 2)

( )w n( )x n

Z-1

+

Z-1

+

-1.25

0.75

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 54 / 151

Page 55: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

H2(z) =Y (z)

W (z)= 7− 5.25z−1 + 1.375z−2

Y (z)

W (z)= 7− 5.25z−1 + 1.375z−2

Y (z) = 7W (z)− 5.25z−1W (z) + 1.375z−2W (z)

Taking inverse z transform

y(n) = 7w(n)− 5.25w(n − 1) + 1.375w(n − 2)

( )w n ( )y n

Z-1

+

Z-1

+

7

-5.25

1.375

Figure 23: Direct form of H2(z)

( )w n( )x n

Z-1

+

Z-1

+

-1.25

( )y n

Z-1

+

Z-1

+

7

-5.250.75

1.375

Figure 24: Realization of H(z) = H1(z).H2(z)

( )w n( )x n

Z-1

+

Z-1

+0.75

-0.125

( )y n+

7

+-5.25

1.325

Figure 25: Direct form-II, canonic form

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 55 / 151

Page 56: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

2012 DEC, 2012 JuneObtain the direct form II (canonic) realization for the following system.

H(z) =(z − 1)(z2 + 5z + 6)(z − 3)

(z2 + 6z + 5)(z2 − 6z + 8)

Solution:

H(z) =(z − 1)(z2 + 5z + 6)(z − 3)

(z2 + 6z + 5)(z2 − 6z + 8)

=(z2 − 4z + 3)(z2 + 5z + 6)

(z2 + 6z + 5) + (z2 − 6z + 8)

=z4 + z3 − 11z2 − 9z + 18

z4 − 23z2 + 18z + 40

=1 + z−1 − 11z−2 − 9z−3 + 18z−4

1− 23z−2 + 18z−3 + 40z−4

( )w n( )x n

Z-1

+

Z-1

( )y n+

-11

+

Z-1

+

-9

+

1

Z-1

+

40−

23

18− +

18

Figure 26: Direct form-II

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 56 / 151

Page 57: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

2011 JulyObtain the direct form II realizations of the following system.

H(z) =(1 + z−1)

(1− 14

z−1)(1− z−1 + 12

z−2)

Solution:

H(z) =(1 + z−1)

(1− 54

z−1 + 34

z−2 − 18

z−3)

=1

(1− 54

z−1 + 34

z−2 − 18

z−3)×

(1 + z−1)

1= H1(z)× H2(z)

H1(z) =W (z)

X (z)=

1

(1− 54

z−1 + 34

z−2 − 18

z−3)

W (z)[1−5

4z−1 +

3

4z−2 −

1

8z−3] = X (z)

W (z) = X (z) +5

4z−1W (z)−

3

4z−2W (z) +

1

8z−3W (z)

w(n) = x(n) +5

4w(n − 1)−

3

4w(n − 2) +

1

8w(n − 3)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 57 / 151

Page 58: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

H2(z) = (1 + z−1)

H2(z) =Y (z)

W (z)= (1 + z−1)

Y (z) = W (z) + z−1W (z)

y(n) = w(n) + w(n − 1)

( )w n( )x n

Z-1

+

Z-1

+

( )y n

Z-1

+1

-1

Z-1

54

34

18

Figure 27: Direct form-II

( )w n( )x n

Z-1

+

Z-1

+

( )y n+

1

-1

Z-1

54

34

18

Figure 28: Direct form-II

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 58 / 151

Page 59: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

June 2010 EE

Realize the following system function in direct form I

H(z) =1 + 1

5z−1

(1− 12

z−1 + 13

z−2)(1 + 14

z−1)

Solution:

H(z) =1 + 1

5z−1

(1− 12

z−1 + 13

z−2)(1 + 14

z−1)

H(z) =Y (z)

X (z)=

1 + 15

z−1

(1− 14

z−1 + 524

z−2 + 112

z−3)

( )y n

Z-1

+1

5

( )x n

Z-1

+

Z-1

+14−

Z-1

+524

112−

( 1)y n −

( 3)y n −

( 2)y n −

( 1)x n −

Figure 29: Direct form-I

Y (z)−1

4z−1Y (z) +

5

24z−2Y (z)−

1

12z−3Y (z) = X (z) + 5z−1X (z)

By taking inverse Z transform on both sides

y(n)−1

4y(n − 1) +

5

24y(n − 2)−

1

12y(n − 3) = x(n) + 5x(n − 1)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 59 / 151

Page 60: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

Obtain direct form II for the system described by H(z) = 8Z 3−4Z 2+11Z−2(Z− 1

4)(Z 2−Z+ 1

2)

[December 2010 EC]

Solution:

H(z) =8Z 3 − 4Z 2 + 11Z − 2

(Z − 14

)(Z 2 − Z + 12

)=

Y (z)

X (z)

=8Z 3 − 4Z 2 + 11Z − 2

Z 3 − 1.25Z 2 + 0.75Z − 0.125

=8− 4Z−1 + 11Z−2 − 2Z−3

1− 1.25Z−1 + 0.75Z−2 − 0.125Z−1

( )w n( )x n

Z-1

+

Z-1

+1.25

-0.75

( )y n+

8

11

+

Z-1

+

0.125 -2

+

-4

Figure 30: Direct form-II

By taking inverse Z transform on both sides

y(n)−1.25y(n−1) + 0.75y(n−2)−0.125y(n−3) = 8x(n)−4x(n−1) + 11x(n−2)−2x(n−3)

y(n) = 8x(n)−4x(n−1) + 11x(n−2)−2x(n−3) + 1.25y(n−1)−0.75y(n−2) + 0.125y(n−3)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 60 / 151

Page 61: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

Obtain direct form II for the system described by

H(z) =(z − 1)(z − 2)(z + 1)z

[z − ( 12

+ j 12

)][z − ( 12− j 1

2)](z − j

4)(z + j

4)

[December 2010 EC]Solution:

H(z) =Y (z)

X (z)=

(Z 2 − 1)(Z 2 − 2Z)

(Z 2 − Z + 12

)(Z 2 + 116

)

=Z 4 − 2Z 3 − Z 2 + 2Z

Z 4 − Z 3 + 916

Z 2 − 116

Z + 132

=1− 2Z−1 − Z−2 + 2Z−3

1− Z−1 + 916

−2 − 116

Z−3 + 132

Z−4

By taking inverse Z transform on both sides

y(n)−y(n−1)+9

16y(n−2)−

1

16y(n−3)+

1

32y(n−4) = x(n)−2x(n−1)−x(n−2)+2x(n−3)

y(n) = x(n)−2x(n−1)−x(n−2)+2x(n−3)+y(n−1)−9

16y(n−2)+

1

16y(n−3)−

1

32y(n−4)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 61 / 151

Page 62: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

( )y n

Z-1

+1

-2

( )x n

Z-1

+

Z-1

+1

Z-1

+9

16−

116

( 1)y n −

( 3)y n −

( 2)y n −

( 1)x n −

Z-1

-1( 2)x n−

Z-1

2

( 3)x n −

+

+

Z-1132−

( 4)y n −

+

Figure 31: Direct form-I

( )w n( )x n

Z-1

+

Z-1

+1

( )y n+

1

-1

+

Z-1

+

2

+

-2

Z-1

+132−

916−

116

Figure 32: Direct form-II

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 62 / 151

Page 63: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

Realize direct form-I and form -II for linear time invariant system which is described by thefollowing input output relation

2y(n)− y(n − 2)− 4y(n − 3) = 3x(n − 2)

Solution:

y(n) = 0.5y(n − 2) + 2y(n − 3) + 1.5x(n − 2)

( )y n

Z-1

( )x n

Z-1

+

Z-1

0.5Z-1

1.5

Z-1

+

2

(a) Direct form-I

( )w n( )x n

Z-1

+

Z-1

( )y n

1.5

Z-1

+0.5

2

(b) Direct form-II

Figure 33: Realization of IIR systems

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 63 / 151

Page 64: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Direct form II structure for IIR system

Realize direct form-I and form -II for system given by

H(z) =z−1 − 3z−2

(10− z−1)(1 + 0.5z−1 + 0.5z−2)

Solution:

H(z) =z−1 − 3z−2

(10− z−1)(1 + 0.5z−1 + 0.5z−2)=

z−1 − 3z−1

(10 + 4z−1 + 4.5z−2 − 0.5z−3)

Y (z)

X (z)=

0.1z−1 − 0.3z−1

(1 + 0.4z−1 + 0.45z−2 − 0.05z−3)

By taking inverse z transform on both sides

y(n) + 0.4y(n − 1) + 0.45y(n − 2)− 0.05y(n − 3) = 0.1x(n − 1)− 0.3x(n − 2)

y(n) = −0.4y(n − 1)− 0.45y(n − 2) + 0.05y(n − 3) + 0.1x(n − 1)− 0.3x(n − 2)

( )y n

Z-1

( )x n

Z-1

+

Z-1

0.45−Z-1

-0.3

Z-1

+

0.05

+0.1

+0.4−

(a) Direct form-I

( )w n( )x n

Z-1

+

Z-1

( )y n

-0.3

Z-1

+0.45−

0.05

+0.4−

+0.1

(b) Direct form-II

Figure 34: Realization of IIR systems

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 64 / 151

Page 65: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

Cascade Form Structure

H(z) =

M∑k=0

bk z−k

1 +N∑

k=1ak z−k

=b0 + b1z−1 + b2z−2 + bM z−M

1 + a1z−1 + a2z−2 + aN z−N

The system can be factored into a cascade of second order subsystems such that H(z) can beexpressed as

H(z) = H1(z)× H2(z)× H3(z) . . .× Hk (z) =K∏

k=1

Hk (z)

where K is the integer part of (N+1)/2 and Hk (z) has the general form

Hk (z) =bk0 + bk1z−1 + bk2z−2

1 + ak1z−1 + ak2z−2

1( ) ( )x n x n=H1(z) 1 2( ) ( )y n x n=

H2(z) 2 3( ) ( )y n x n=Hk(z)

( ) ( )ky n y n=1( )( )

k

k

y nx n

− =

Figure 35: Cascade realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 65 / 151

Page 66: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

In cascade each Hk (z) are represented as

Hk (z) =Yk (z)

Xk (z)

=Wk (z)

Xk (z)

Yk (z)

Wk (z)

= Hk1(z).Hk2(z)

where Hk1(z) and Hk2(z) defined as

Hk1(z) =Wk (z)

Xk (z)=

1

1 + ak1z−1 + ak2z−2

Hk2(z) = bk0 + bk1z−1 + bk2z−2

( )w n1( ) ( )ky n x n− =

Z-1

+

Z-1

+

+

+

2ka−

1ka−

2kb

1kb

0kb 1( ) ( )k ky n x n+=

Figure 36: Cascade realization

wk (n) = −ak1wk (n − 1)− ak2wk (n − 2) +−yk−1(n)

yk (n) = bk0wk (n) + bk1wk (n − 1) + bk2wk (n − 2)

yk−1(n = xk (n)

yk (n) = xk+1(n)

y0(n) = x(n)

y(n) = xk (n)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 66 / 151

Page 67: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

June 2010 EERealize the following system function in cascade form

H(z) =1 + 1

5z−1

(1− 12

z−1 + 13

z−2)(1 + 14

z−1)

Solution:

H(z) = H1(z)× H2(z) =1

(1 + 14

z−1).

1 + 15

z−1

(1− 12

z−1 + 13

z−2)

( )x n

Z-1

+( )y n

+

+Z-1

Z-1

+

15

13

14

−12

1

11a−21b

22a−

21a−

20b

Figure 37: Cascade realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 67 / 151

Page 68: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

Realize the following system function in cascade form

H(z) =1− 1

2z−1

(1− 14

z−1 + 12

z−2)(1− 15

z−1 + 16

z−2)

Solution:

H(z) = H1(z)× H2(z) =1

(1− 15

z−1 + 16

z−2).

1− 12

z−1

(1− 14

z−1 + 12

z−2)

( )x n

Z-1

+( )y n

+

+Z-1

Z-1

+

12

12

15

14

1

Z-1

+

16

Figure 38: Cascade realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 68 / 151

Page 69: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

Realize the following system function in cascade form

H(z) =1 + 1

3z−1

(1− 15

z−1)(1− 34

z−1 + 18

z−2)

Solution:

H(z) = H1(z)× H2(z) =1

(1− 15

z−1)×

1 + 13

z−1

(1− 34

z−1 + 18

z−2)

( )x n

Z-1

+( )y n

+

+Z-1

Z-1

+

13

18

15

34

1

Figure 39: Cascade realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 69 / 151

Page 70: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

The transfer function of a discrete system is given as follows

H(z) =1− z−1

(1− 0.2z−1 − 0.15z−2)

Draw the cascade realizationSolution:

H(z) = H1(z)× H2(z) = (1− z−1)1

(1− 0.2z−1 − 0.15z−2)

( )x n

Z-1

( )y n+

+Z-1

Z-1

0.15

0.2-1

1+1( )H z 2 ( )H z

Figure 40: Cascade realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 70 / 151

Page 71: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

December 2010 EEDraw the cascade realization for the following system

y(n) = 0.75y(n − 1)− 0.125y(n − 2) + 6x(n) + 7x(n − 1) + x(n − 2)

Solution:

Y (z) = 0.75z−1Y (z)− 0.125z−2Y (z) + 6X (z) + 7z−1X (z) + z−2X (z)

H(z) =Y (z)

X (z)=

6 + 7z−1 + z−2

1− 0.75z−1 + 0.125z−2

H(z) =Y (z)

X (z)=

6 + 7z−1 + z−2

1− 0.75z−1 + 0.125z−2

=6z2 + 7z + 1

z2 − 0.75z + 0.125

=(6z + 1)(z + 1)

(z − 0.5)(z − 0.25)

=(6 + z−1)(1 + z−1)

(1− 0.5z−1)(1− 0.25z−1)= H1(z)× H2(z)

a = 1, b = −0.75, c = 0.125Roots of the quadratic equation forax2 + bx + c = 0 are

−b±√

b2−4ac

2a

=0.75±

√0.752 − 4(0.125)

2

=0.75±

√0.0625

2=

0.75± 0..25

2

= ⇒ 0.5, 0.25

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 71 / 151

Page 72: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

H1(z) =6 + z−1

1− 0.5z−1

H2(z) =(1 + z−1)

(1− 0.25z−1)

( )y n2 ( )H z( )x n

Z-1

1

+1( )H z+

0.5

6

Z-1

1

++

0.25

1

Figure 41: Cascade realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 72 / 151

Page 73: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

A system function is specified by its transfer function H(z) given by

H(z) =(z − 1)(z − 2)(z + 2)z

[z − ( 12

+ j 12

)][z − ( 12− j 1

2)](z − j

4)(z + j

4)

Realize the cascade of two biquadratic sections.Solution:

H(z) =(z − 1)(z − 2)(z + 2)z

[z − ( 12

+ j 12

)][z − ( 12− j 1

2)](z − j

4)(z + j

4)

=z2 − 3z + 2

z2 − z + 0.5×

z2 + 2z

z2 + 0.0625

=1− 3z−1 + 2z−2

1− z−1 + 0.5z−2×

1 + 2z−1

1 + 0.0625z−2

= H1(z)× H2(z)

( )x n

Z-1

+

Z-1

+1

-0.5

+1

+-3

2

( )y n+

Z-1

Z-1

+

0.0625−

1

2

Figure 42: Cascade realizationDr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 73 / 151

Page 74: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

Obtain the cascade realization of the following system. The system should have two biquadraticsections. [EC December 2012]

H(z) =(z − 1)(z2 + 5z + 6)(z − 3)

(z2 + 6z + 5)(z2 − 6z + 8)

Solution:

H(z) =(z − 1)(z2 + 5z + 6)(z − 3)

(z2 + 6z + 5)(z2 − 6z + 8)

=z2 − 4z + 3

z2 + 6z + 5×

z2 + 5z + 6

z2 − 6z + 8

=1− 4z−1 + 3z−2

1 + 6z−1 + 5z−2×

1 + 5z−1 + 6z−2

1− 6z−1 + 8z−2

( )x n

Z-1

+

Z-1

+-6

-5

+1

+-4

3

Z-1

+

Z-1

+6

-8

+1

+5

6

( )y n

Figure 43: Cascade realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 74 / 151

Page 75: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

Obtain the cascade realization using second order sections.

H(z) =10(1− 1

2z−1)(1− 2

3z−1)(1 + 2z−1)

(1− 34

z−1)(1− 18

z−1)[1− ( 12

+ j 12

)z−1][1− ( 12− j 1

2)z−1]

Solution:

H(z) =10z(z − 0.5)(z − 0.6667)(z + 2)

(z − 0.75)(z − 0.125)[z − (0.5 + j0.5)][z − (0.5− j0.5)]

=10z(z − 0.5)

(z − 0.75)(z − 0.125)×

(z − 0.6667)(z + 2)

[z − (0.5 + j0.5)][z − (0.5− j0.5)]

=10z2 − 5z

z2 − 0.875z + 0.0938×

z2 + 1.333z − 1.333

z2 − z + 0.5

=10− 5z−1

1− 0.875z−1 + 0.0938z−2×

1 + 1.333z−1 − 1.333z−2

1− z−1 + 0.5z−2

( )x n

Z-1

+

Z-1

+0.875

-0.0938

+10

-5Z-1

+

Z-1

+1

-0.5

+1

+

-1.333

( )y n

1.333

Figure 44: Cascade realizationDr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 75 / 151

Page 76: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

EC December 2011Obtain the cascade realization for the following system.

H(z) =1 + 1

4z−1

(1 + 12

z−1)(1 + 12

z−1 + 12

z−2)

Solution:

H(z) =1 + 1

4z−1

(1 + 12

z−1)(1 + 12

z−1 + 12

z−2)

=1 + 1

4z−1

1 + 12

z−1×

1

1 + 12

z−1 + 12

z−2

( )y n

Z-1

+( )x n

Z-1

+

Z-1

+

14

12

+

14

12

Figure 45: Cascade realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 76 / 151

Page 77: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

Obtain the cascade realization for the following system.

H(z) =(1 + z−1)3

(1− 14

z−1)(1− 12

z−1 + 12

z−2)

Solution:

H(z) =(1 + z−1)3

(1− 14

z−1)(1− 12

z−1 + 12

z−2)

=1 + z−1

(1− 14

z−1)×

1 + 2z−1 + z−2

1− z−1 + 12

z−2

= H1(z)× H2(z)

( )y n

Z-1

+( )x n

Z-1

+

Z-1

+

12

1

+

114

1

+

+1

2

1

Figure 46: Cascade realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 77 / 151

Page 78: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

EC 2011 JulyObtain the direct form II realizations of the following system.

H(z) =(1 + z−1)

(1− 14

z−1)(1− z−1 + 12

z−2)

H(z) =(1 + z−1)

(1− 14

z−1)(1− z−1 + 12

z−2)

=1 + z−1

(1− 14

z−1)×

1

1− z−1 + z−2

= H1(z)× H2(z)

( )y n

Z-1

+( )x n

Z-1

+

Z-1

+

1−

1

+

114

Figure 47: Cascade realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 78 / 151

Page 79: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

June 2010 ECObtain cascade form for the system described by

y(n) = −0.1y(n − 1) + 0.72y(n − 2) + 0.7x(n)− 0.252x(n − 2)

Solution:

Y (z) = −0.1z−1Y (z) + 0.72z−2Y (z) + 0.7X (z)− 0.252z−2X (z) =

H(z) =Y (z)

X (z)=

0.7− 0.252z−2

1 + 0.1z−1 − 0.72z−2= (0.7− 0.252z−2)×

1

1 + 0.1z−1 − 0.72z−2

( )x n

Z-1

( )y n+

+Z-1

Z-1

0.72

0.1−

-0.252

1+

1( )H z2 ( )H z

Z-1

0.7

Figure 48: Cascade realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 79 / 151

Page 80: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Cascade Form Structure

June 2015 ECFind the transfer function and difference equation realization shown in Figure

( )x n

Z-1

+

Z-1

( )y n+

4

+

2−

3

( )w n

Solution:

H(z) =Y (z)

X (z)=

4 + 3z−1

1 + 2z−2

Y (z) = −2z−2Y (z) + 4X (z) + 3z−1X (z)

The difference equation is

y(n) = −2y(n − 2) + 4x(n) + 3x(n − 1)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 80 / 151

Page 81: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Parallel Form Structure for IIR System

The system function for IIR sytem is

H(z) =

M∑k=0

bk z−k

1 +N∑

k=1ak z−k

=b0 + b1z−1 + b2z−2 + bM z−M

1 + a1z−1 + a2z−2 + aN z−N

The function can be expanded in partialfractions as follows:

H(z) = C + H1(z) + H2(z) . . .+ Hk (z)

C is constant and eachH1(z) + H2(z) . . .+ Hk (z) are the secondorder system which is as shown in Figure50

( )x n ( )y n

2 ( )H z

( )kH z

1( )H z +

+

+

C

Figure 49: Parallel form realization forIIR systems

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 81 / 151

Page 82: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Hk (z) =bk0 + bk1z−1

1 + ak1z−1 + ak2z−2

wk (n) = ak1wk (n − 1)− ak2wk (n − 2) + x(n)

yk (n) = bk0wk (n)− bk1wk (n − 1)

y(n) = C x(n) +K∑

k=1

yk (n)

( )kw n( )kx n

Z-1

+

Z-1

+

( )ky n+

+1ka−

2ka−

1kb

0kb

Figure 50: Direct form II of second ordersubsystem

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 82 / 151

Page 83: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Realize the following System in parallel form:

H(z) = 3 +4z

z − 12

+2

z − 14

Solution:

H(z) = 3 +4

1− 0.5z−1+

2z−1

1− 14

z−1

( )y n+

Z-1

+

0.25

Z-1

+

0.5

( )x n

3

4

2

Figure 51: Parallel realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 83 / 151

Page 84: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Realize the following System in parallel form:

H(z) =(1 + z−1)(1 + 2z−1)

(1 + 12

z−1)(1− 14

z−1)(1 + 18

z−1)

Solution:

H(z) =z−2(z + 1)(z + 2)

z−3(z + 0.5)(z − 0.25)(z + 0.125)

H(z) =z(z + 1)(z + 2)

(z + 0.5)(z − 0.25)(z + 0.125)

H(z)

z=

(z + 1)(z + 2)

(z + 0.5)(z − 0.25)(z + 0.125)

H(z)

z=

A

(z + 0.5)+

B

(z − 0.25)+

C

(z + 0.125)

(z + 1)(z + 2)

(z + 0.5)(z − 0.25)(z + 0.125)=

A

(z + 0.5)+

B

(z − 0.25)+

C

(z + 0.125)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 84 / 151

Page 85: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Coefficients A B and C are determined

A =H(z)

z[z + 0.5]|z=−0.5 =

(z + 1)(z + 2)

(z − 0.25)(z + 0.125)

=(−0.5 + 1)(−0.5 + 2)

(−0.5− 0.25)(−0.5 + 0.125)= 2.66

B =H(z)

z[z − 0.25]|z=0.25 =

(z + 1)(z + 2)

(z + 0.5)(z + 0.125)

=(0.25 + 1)(0.25 + 2)

(0.25 + 0.5)(0.25 + 0.125)= 10

C =H(z)

z[z + 0.125]|z=−0.125 =

(z + 1)(z + 2)

(z + 0.5)(z − 0.25)

=(−0.125 + 1)(−0.125 + 2)

(−0.125 + 0.5)(−0.125− 0.25)= −11.66

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 85 / 151

Page 86: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

H(z)

z=

2.66

(z + 0.5)+

10

(z − 0.25)+

−11.66

(z + 0.125)

H(z) =2.66

(1 + 0.5z−1)+

10

(1− 0.25z−1)+

−11.66

(1 + 0.125z−1)

( )y n

+

Z-1

+

0.25

Z-1

+

0.5−

10

2.66

( )x n

Z-1

+

0.125−

11.66−

Figure 52: Parallel realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 86 / 151

Page 87: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Realize the following System in parallel form:

H(z) =1− z−1

(1− 0.2z−1 − 0.15z−2)

Solution

H(z) =1− z−1

(1− 0.2z−1 − 0.15z−2)

H(z) =z2 − z

(z2 − 0.2z − 0.15)

a = 1, b = −0.2, c = −0.15

Roots of the equation ax2 + bx + c = 0 are =−b±√

b2−4ac2a

=0.2±

√0.22 − 4(−0.15)

2=

0.2±√

0.64

2=

0.2± 0.8

2⇒ 0.5, − 0.3

H(z)

z=

z − 1

(z − 0.5)(z + 0.3)

H(z)

z=

A

(z − 0.5)+

B

(z + 0.3)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 87 / 151

Page 88: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

The values of A and B are determined by the following procedure.

A =H(z)

z(z − 0.5)|z=0.5 =

z − 1

(z + 0.3)=

0.5− 1

(0.5 + 0.3)= −0.625

B =H(z)

z(z + 0.3)|z=−0.3 =

z − 1

(z − 0.5)=−0.3− 1

(−0.3− 0.5)= 1.625

H(z)

z=−0.625

z − 0.5+

1.625

z + 0.3

H(z) =−0.625

1− 0.5z−1+

1.625

1 + 0.3z−1= H1(z) + H2(z)

( )y n+

Z-1

+

0.3−

Z-1

+

0.5

1.625

0.625−

( )x n

Figure 53: Parallel realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 88 / 151

Page 89: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Realize the following System in parallel form:

H(z) =1 + 0.33z−1

(1− 0.75z−1 + 0.125z−2)

Solution

H(z) =1 + 0.33z−1

(1− 0.75z−1 + 0.125z−2)=

z−1(z + 0.33)

z−2(z2 − 0.75z−1 + 0.125z−2)

H(z)

z=

z + .33

(z2 − 0.75z + 0.125)

a = 1, b = −0.75, c = 0.125Roots of the equation are

=0.75±

√0.752 − 4(0.125)

2=

0.75±√

0.0625

2=

0.75± 0.25

2⇒ 0.5, 0.25

H(z)

z=

z + 0.33

(z − 0.5)(z − 0.25)

=A

(z − 0.5)+

B

(z − 0.25)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 89 / 151

Page 90: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

The values of A and B are determined by the following procedure.

A =H(z)

z(z − 0.5)|z=0.5 =

z + 0.33

(z − 0.25)=

0.25 + 0.33

(0.5− 0.25)= 3.33

B =H(z)

z(z − 0.25)|z=0.25 =

z + 0.33

(z − 0.5)=

0.25 + 0.33

(0.25− 0.5)= −2.33

H(z)

z=

3.33

(z − 0.5)+

−2.33

(z − 0.25)

H(z) =3.33

1− 0.5z−1+

−2.33

1− 0.25z−1= H1(z) + H2(z)

( )y n+

Z-1

+

0.25

Z-1

+

0.5

2.33−

3.33

( )x n

Figure 54: Parallel realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 90 / 151

Page 91: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Realize the following System in parallel form:

y(n) = 0.75y(n − 1)− 0.125y(n − 2) + 6x(n) + 7x(n − 1) + x(n − 2)

Solution

Y (z) = 0.75z−1Y (z)− 0.125z−2Y (z) + 6X (z) + 7z−1X (z) + z−2X (z)

H(z) =Y (z)

X (z)=

6 + 7z−1 + z−2

1− 0.75z−1 + 0.125z−2

H(z) =z−2[6z2 + 7z + 1]

z−2[z2 − 0.75z + 0.125]

H(z) =z−2[6z2 + 7z + 1]

z−2[z2 − 0.75z + 0.125]

=[6z2 + 7z + 1]

[z2 − 0.75z + 0.125]

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 91 / 151

Page 92: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

a = 1, b = −0.75, c = 0.125Roots of the equation are

=0.75±

√(−0.75)2 − 4(0.125)

2=

0.75±√

0.0625

2=

0.75± 0.25

20.5, 0.25

H(z) =6z2 + 7z + 1

(z − 0.5)(z − 0.25)

H(z)

z=

6z2 + 7z + 1

z(z − 0.5)(z − 0.25)

H(z)

z=

A

z+

B

(z − 0.5)+

C

(z − 0.25)

A = H(z)z|z=0 =6z2 + 7z + 1

z(z − 0.5)(z − 0.25)z =

1

(−0.5)(−0.25)= 8

B = H(z)(z − 0.5)|z=0.5 =6z2 + 7z + 1

z(z − 0.5)(z − 0.25)(z − 0.5z) =

6(0.5)2 + 7(0.5) + 1

0.5[0.5− 0.25]= 48

C = H(z)(z − 0.25z)|z=0.25 =6z2 + 7z + 1

z(z − 0.5)(z − 0.25)(z − 0.25)

=6(0.25)2 + 7(0.25) + 1

0.25[0.25− 0.5]= −50

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 92 / 151

Page 93: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

H(z) = 8 +48

(1− 0.5z1)+

−50

(1− 0.25z1)= H1(z) + H2(z) + H3(z)

( )y n+

Z-1

+

0.25

Z-1

+

0.5

( )x n

8

48

50−

Figure 55: Parallel realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 93 / 151

Page 94: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Realize the following System in parallel form:

H(z) =8z3 − 4z2 + 11z − 2

[z − 14

][z2 − z + 12

]

H(z)

z=

8z3 − 4z2 + 11z − 2

z[z − 14

][z2 − z + 12

]

H(z)

z=

8z3 − 4z2 + 11z − 2

z[z − 14

][z2 − z + 12

]

H(z)

z=

A

z+

B

z − 0.25+

Cz + D

z2 − z + .5

A =H(z)

zz|z = 0 =

8z3 − 4z2 + 11z − 2

[z − 0.25][z2 − z + 0.5]

=−2

[−0.25][0.5]= 16

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 94 / 151

Page 95: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

B =H(z)

z[z − 0.5]|z=0.5 =

8z3 − 4z2 + 11z − 2

z[z2 − z + 0.5]

=8(0.5)3 − 4(0.5)2 + 11(0.5)− 2

(0.5)[(0.5)2 − (0.5) + 0.5]= 8

H(z)

z=

8z3 − 4z2 + 11z − 2

z[z − 0.25][z2 − z + 0.5]

8z3 − 4z2 + 11z − 2

z[z − 0.25][z2 − z + 0.5]=

A

z+

B

z − 0.25+

Cz + D

z2 − z + .25

8z3 − 4z2 + 11z − 2 = A[z − 0.25][z2 − z + 0.5] +

+Bz[z2 − z + .25] + (Cz + D)z[z − 0.25]

8z3 − 4z2 + 11z − 2z = z3[A + B + C ] + z2[−1.25A− B − 0.25C + D] +

+z[0.5A + .25B − .25D]− 0.0625A

8 = A + B + C = 16 + 8 + C

C = −16

−4 = [−1.25A− B − 0.25C + D] = [−20− 8 + 4 + D]

D = 20

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 95 / 151

Page 96: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

H(z)

z=

A

z+

B

z − 0.25+

Cz + D

z2 − z + .5

H(z)

z=

16

z+

8

z − 0.25+−16z + 20

z2 − z + .5

H(z) = 16 +8

1− 0.25z−1+−16 + 20z−1

1− z−1 + .5z−2

( )y n+

Z-1

+

1

Z-1

+

0.25

( )x n

16

8

-16

+

Z-1

0.5−

+

20

Figure 56: Parallel realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 96 / 151

Page 97: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

EE 2010 MayRealize the following System in parallel form:

H(z) =1− 1

5z−1

[1− 12

z−1 + 13

z−2][1 + 14

z−1]

Solution:

H(z) =z−1(z − 0.2)

z−2[z2 − 0.5z + 0.33]z−1[z + 0.25]

H(z) =z2(z − 0.2)

[z2 − 0.5z + 0.33z][z + 0.25]

H(z)

z=

z(z − 0.2)

[z2 − 0.5z + 0.33][z + 0.25]

H(z)

z=

Az + B

[z2 − 0.5z + 0.333]+

C

[z + 0.25]

z(z − 0.2)

[z2 − 0.5z + 0.33][z + 0.25]=

Az + B

[z2 − 0.5z + 0.333]+

C

[z + 0.25]

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 97 / 151

Page 98: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Coefficients A B and C are determined

C =H(z)

z[z + 0.25]|z=−0.25 =

(z − 0.2)

[z2 − 0.5z + 0.333]

=−0.25(−0.25− 0.2)

[(−0.25)2 − (0.5)(−0.25) + 0.333]= 0.217

z(z − 0.2)

[z2 − 0.5z + 0.33][z + 0.25]=

Az + B

[z2 − 0.5z + 0.333]+

C

[z + 0.25]

z(z − 0.2) = (Az + B)[z + 0.25] + C [z2 − 0.5z + 0.33]

z2 − 0.2z = Az2 + 0.25Az + Bz + 0.25B + Cz2 − 0.5Cz + 0.33C ]

z2 − 0.2z = z2(A + C) + z(0.25A + B − C) + 0.25B + 0.33C

Equating coefficients

A + C = 1

A = 1− C = 1− 0.217 = 0.783

0.25B + 0.33C = 0

B =−0.33C

0.25= −0.2864

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 98 / 151

Page 99: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

H(z)

z=

0.78z +−0.2864

[z2 − 0.5z + 0.333]+

0.216

[z + 0.25]

H(z)

z=

z(0.78− 0.2864z−1)

z2(1− 0.5z−1 + 0.333z−2)+

0.216

z[1 + 0.25z−1]

H(z) =(0.78− 0.2864z−1)

(1− 0.5z−1 + 0.333z−2)+

0.216

(1 + 0.25z−1)

( )y n

0.216

Z-1

+

0.25

( )x n

Z-1

+

Z-1

+0.5

-0.333

+0.78

-0.2864

+

Figure 57: Parallel realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 99 / 151

Page 100: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

EC 2012 DecemberRealize the following System in parallel form:

H(z) =(z − 1)(z − 2)(z + 2)z

[z − ( 12

+ j 12

)][z − ( 12− j 1

2)](z − j

4)(z + j

4)

Solution:

H(z) =(z − 1)(z − 2)(z + 2)z

[z − ( 12

+ j 12

)][z − ( 12− j 1

2)](z − j

4)(z + j

4)

H(z)

z=

(z − 1)(z − 2)(z + 2)z

[z − ( 12

+ j 12

)][z − ( 12− j 1

2)](z − j

4)(z + j

4)

H(z)

z=

A

z − (0.5 + j0.5)+

B

z − (0.5− j0.5)+

C

z − j0.25+

D

z + j0.25)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 100 / 151

Page 101: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

H(z)

z=

A

z − (0.5 + j0.5)+

B

z − (0.5− j0.5)+

C

z − j0.25+

D

z + j0.25)

A =H(z)

z[z − (0.5 + j0.5)]|z=0.5+j0.5 =

(z2 − 1)(z − 2)

[z − (0.5− j0.25)][z − j0.25][z + j0.25]

=[(0.5 + j0.5)2 − 1][(0.5 + j0.5− 2]

[0.5 + j0.5− (0.5− j0.5)][z2 + 0.0625]

=[0.25 + j0.5− 0.25− 1][(0.5 + j0.5− 2]

[j1][z2 + 0.0625]

=[−1 + j0.5][(−1.5 + j0.5]

[j1][j0.5 + 0.0625]

=[1.5− j0.5− j0.75 + 0.25]

−0.5 + j0.0625=

1.25− j1.25

−0.5 + j0.0625=

1.767∠− 45

0.503∠172

=1.767∠− 45

0.503∠172= 3.513∠− 217 = −2.8 + j2.1

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 101 / 151

Page 102: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Similarly B, C and D are estimated.

H(z)

z=

A

z − (0.5 + j0.5)+

B

z − (0.5− j0.5)+

C

z − j0.25+

D

z + j0.25)

=−2.8 + j2.1

z − (0.5 + j0.5)+−2.7683− j2.1517

z − (0.5− j0.5)+

3.268− j7.837

z − j0.25+

3.268 + j7.837

z + j0.25)

We have to design second order system, hence combine first two terms and last two terms.

H(z)

z=

−5.536z + 0.612

z2 − z + 0.5+

6.5366z − 3.918

z2 + 0.0625)

H(z)

z=

z(−5.536 + 0.612z−1)

z2(1− z−1 + 0.5z−2)+

z(6.5366− 3.918z−1)

z2(1 + 0.0625z−2)

H(z) =(−5.536 + 0.612z−1)

(1− z−1 + 0.5z−2)+

(6.5366− 3.918z−1)

(1 + 0.0625z−2)= H1(z) + H2(z)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 102 / 151

Page 103: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

H(z) =(−5.536 + 0.612z−1)

(1− z−1 + 0.5z−2)+

(6.5366− 3.918z−1)

(1 + 0.0625z−2)= H1(z) + H2(z)

( )y n

6.5366

Z-1

+

( )x n

Z-1

+

Z-1

+1

-0.5

+-5.536

0.6112

+

Z-1

+

3.9184

-0.0625

Figure 58: Parallel realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 103 / 151

Page 104: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

EE 2010 MayRealize the following System in parallel form:

H(z) =1 + 1

4z−1

[1 + 12

z−1 + 14

z−2][1 + 12

z−1]

Solution:

H(z) =z−1(z − 0.25)

z−2[z2 − 0.5z + 0.25]z−1[z + 0.5]

H(z) =z2(z + 0.25)

[z2 + 0.5z + 0.25][z + 0.5]

H(z)

z=

z(z − 0.25)

[z2 + 0.5z + 0.25][z + 0.25]

H(z)

z=

Az + B

[z2 + 0.5z + 0.25]+

C

[z + 0.5]

z(z − 0.25)

[z2 + 0.5z + 0.25][z + 0.5]=

Az + B

[z2 + 0.5z + 0.25]+

C

[z + 0.5]

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 104 / 151

Page 105: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Coefficients A B and C are determined

C =H(z)

z[z + 0.5]|z=−0.5 =

z(z − 0.2)

[z2 − 0.5z + 0.333]

=−0.5(−0.5− 0.25)

[(−0.5)2 − (0.5)(−0.5) + 0.25]= 0.5

z(z + 0.25)

[z2 + 0.5z + 0.25][z + 0.5]=

Az + B

[z2 + 0.5z + 0.25]+

C

[z + 0.5]

z(z + 0.25) = (Az + B)[z + 0.5] + C [z2 + 0.5z + 0.25]

z2 + 0.25z = Az2 + 0.5Az + Bz + 0.5B + Cz2 + 0.5Cz + 0.25C ]

z2 + 0.25z = z2(A + C) + z(0.5A + B + 0.5C) + 0.5B + 0.25C

Equating coefficients

A + C = 1

A = 1− C = 1− 0.5 = 0.5

0.25 = 0.5A + B + 0.5C = 0.5× 0.5 + B + 0.5× 0.5

B = −0.25

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 105 / 151

Page 106: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

H(z)

z=

0.5z − 0.25

[z2 + 0.5z + 0.25]+

0.5

[z + 0.5]

H(z)

z=

z(0.5− 0.25z−1)

z2(1 + 0.5z−1 + 0.25z−2)+

0.5

z[1 + 0.5z−1]

H(z) =(0.5− 0.25z−1)

(1 + 0.5z−1 + 0.25z−2)+

0.5

(1 + 0.5z−1)

( )y n

0.5

Z-1

+

-0.5

( )x n

Z-1

+

Z-1

+-0.5

-0.25

+0.5

-0.25

+

Figure 59: Parallel realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 106 / 151

Page 107: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Realize the following System in parallel form:

H(z) =1− 1

2z−1

(1− 13

z−1)(1− 14

z−1)

Solution:

H(z) =z−1(z − 0.5)

z−1(z − 0.33)z−1(z − 0.25)

H(z) =z(z − 0.5)

(z − 0.33)(z − 0.25)

H(z)

z=

(z − 0.33)

(z − 0.33)(z − 0.25)

H(z)

z=

A

z − 0.33+

B

z − 0.25

(z − 0.5)

(z − 0.33)z−1(z − 0.25)=

A

z − 0.33+

B

z − 0.25

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 107 / 151

Page 108: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Coefficients A and B are determined

A =H(z)

z[z − 0.33]|z=0.33 =

z − 0.5

z − 0.25

=0.33− 0.5

0.33− 0.25= −2

B =H(z)

z[z − 0.25]|z=0.25 =

z − 0.5

z − 0.33

=0.25− 0.5

0.25− 0.33= 3

( )y n+

Z-1

+

0.25

Z-1

+

13

3

2−

( )x n

Figure 60: Parallel realizationDr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 108 / 151

Page 109: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Realize the following System in parallel form:

H(z) =1 + 1

3z−1

1− 34

z−1 + 18

z−2

Solution:

H(z) =1 + 1

3z−1

1− 34

z−1 + 18

z−2

H(z) =1 + 0.33z−1

(1− 0.5z−1)(1− 0.25z−1)

H(z) =z−1(z + 0.33)

z−1(z − 0.5)z−1(z − 0.25)

H(z) =z(z + 0.33)

(z − 0.5)(z − 0.25)

H(z)

z=

(z + 0.33)

(z − 0.5)(z − 0.25)

H(z)

z=

A

z − 0.5+

B

z − 0.25

(z + 0.33)

(z − 0.5)(z − 0.25)=

A

z − 0.33+

B

z − 0.25

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 109 / 151

Page 110: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Coefficients A and B are determined

A =H(z)

z[z − 0.5]|z=0.5 =

z + 0.33

z − 0.25=

0.5 + 0.33

0.5− 0.25= 3.33

B =H(z)

z[z − 0.25]|z=0.25 =

z + 0.33

z − 0.5=

0.25 + 0.33

0.25− 0.5= −2.33

H(z)

z=

3.33

z − 0.5+−2.33

z − 0.25

H(z) =3.33

z − 0.5+−2.33

z − 0.25

( )y n+

Z-1

+

0.25

Z-1

+

0.5

2.33−

3.333

( )x n

Figure 61: Parallel realizationDr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 110 / 151

Page 111: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

EE 2010 MayRealize the following System in parallel form:

H(z) =10(1− 1

2z−1)(1 + 2z−1)(1− 2

3z−1)

(1− 34

z−1)(1− 18

z−1)[1− ( 12

+ j 12

)z−1)][1− ( 12− j 1

2)z−1)]

Solution:

H(z) =10(1− 0.5z−1)(1 + 2z−1)(1− 0.66z−1)

(1− 0.75z−1)(1− 0.125z−1)[1− (0.5 + j0.5)z−1)][1− (0.5− j0.5)z−1)]

H(z) =10(1− 0.5z−1)(1 + 2z−1)(1− 0.66z−1)

(1− 0.75z−1)(1− 0.125z−1)[1− z−1 + 0.5z−2)]

H(z) =10z−3(z − 0.5)(z + 2)(z − 0.66)

z−4(z − 0.75)(z − 0.125)[z2 − z + 0.5]

H(z)

z=

10(z − 0.5)(z + 2)(z − 0.66)

(z − 0.75)(z − 0.125)[z2 − z + 0.5]

H(z)

z=

A

[z − 0.75]+

B

[z − 0.125]+

Cz + D

[z2 − z + 0.5]

10(z − 0.5)(z + 2)(z − 0.66)

(z − 0.75)(z − 0.125)[z2 − z + 0.5]=

A

[z − 0.75]+

B

[z − 0.125]+

Cz + D

[z2 − z + 0.5]

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 111 / 151

Page 112: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

Coefficients A B and C are determined

A =H(z)

z[z − 0.75]|z=0.75 =

10(z − 0.5)(z + 2)(z − 0.66)

(z − 0.125)[z2 − z + 0.5]

=10(0.75− 0.5)(0.75 + 2)(0.75− 0.66)

(0.75− 0.125)[0.752 − 0.75 + 0.5]= 3.16

B =H(z)

z[z − 0.125]|z=0.125 =

10(z − 0.5)(z + 2)(z − 0.66)

(z − 0.75)[z2 − z + 0.5]

=10(0.125− 0.5)(0.125 + 2)(0.125− 0.66)

(0.125− 0.75)[0.1252 − 0.125 + 0.5]= −17.46

z(z + 0.25)

[z2 + 0.5z + 0.25][z + 0.5]=

Az + B

[z2 + 0.5z + 0.25]+

C

[z + 0.5]

z(z + 0.25) = (Az + B)[z + 0.5] + C [z2 + 0.5z + 0.25]

z2 + 0.25z = Az2 + 0.5Az + Bz + 0.5B + Cz2 + 0.5Cz + 0.25C ]

z2 + 0.25z = z2(A + C) + z(0.5A + B + 0.5C) + 0.5B + 0.25C

Equating coefficients

A + C = 1

A = 1− C = 1− 0.5 = 0.5

0.25 = 0.5A + B + 0.5C = 0.5× 0.5 + B + 0.5× 0.5

B = −0.25

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 112 / 151

Page 113: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR Structures Parallel Form Structure for IIR System

H(z)

z=

0.5z − 0.25

[z2 + 0.5z + 0.25]+

0.5

[z + 0.5]

H(z)

z=

z(0.5− 0.25z−1)

z2(1 + 0.5z−1 + 0.25z−2)+

0.5

z[1 + 0.5z−1]

H(z) =(0.5− 0.25z−1)

(1 + 0.5z−1 + 0.25z−2)+

0.5

(1 + 0.5z−1)

( )y n

0.5

Z-1

+

-0.5

( )x n

Z-1

+

Z-1

+-0.5

-0.25

+0.5

-0.25

+

Figure 62: Parallel realization

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 113 / 151

Page 114: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

Lattice structure for FIR Systems

The system function of mth order FIR filter is represented by the polynomial Am(z)

Hm(z) = Am(z)

where Am(z) is the polynomial and is defined as

Am(z) = 1 +m∑

i=1

am(i)z−i

A0(z) = 1 The system function becomes

Hm(z) = 1 +m∑

i=1

am(i)z−i

H0(z) = 1 the z transform the input and output are related as

Hm(z) =Y (z)

X (z)

Y (z)

X (z)= 1 +

m∑i=1

am(i)z−i

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 114 / 151

Page 115: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

Y (z) = X (z) +m∑

i=1

am(i)z−i X (z)

Taking inverse z transform

y(n) = x(n) +m∑

i=1

am(i)x(n − i)

Consider the order of the filter m=1

y(n) = x(n) + a1(1)x(n − 1)

From the figure y(n) is

y(n) = f0(n) + k1g0(n − 1)

f0(n) = x(n) and g0(n − 1) = x(n − 1)

y(n) = x(n) + k1x(n − 1)

+

+Z-1 1K

1K

0 ( )f n

0 ( )g n0 ( 1)g n −

1( ) ( )f n y n=

1( )g n

( )x n

Figure 63: Single stage Lattice filter

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 115 / 151

Page 116: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

Consider the filter of order of two.

y(n) = x(n) +2∑

i=1

am(i)x(n − i)

= x(n) + a2(1)x(n − 1) + a2(2)x(n − 2)

The first stage output is

f1(n) = x(n) + K1x(n − 1)

g1(n) = K1x(n) + x(n − 1)

The second stage output is

f2(n) = f1(n) + K2g1(n − 1)

g2(n) = K2f1(n) + g1(n − 1)

The output y(n) is

y(n) = f1(n) + K2g1(n − 1)

y(n) = x(n) + K1x(n − 1) + K2[K1x(n − 1) + x(n − 2)]

= x(n) + K1(1 + K2)x(n − 1) + K2x(n − 2)

+

+Z-1 1K

1K

0 ( )f n

0 ( )g n

1( )f n

1( )g n

( )x n

+

+Z-1 2K

2K

2 ( ) ( )f n y n=

2 ( )g n

Figure 64: Two stage Lattice filter

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 116 / 151

Page 117: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

y(n) = x(n) + K1(1 + K2)x(n − 1) + K2x(n − 2)

This equation represents the second order FIR system if:

a2(1) = K1(1 + K2) and a2(2) = K2

K1 =a2(1)

(1 + K2)and K2 = a2(2)

The lattice structure for mth order is obtained from direct form coefficients by the followingrecursive equations.

Km = am(m)

am−1(i) =am(i)− am(m)am(m − i)

1− K 2m

i = 1, 2, . . .m − 1

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 117 / 151

Page 118: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

Draw the lattice structure for the following FIR filter function

H(z) = 1 + 2z−1 +1

3z−2

Solution:

H(z) = 1 + 2z−1 +1

3z−2

a2(1) = 2, a2(2) = 13

Km = am(m)for m=2K2 = a2(2) = 1

3

am−1(i) =am(i)− am(m)am(m − i)

1− K 2m

a1(i) =a2(i)− a2(2)a2(2− i)

1− K 22

a1(1) =a2(1)− a2(2)a2(1)

1− K 22

=2− (0.333)(2)

1− (0.333)2

= 1.5

K1 = a1(1) = 1.5

+

+Z-1

1 1.5K =( )x n

( )y n

2 ( )g n1 1.5K =

+

+Z-1

2 0.333K =

2 0.333K =

Figure 65: Lattice filter

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 118 / 151

Page 119: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

A FIR filter is given by

y(n) = x(n) +2

5x(n − 1) +

3

4x(n − 2) +

1

3x(n − 3)

Draw the lattice structure

Solution:

y(n) = x(n) +2

5x(n − 1) +

3

4x(n − 2) +

1

3x(n − 3)

By taking z transform

Y (z) = X (z) +2

5z−1X (z) +

3

4z−2X (z) +

1

3z−3X (z)

H(z) =Y (z)

X (z)= 1 +

2

5z−1 +

3

4z−2 +

1

3z−3

= 1 + 0.4z−1 + 0.75z−2 + 0.333z−3

a3(1) = 0.4, a3(2) = 0.75, a3(3) = 0.333

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 119 / 151

Page 120: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

for m=3, K3 = a3(3) = 0.333

am−1(i) =am(i)− am(m)am(m − i)

1− K 2m

a2(i) =a3(i)− a3(3)a3(3− i)

1− K 23

a2(1) =a3(1)− a3(3)a3(2)

1− K 23

=0.4− (0.333)(0.75)

1− (0.333)2= 0.169

a2(2) =a3(2)− a3(3)a3(1)

1− K 23

=0.75− (0.333)(0.4)

1− (0.333)2= 0.693

for m=2, K2 = a2(2) = 0.693

a1(i) =a2(i)− a2(2)a2(2− i)

1− K 22

a1(1) =a2(1)− a2(2)a2(1)

1− K 22

=0.169− (0.693)(0.169)

1− (0.693)2

= 0.0998

for m=1, K1 = a1(1) = 0.0998

+

+Z-1

1 0.0998K =( )x n

( )y n

3 ( )g n

1 0.0998K =

+

+Z-1

2 0.693K =

2 0.693K =

+

+Z-1

3 0.333K =

3 0.333K =

Figure 66: Lattice filterDr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 120 / 151

Page 121: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

A FIR filter is given by

y(n) = x(n) + 3.1x(n − 1) + 5.5x(n − 2) + 4.2x(n − 3) + 2.3x(n − 4)

Draw the lattice structureSolution:

y(n) = x(n) + 3.1x(n − 1) + 5.5x(n − 2) + 4.2x(n − 3) + 2.3x(n − 4)

By taking z transform

Y (z) = X (z) + 3.1z−1X (z) + 5.5z−2X (z) + 4.2z−3X (z) + 2.3z−4X (z)

H(z) =Y (z)

X (z)= 1 + 3.1z−1 + 5.5z−2 + 4.2z−3 + 2.3z−4

a4(1) = 3.1, a4(2) = 5.5, a4(3) = 4.2 a4(4) = 2.3

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 121 / 151

Page 122: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

For m=4 K4 = a4(4) = 2.3

am−1(i) =am(i)− am(m)am(m − i)

1− K 2m

a3(i) =a4(i)− a4(4)a4(4− i)

1− K 24

a3(1) =a4(1)− a4(4)a4(3)

1− K 24

=3.1− (2.3)(4.2)

1− (2.3)2

= 1.529

a3(2) =a4(2)− a4(4)a4(2)

1− K 24

=5.5− (2.3)(5.5)

1− (2.3)2

= 1.6667

a3(3) =a4(3)− a4(4)a4(1)

1− K 24

=4.5− (2.3)(3.1)

1− (2.3)2

= 0.683

For m=3 K3 = a3(3) = 0.683

am−1(i) =am(i)− am(m)am(m − i)

1− K 2m

a2(i) =a3(i)− a3(3)a3(3− i)

1− K 23

a2(1) =a3(1)− a3(3)a3(3)

1− K 23

=1.529− (0.683)(1.667)

1− (0.683)2

= 0.732

a2(2) =a3(2)− a3(3)a3(1)

1− K 23

=1.667− (0.683)(1.529)

1− (0.683)2

= 1.167

For m=2, K2 = a2(2) = 1.167

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 122 / 151

Page 123: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

For m=2, K2 = a2(2) = 1.167For m=1

k1 = a1(1) =am(i)− am(m)am(m − i)

1− K 2m

k1 = a1(1) =a2(1)− a2(2)a2(1)

1− K 22

=0.732− (1.167)(0.732)

1− (1.167)2= 0.338

+

+Z-1

1 0.338K =( )x n

( )y n

4 ( )g n

1 0.338K =

+

+Z-1

2 1.167K =

2 1.167K =

+

+Z-1

3 0.683K =

3 0.683K =

+

+Z-1

4 2.3K =

4 2.3K =

1( )f n 3 ( )f n2 ( )f n

3 ( )g n2 ( )g n1( )g n

Figure 67: Lattice filter

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 123 / 151

Page 124: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

Determine all the FIR filters which are specified by the lattice parameters K1 = 0.1, K2 = 0.2,and K3 = 0.3 and draw the structure

Solution:

am(0) = 1

am(m) = Km

am(i) = am−1(i) + am(m)am−1(m − i)

For m=1

a1(0) = 1

a1(1) = K1 = 0.1

For m=2

a2(0) = 1

a2(2) = K2 = 0.2

a2(i) = a1(i) + a2(2)a1(2− i)

a2(1) = 0.1 + (0.2)0.1 = 0.12

For m=3

a3(0) = 1

a3(3) = K3 = 0.3

a3(i) = a2(i) + a3(3)a2(3− i)

a3(1) = a2(1) + a3(3)a2(2)

= 0.12 + (0.3)(0.2) = 0.18

a3(2) = a2(2) + a3(3)a2(1)

= 0.2 + (0.3)(0.12) = 0.236

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 124 / 151

Page 125: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

H(z) = 1 +m∑

i=1

am(i)z−i

= 1 +3∑

i=1

a3(i)z−i

= 1 + a3(1)z−1 + a3(2)z−2 + a3(3)z−3

= 1 + 0.18z−1 + 0.236z−2 + 0.3z−3

Z-1

+

Z-1

+

Z-1( )x n

1 0.18 0.236

+

0.3

y(n)

Figure 68: Lattice filter

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 125 / 151

Page 126: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

Determine all the FIR filters which are specified by the lattice parameters K1 = 0.5, K2 = 0.333,and K3 = 0.25 and draw the structureSolution:

am(0) = 1

am(m) = Km

am(i) = am−1(i) + am(m)am−1(m − i)

For m=1

a1(0) = 1

a1(1) = K1 = 0.5

For m=2

a2(0) = 1

a2(2) = K2 = 0.333

a2(i) = a1(i) + a2(2)a1(2− i)

a2(1) = 0.5 + (0.333)0.5 = 0.665

For m=3

a3(0) = 1

a3(3) = K3 = 0.25

a3(i) = a2(i) + a3(3)a2(3− i)

a3(1) = a2(1) + a3(3)a2(2)

= 0.665 + (0.25)(0.333) = 0.75

a3(2) = a2(2) + a3(3)a2(1)

= 0.333 + (0.667)(0.12) = 0.5

a3(3) = k3 = 0.25

a3(0) = 1, a3(1) = 0.75, a3(2) = 0.5, and a3(3) = 0.25

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 126 / 151

Page 127: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

a3(0) = 1, a3(1) = 0.75, a3(2) = 0.5, and a3(3) = 0.25

H(z) = 1 +3∑

i=1

a3(i)z−i

= K3 = 1 + a3(1)z−1 + a3(2)z−2 + a3(3)z−3

= 1 + 0.75z−1 + 0.5z−2 + 0.25z−3

Z-1

+

Z-1

+

Z-1( )x n

1 0.75 0.5

+

0.25

y(n)

Figure 69: Lattice filter

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 127 / 151

Page 128: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

Determine the impulse response of a FIR filter with reflection coefficients K1 = 0.6, K2 = 0.3,K3 = 0.5 and K4 = 0.9 Also draw the direct form structure

Solution:

am(0) = 1

am(m) = Km

am(i) = am−1(i) + am(m)am−1(m − i)

For m=1

a1(0) = 1

a1(1) = K1 = 0.5

For m=2

a2(0) = 1

a2(2) = K2 = 0.3

a2(i) = a1(i) + a2(2)a1(2− i)

a2(1) = 0.6 + (0.3)0.6 = 0.78

For m=3

a3(0) = 1

a3(3) = K3 = 0.5

a3(i) = a2(i) + a3(3)a2(3− i)

a3(1) = a2(1) + a3(3)a2(2)

= 0.78 + (0.5)(0.3) = 0.93

a3(2) = a2(2) + a3(3)a2(1)

= 0.3 + (0.5)(0.78) = 0.69

a3(3) = k3 = 0.25

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 128 / 151

Page 129: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of FIR system Lattice structure for FIR Systems

For m=4

a4(0) = 1

a4(i) = a3(i) + a4(4)a3(4− i)

a4(1) = a3(1) + a4(4)a3(3) = 0.93 + (0.9)(0.5) = 1.38

a4(2) = a3(2) + a4(3)a3(2) = 0.69 + (0.9)(0.69) = 1.311

a4(3) = a3(3) + a4(3)a3(1) = 0.5 + (0.9)(0.93) = 1.337

a4(4) = K4 = 0.9a4(0) = 1, a4(1) = 1.38, a4(2) = 1.311, and a4(3) = 1.337 and a4(4) = 0.9

H(z) = 1 +3∑

i=1

a3(i)z−i = 1 + a4(1)z−1 + a4(2)z−2 + a4(3)z−3 + a4(4)z−3

= 1 + 1.38z−1 + 1.311z−2 + 1.337z−3 + 0.9z−4

Z-1

+

Z-1

+

Z-1( )x n

1 1.38 1.311

+

1.337

y(n)

Z-1

+

0.9

y(n)

Figure 70: Lattice filter

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 129 / 151

Page 130: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

Lattice structure for IIR Systems

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 130 / 151

Page 131: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

The system function of mth order IIR filter is represented by

H(z) =

M∑k=0

bk z−k

1 +N∑

k=1ak z−k

Let us consider an all pole system with system function

H1(z) =1

1 +N∑

k=1aN (k)z−k

=1

AN (z)

But the system function H1(z) = Y (z)X (z)

Y (z)

X (z)=

1

1 +N∑

k=1aN (k)z−k

Y (z) +N∑

k=1

aN (k)z−k Y (z) = X (z)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 131 / 151

Page 132: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

Y (z) +N∑

k=1

aN (k)z−k Y (z) = X (z)

Taking inverse z transform

y(n) = −N∑

k=1

aN (k)y(n − k) + x(n)

Interchange the input and output

x(n) = −N∑

k=1

aN (k)x(n − k) + y(n)

Rearranging the above equation

y(n) = x(n) +N∑

k=1

aN (k)x(n − k)

The equation is similar to the FIRLattice system.

Consider the order of the filter m=1

y(n) = a1(1)y(n − 1) + x(n)

From the above equation

K1 = a1(1)

+

+Z-1

1K 1( ) ( )f n x n=

1( )g n

0 ( ) ( )f n y n=

1K

Figure 71: Single stage Latticefilter

+

+ Z-1

f0(n)=y(n)

g1(n)

f1(n)=x(n)

K1

K1-

Figure 72: Single stage Latticefilter

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 132 / 151

Page 133: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

Consider the filter of order of two.

f2(n) = x(n)

f1(n) = f2(n)− K2g1(n − 1)

g2(n) = K2f1(n) + g1(n − 1)

f0(n) = f1(n)− K1g0(n − 1)

g1(n) = K1f0(n) + g0(n − 1)

y(n) = f0(n) = g0(n)

y(n) = −K1(1 + K2)y(n − 1)− K2y(n − 2) + x(n)

g2(n) = K2y(n) + K1(1 + K2)y(n − 1)− y(n − 2)

+

+ Z-1

f1(n)

g2(n)

f2(n)=x(n)

K2

K2

+

+ Z-1

f0(n)=y(n)

g1(n)

K1

K1- -

g0(n)

Figure 73: Single stage Lattice filter

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 133 / 151

Page 134: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

y(n) = −N∑

k=1

aN (k)y(n − k) + x(n)

y(n) = −2∑

k=1

a2(k)y(n − k) + x(n)

y(n) = −2∑

k=1

a2(k)y(n − k) + x(n)

= −a2(1)y(n − 1)− a2(2)y(n − 2) + x(n)

y(n) = x(n) + K1(1 + K2)x(n − 1) + K2x(n − 2)

This equation represents the second order FIR system if:

a2(1) = K1(1 + K2) and a2(2) = K2

K1 =a2(1)

(1 + a2(2))and K2 = a2(2)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 134 / 151

Page 135: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

The lattice structure for mth order is obtained by the following recursive equations.

Km = am(m)

am−1(i) =am(i)− am(m)am(m − i)

1− K 2m

=am(i)− Kmam(m − i)

1− K 2m

i = 1, 2, . . .m − 1

The IIR system function is

Hsystem(z) =

M∑k=0

bk z−k

1 +N∑

k=1ak z−k

=BM (z)

AN (z)

βi = bi −M∑

m=i+1

βmam(m − i) i = M,M − 1,M − 2, . . . 1, 0

+

+ Z-1

fN(n)=x(n)

KN-

+Nβ

+

+ Z-1

f0(n)

K1-

+

+

+ Z-1

f2(n)

K2-

+2β

fN-1(n)

KN

f1(n)

gN-1(n)

+

1Nβ −

g1(n)gN(n) g2(n)

g0(n)

( )y n

Figure 74: Lattice ladder structureDr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 135 / 151

Page 136: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

Realize the lattice structure for all pole filter given by H(z) = 11+ 2

5z−1+ 3

4z−2+ 1

3z−3

Solution:m=3 a3(0) = 1, a3(1) = 2

5, a3(2) = 3

4, a3(3) = 1

3am−1(i) = am(i)−am(m)am(m−i)

1−K 2m

for m=3

a2(i) =a3(i)− a3(3)a3(3− i)

1− K 23

a2(1) =a3(1)− a3(3)a3(2)

1− K 23

a2(1) =0.4− (0.333)(0.75)

1− (0.33)2= 0.16875

a2(2) =a3(2)− a3(3)a3(1)

1− K 23

a2(2) =0.75− (0.333)(0.4)

1− (0.33)2= 0.6937

for m=2

a1(1) =a2(1)− a2(2)a2(1)

1− K 22

=0.1687− (0.6973)(0.1687)

1− (0.697)2

= 0.0996

K3 = a3(3) = 13

,K2 = a2(2) = 0.6937

K1 = a1(1) = 0.0996

+

+ Z-1g3(n)

f3(n)=x(n)

0.333

+

+ Z-1

f0(n)=y(n)

g2(n)

- -

g1(n)

+

+ Z-1

g0(n)

0.333

0.6973 0.0996

0.6973 0.0996

f2(n) f1(n)

Figure 75: Lattice filterDr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 136 / 151

Page 137: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

Realize the lattice structure for all pole filter given by H(z) = 11−0.9z−1+0.64z−2−0.576z−3

Solution:m=3 a3(0) = 1, a3(1) = −0.9 a3(2) = 0.64 a3(3) = −0.576for m=3, i=1,2

a2(i) =a3(i)− a3(3)a3(3− i)

1− K 23

a2(1) =a3(1)− a3(3)a3(2)

1− K 23

a2(1) =−0.9− (−0.576)(0.64)

1− (−0.5763)2= −0.795

a2(2) =a3(2)− a3(3)a3(1)

1− K 23

a2(2) =0.64− (−0.576)(−0.9)

1− (−0.5763)2= 0.1819

for m=2

a1(1) =a2(1)− a2(2)a2(1)

1− K 22

=−0.795− (0.1819)(−0.795)

1− (0.1819)2

= −0.6726

K3 = a3(3) = −0.576,K2 = a2(2) = 0.1819

K1 = a1(1) = −0.6726

+

+ Z-1g3(n)

f3(n)=x(n)

-0.576

+

+ Z-1

f0(n)=y(n)

g2(n)

- -

g1(n)

+

+ Z-1

g0(n)

-0.576

0.1819 -0.6726

0.1819 -0.6726

f2(n) f1(n)

Figure 76: Lattice filterDr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 137 / 151

Page 138: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

Develop the lattice ladder structure for the filter with difference equation

y(n) +3

4y(n − 1) +

1

4y(n − 2) = x(n) + 2x(n − 1)

Solution:

y(n) +3

4y(n − 1) +

1

4y(n − 2) = x(n) + 2x(n − 1)

By taking z transform

Y (z) +3

4z−1Y (z) +

1

4z−2Y (z) = X (z) + 2z−1X (z)

H(z) =Y (z)

X (z)=

1 + 2z−1

1 + 34

z−1 + 14

z−2

B(z) = 1 + 2z−1

A(z) = 1 + 34

z−1 + 14

z−2

a2(1) = 0.75, a2(2) = 0.25

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 138 / 151

Page 139: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

for m=2K2 = a2(2) = 0.25

am−1(i) =am(i)− am(m)am(m − i)

1− K 2m

a1(i) =a2(i)− a2(2)a2(2− i)

1− K 22

a1(1) =a2(1)− a2(2)a2(1)

1− K 22

=0.75− (0.25)(0.75)

1− (0.25)2= 0.6

for m=1K1 = a1(1) = 0.6Ladder coefficients areB(z) = 1 + 2z−1 M=1b0 = 1, b1 = β1 = 2

βi = bi −M∑

m=i+1

βmam(m − i)

β0 = b0 −1∑

m=1

βmam(m)

= b0 − β1a1(1) = 1− 2(0.6) = −0.2

x(n) +

+ Z-1

f0(n)

-

+

1 2β =

+

+ Z-1

K2=0.25-

+

f1(n)

g1(n)

0 0.2β = −

g0(n)

( )y n

K1=0.6

Figure 77: Lattice filter

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 139 / 151

Page 140: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

A linear time invariant system is defined by

H(z) =0.129 + 0.38687z−1 + 0.3869z−2 + 0.129z−3

1− 0.2971z−1 + 0.3564z−2 − 0.0276z−3

Realize the IIR transfer function using lattice ladder structureSolution:

H(z) =1

A(z)B(z)

where

A(z) = 1− 0.2971z−1 + 0.3564z−2 − 0.0276z−3

B(z) = 0.129 + 0.38687z−1 + 0.3869z−2 + 0.129z−3

a3(3) = −0.0276, a3(2) = 0.3564, a3(1) = −0.2971

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 140 / 151

Page 141: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

for m=3K3 = a3(3) = −0.0276

am−1(i) =am(i)− am(m)am(m − i)

1− K 2m

a2(i) =a3(i)− a3(3)a3(3− i)

1− K 23

a2(1) =a3(1)− a3(3)a3(2)

1− K 23

=−0.2971− (−0.0276)(0.3564)

1− (−0.2971)2

= −0.2875

a2(2) =a3(2)− a3(3)a3(1)

1− K 23

=0.3564− (−0.0276)(−0.2971)

1− (−0.0.0276)2

= 0.3485

for m=2K2 = a2(2) = 0.3485

a1(i) =a2(i)− a2(2)a2(2− i)

1− K 22

a1(1) =a2(1)− a2(2)a2(1)

1− K 22

=0.2875− (0.3485)(−0.2875)

1− (0.3485)2

= −0.2132

for m=1K1 = a1(1) = −0.2132

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 141 / 151

Page 142: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

Ladder coefficients are: B(z) = 0.129 + 0.38687z−1 + 0.3869z−2 + 0.129z−3

βi = bi −M∑

m=i+1

βmam(m − i)

b0 = 0.129, b1 = 0.38687, b2 = 0.3869, b3 = 0.129 = β3

i = 2

β2 = b2 −3∑

m=3

βmam(m − 2) = b2 − β3a3(1) = 0.3869− (0.129)(−0.2971) = 0.4252

i = 1

β1 = b1 −3∑

m=2

βmam(m − 1)

= b1 − β2a2(1)− β3a3(2) = 0.3867− (0.4252)(−0.2875)− (0.129)(0.3564) = 0.4630

i = 0

β0 = b0 −3∑

m=1

βmam(m)

= b0 − β1a1(1)− β2a2(2)− β3a3(3)

= 0.129− (0.4630)(−0.2132)− (0.4252)(0.3485)− (0.129)(−0.0276) = 0.0831

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 142 / 151

Page 143: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

+

+ Z-1

fN(n)=x(n)

K3=-0.0276-

+3 0.129β =

+

+ Z-1

f0(n)

-

+

1 0.4630β =

+

+ Z-1

f2(n)

-

+

fN-1(n)

K3

f1(n)

gN-1(n)

2 0.4252β =

g1(n)gN(n) g2(n)

0 0.0831β =

g0(n)

( )y n

K1=-0.2132K2=-0.3485

K2=-0.3485K1=-0.2132

Figure 78: Lattice filter

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 143 / 151

Page 144: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

A linear time invariant system is defined by

H(z) =1 + z−1 + z−2

(1 + 0.5z−1)(1 + 0.3z−1)(1 + 0.4z−1)

Realize the IIR transfer function using lattice ladder structureSolution:

H(z) =1 + z−1 + z−2

(1 + 0.5z−1)(1 + 0.3z−1)(1 + 0.4z−1)

=1 + z−1 + z−2

1 + 1.2z−1 + 0.47z−2 + 0.06z−3

H(z) =1

A(z)B(z)

where

A(z) = 1 + 1.2z−1 + 0.47z−2 + 0.06z−3

B(z) = 1 + z−1 + z−2

a3(3) = 0.06, a3(2) = 0.47, a3(1) = 1.2

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 144 / 151

Page 145: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

for m=3K3 = a3(3) = 0.06

am−1(i) =am(i)− am(m)am(m − i)

1− K 2m

a2(i) =a3(i)− a3(3)a3(3− i)

1− K 23

a2(1) =a3(1)− a3(3)a3(2)

1− K 23

=1.2− (−0.06)(0.47)

1− (−0.06)2

= 1.176

a2(2) =a3(2)− a3(3)a3(1)

1− K 23

=0.47− (−0.06)(1.2)

1− (0.06)2

= 0.4

for m=2K2 = a2(2) = 0.4

a1(i) =a2(i)− a2(2)a2(2− i)

1− K 22

a1(1) =a2(1)− a2(2)a2(1)

1− K 22

=1.176− (0.4)(1.176)

1− (0.4)2

= 0.84

for m=1K1 = a1(1) = 0.84

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 145 / 151

Page 146: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Lattice structure for IIR Systems

Ladder coefficients areB(z) = 1 + z−1 + z−2 M=1b0 = 1, b1 = 1, b2 = 1 = β2

βi = bi −M∑

m=i+1

βmam(m − i)

β2 = b2 = 1

i = 1

β1 = b1 −3∑

m=2

βmam(m − 1)

= b1 − β2a2(1)

= 1− 1.176 = −0.176

i = 0

β0 = b0 −1∑

m=1

βmam(m)

= b0 − β1a1(1)− β2a2(2)

= 1 + .84(0.176)− 0.4 = 0.748

+

+ Z-1

fN(n)=x(n)

K3=-0.06-+

+ Z-1

f0(n)

-

+

1 0.176β = −

+

+ Z-1

f2(n)

-

+

fN-1(n)

K3 =0.06

f1(n)

gN-1(n)

2 1β =

g1(n)gN(n) g2(n)

0 0.748β =

g0(n)

( )y n

K1=-0.84K2=-0.4

K2=-0.4K1=-0.84

Figure 79: Lattice filterDr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 146 / 151

Page 147: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Signal Flow Graph

Signal Flow Graph

Signal flow graph (SFG) is graphical representation of block diagram structure.

The basic elements of SFG are branches and nodes. The signal out of branch is equal tothe branch gain.

Adders and pick-off points are replaced by nodes. Multipliers and delay elements areindicated by the the branch transmittance.

The input to the system originates at source node and output signal is extracted from asink node.

The importance of SFG in FIR or IIR structure is transposition or flow graph reversaltheorem.

Theorem states that “if we reverse the directions of all branch transmittances andinterchange the input and output in the flow graph, the system function remainsunchanged”. The resulting structure is called a transposed structure or a transposedform.

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 147 / 151

Page 148: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Signal Flow Graph

( )x n

Z-1

+

Z-1

+

+

+

2a−

1a−

2b

1b

0b ( )y n

Figure 80: Direct Form II

( )x n

2a−

1a−

2b

1b

0b ( )y n

1Z −

1Z −

SourceNode

1

5

4

32 Sink Node

Figure 81: Signal Flow graph

( )y n

2a−

1a−

2b

1b

0b ( )x n

1Z −

1Z −

1

5

4

32

Figure 82: Transposed Structure SFG

( )x n

2a−

1a−

2b

1b

0b+

+

+

Z-1

Z-1

( )y n

Figure 83: Direct form-II realization

Figure 80 shows the direct form II structure while Figure 81 shows its signal flow graph

Figure 82 shows the Transposed Structure while Figure 83 shows its realization.

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 148 / 151

Page 149: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Signal Flow Graph

A linear time invariant system is defined by

H(z) =1− 1

2z−1 + 1

4z−2

1 + 18

z−1 − 15

z−2 + 16

z−3

Draw the signal flow graph, transposed signal flow graph and transposed direct form-II structure

( )x n

16

( )y n

1Z −

1Z −

SourceNode

1

5

4

32 Sink Node

14

12

−18

15

Figure 84: Signal flow graph

( )y n

16

( )x n

1Z −

1Z −

SourceNode

1

5

4

32

14

12

−18

15

Figure 85: Transposed Structure signal flowgraph

( )x n

15

18

14

12

+

+

+

Z-1

Z-1

( )y n

Z-1

16

Figure 86: Direct form-II Structure

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 149 / 151

Page 150: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Signal Flow Graph

For the flow graph write difference equations and system function

( )x n ( )y n

1Z −

1Z −

15

112

524

14

1Z −

1Z −

Figure 87: Direct Form I

Solution:

y(n) =1

4y(n − 1)−

5

24y(n − 2)−

1

12y(n − 3) + x(n) +

1

5x(n − 1)

H(z) =1 + 1

5z−1

1− 14

z−1 + 524

z−2 + 112

z−3

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 150 / 151

Page 151: UNIT - 8: Implementation of Discrete-time SystemsProakis11

Realization of IIR system Signal Flow Graph

For the flow graph write difference equations and system function( )x n ( )y n

3

2

1

11Z −

1Z −

1Z −

1Z −

( )w n

Figure 88: Direct Form II Cascade

Solution:

w(n) = x(n) + 3w(n − 1) + w(n − 2)

W (z)

X (z)=

1

1− 3z−1 − z−2

y(n) = w(n) + y(n − 1) + 2y(n − 2)

Y (z)

W (z)=

1

1− z−1 − 2z−2

H(z) =Y (z)

X (z)=

Y (z)

W (z)

W (z)

X (z)

=1

(1− z−1 − 2z−2)(1− 3z−1 − z−2)

=1

1− 4z−1 + 7z−3 + 2z−4

Y (z)[1− 4z−1 + 7z−3 + 2z−4] = X (z)

Y (z) = X (z)+4z−1Y (z)−7z−3Y (z)−2z−4Y (z)

y(n) = x(n)+4y(n−1)−7y(n−3)−2y(n−4)

Dr. Manjunatha. P (JNNCE) UNIT - 8: Implementation of Discrete-time Systems[?, ?, ?, ?]October 18, 2016 151 / 151