traveling the wild frontiers of ultra-low voltage...

47
PATMOS, September 05, Leuven Traveling the Wild Frontiers of Ultra-Low Voltage Design Traveling the Wild Frontiers of Ultra-Low Voltage Design Jan M. Rabaey Director Gigascale Silicon Research Center Co-Director Berkeley Wireless Research Center University of California at Berkeley

Upload: others

Post on 16-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

PATMOS, September 05, Leuven

Traveling the Wild Frontiers of Ultra-Low Voltage DesignTraveling the Wild Frontiers of Ultra-Low Voltage Design

Jan M. RabaeyDirector Gigascale Silicon Research Center

Co-Director Berkeley Wireless Research Center

University of California at Berkeley

Page 2: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

2

JMRJMR--Patmos05Patmos05

Why Ultra-Low Voltage?

• Power and Energy Limiting Integration and Scaling

• Exploring the Bounds and Frontiers of Computation

• The Brave New World of Ubiquitous Electronics

Meso-scale low-cost wireless transceivers for ubiquitous wireless data acquisition that• are fully integrated

– Size smaller than 1 cm3

• are dirt cheap (“the Dutch treat”) – At or below 1$

• minimize power/energy dissipation– Limiting power dissipation to 100 µW

enables energy scavenging

• and form self-configuring, robust, ad-hoc networks containing 100’s to 1000’s of nodes

Meso-scale low-cost wireless transceivers for ubiquitous wireless data acquisition that• are fully integrated

– Size smaller than 1 cm3

• are dirt cheap (“the Dutch treat”) – At or below 1$

• minimize power/energy dissipation– Limiting power dissipation to 100 µW

enables energy scavenging

• and form self-configuring, robust, ad-hoc networks containing 100’s to 1000’s of nodes

Page 3: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

3

JMRJMR--Patmos05Patmos05

Why Worry about Ultra-Low Voltage?

• Maximum integration density ultimately limited by energy dissipated per unit volume.

• Technology scaling leads to linear increase in energy density (for same switching activity and voltage)

• Only options:

– Reduce computational density – lowering frequency and/or activity

– Reduce supply voltage

Page 4: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

4

JMRJMR--Patmos05Patmos05

0.1

1

10

100

1000

1 10

Po

wer

den

sity

: p

[W

/cm

2 ]

Design rule [µm]0.11

Scaling variable: κ

∝ κ3

10000

∝ κ0.7

MPU DSP

p = pDYNAMIC + pLEAK

Constant V scaling

→ pDYNAMIC ∝ κ3

V scaled as κ−1

IDS ∝ (VGS-VTH)1.3

→ pDYNAMIC ∝ κ0.7

(Sakurai, 2003)

Power and Energy Limiting IntegrationThe Picture of Old

Page 5: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

5

JMRJMR--Patmos05Patmos05

Power and Energy Limiting IntegrationThe Roadmap Perspective

1

10

100

1000

Active power density: k1.7

Leakage power density: k3.4

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Compute density: k3

2003 ITRS – Low operating power scenario

Page 6: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

6

JMRJMR--Patmos05Patmos05

The Reality May Be Worse!

1st Mega Trend: Slowing VCC / Growing Power

Technology Supply Voltage

1

10

100

1970 1980 1990 2000 2010

Tec

hnol

ogy

Vol

tage

(V

)

Voltage Scaling slowing

after P1262

.7X Voltage Scaling

Voltage scaling is slowing / stopping ~1.0V

1st Mega Trend: Slowing VCC / Growing Power

Technology Supply Voltage

1

10

100

1970 1980 1990 2000 2010

Tec

hnol

ogy

Vol

tage

(V

)

Voltage Scaling slowing

after P1262

.7X Voltage Scaling

Voltage scaling is slowing / stopping ~1.0V

Scott Thompson, TI Fellows meeting 2004.Scott Thompson, TI Fellows meeting 2004.Scott Thompson, TI Fellows meeting 2004.

Page 7: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

7

JMRJMR--Patmos05Patmos05

Power and Energy Limiting Integration

Better Option: Slow down or reverse compute density increase– Use slack to control power (that is, voltage) and

leakage

1

10

100

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Active power density: <k0.7

Compute density: k2

Leakage power density: <k1.4

Page 8: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

8

JMRJMR--Patmos05Patmos05

There is Room:Minimum Operational Voltage of Inverter

• Swanson, Meindl (April 1972)

• Further extended in Meindl (Oct 2000)

Limitation: gain at midpoint > -1

Cfs: fast surface state capacitanceCox: gate capacitanceCd: diffusion capacitance

For ideal MOSFET (60 mV/decade slope):

Page 9: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

9

JMRJMR--Patmos05Patmos05

Gain is the Limiting Factor

Voltages normalized to UT = kT/qVoltages normalized to UT = kT/q

From E. Vittoz, Ch. 16, Low Power Electronics, Ed. C. Piguet, 2005. From E. Vittoz, Ch. 16, Low Power Electronics, Ed. C. Piguet, 2005.

Page 10: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

10

JMRJMR--Patmos05Patmos05

Confirmed for Current Technologies

Min Vdd (inverter)

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

pn ratio

mV

Min Vdd (NOR)

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3

pn ratio

mV

both inputs one input

90 nm CMOS (simulation – nominal process parameters)90 nm CMOS (simulation – nominal process parameters)

Degradation due to asymmetryDegradation due to asymmetry

Source: M. Stan, L. Alarcon

For n =1.6,Vddmin = 1.9 kT/q = 48 mV

Page 11: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

11

JMRJMR--Patmos05Patmos05

Minimum Energy per Operation

• Predicted by von Neumann: kTln(2)

• Based on previous result – moving one electron over Vddmin:

– Emin = QVDD/2 = q 2(ln2)kT/2q = kTln(2)

– Would be approximately three times larger for CMOS inverter with PMOS twice the size of NMOS

– At room temperature (300K): Emin = 0.29 10-20 J

• Minimum sized CMOS inverter at 90 nm operating at 1V

– E = CVdd2 = 0.8 10-15 J, or 5 orders of magnitude larger!

How Close Can We Get?How Close Can We Get?

Page 12: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

12

JMRJMR--Patmos05Patmos05

Option 1: Subthreshold Operation

Making Leakage Work You!Making Leakage Work You!

Example: Energy-Aware FFTExample: Energy-Aware FFT

A. Wang, A.P. Chandrakasan, "A 180mV FFT Processor Using Subthreshold Circuit Techniques," ISSCC 2004.

Page 13: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

13

JMRJMR--Patmos05Patmos05

FFT Energy-Performance Curves

2DDLSwitching VCaE ⋅⋅=

TVIE S

V

DDSLeakage

th

⋅⋅⋅=−

10

(estimated from switching and leakage models for a 0.18µm process)

Optim

al (Vdd , V

th )

Threshold Voltage (Vth)

Supp

ly V

olta

ge (

VD

D)

Courtesy: A. Wang, A. Chandrakasan, MITCourtesy: A. Wang, A. Chandrakasan, MIT

Minimum Energy Point @ VDD = 0.35V and VT = 0.475VMinimum Energy Point @ VDD = 0.35V and VT = 0.475V

Page 14: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

14

JMRJMR--Patmos05Patmos05

SubThreshold FFT

Process Details

• 0.18µm CMOS process

• 6 layer metal

• 628k transistors

Data Memory

TwiddleROMs

ButterflyDatapath

Control logic

2.1

mm

2.6 mm

Data Memory

TwiddleROMs

ButterflyDatapath

Control logic

2.1

mm

2.6 mm

DataReady

DataOutput[1-0]

output clock

Operational down to 180 mV (fclock = 64 Hz)

Operational down to 180 mV (fclock = 64 Hz)

Page 15: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

15

JMRJMR--Patmos05Patmos05

Confirmed by Measurements

200 300 400 500 600 700 800 9000

100

200

300

400

500

600

700

800

900

1000

200 300 400 500 600 700 800 900100Hz

1kHz

10kHz

100kHz

1MHz

10MHz

VDD(mV)

Clo

ck fr

eque

ncy

VDD(mV)

The FFT operates between VDD=180mV-900mV and clock frequency of 164Hz-6MHz.The minimum energy dissipated is 155nJ/FFT at 350 mV for a 1024-point 16b FFT. The clock frequency is 10kHz and the FFT processor dissipates 0.6µW.

measured

estimated

Ene

rgy

(nJ)

Page 16: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

16

JMRJMR--Patmos05Patmos05

The Subliminal Processor (UMich)-14

I-Mem8-bit words

ROM8-bit words

Prefetch B

uffer32 bits

Reg File Acc

32 bits

Shifterx1

D-Mem

ALU

IF-STAGE

CONTROL LOGIC

ID-STAGE EX/MEM-STAGE

8 x 16 bits16 x 8 bits32 x 4 bits

81632

8-bit16-bit32-bit

8-bit words16-bit words32-bit words

81632

EventScheduler

ExternalInterrupts

I-Mem8-bit words

ROM8-bit words

Prefetch B

uffer32 bits

Reg File Acc

32 bits

Shifterx1

D-Mem

ALU

IF-STAGE

CONTROL LOGIC

ID-STAGE EX/MEM-STAGE

8 x 16 bits16 x 8 bits32 x 4 bits

8 x 16 bits16 x 8 bits32 x 4 bits

81632

81632

8-bit16-bit32-bit

8-bit16-bit32-bit

8-bit words16-bit words32-bit words

8-bit words16-bit words32-bit words

81632

81632

EventScheduler

ExternalInterrupts

• Explores Minimum-Energy Processor

– subthreshold operation

– 3pJ per instruction at 350mV operation

– 10X less energy than previously reported

– 41 year operation on 1g Li-ion battery

• Research Areas

– Processor architectural trade-offs

– Low voltage memory design

– Process variation tolerance

Courtesy: D. Blaauw, T. Austin, UMICH

Page 17: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

17

JMRJMR--Patmos05Patmos05

Is Sub-threshold The Way to Go?

• Achieves lowest possible energy dissipation

• But … at a dramatic cost in performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.2 0.4 0.6 0.8 1Vdd (V)

tp(u

s)

130 nm CMOS

OPTIMAL POWER – PERFORMANCE TRADEOFF CURVE

Cycle time

Pow

er

Page 18: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

18

JMRJMR--Patmos05Patmos05

Option 2: Managing Leakage while Reducing Thresholds

Courtesy: Mircea Stan, Louis Alarcon, UCB/Virginia

Stacked transistors enable aggressive threshold scaling

– Ion/Ioff increases with increasing stack height (leakage suppression)

– More robust to correlated (tune or adapt) and random variations (self-cancel)

– Decreased short channel effect

Page 19: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

19

JMRJMR--Patmos05Patmos05

Impact of Stacking Devices

1 fJ

1 ns

Stack-depth 2

VDDVDD

VT

Page 20: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

20

JMRJMR--Patmos05Patmos05

Impact of Stacking Devices

1 fJ

1 ns

Stack-depth 4

VDDVDD

VT

Page 21: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

21

JMRJMR--Patmos05Patmos05

Impact of Stacking Devices

1 fJ

1 ns

Stack-depth 6

VDDVDD

VT

Page 22: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

22

JMRJMR--Patmos05Patmos05

Impact of Stacking Devices

1 fJ

1 ns

Stack-depth 8

VDDVDD

VT

Page 23: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

23

JMRJMR--Patmos05Patmos05

Optimal EDP, Energy, Delay vs. Stack

Page 24: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

24

JMRJMR--Patmos05Patmos05

Complex GatesReducing thresholds while containing leakage

In2 In1 In0

F0 F1

The return of PLAs?• Regular

• Tunable

• NAND/NAND configuration

RootInput

A

B S

S

P0

to senseampA

B

B

B

Or pass-transistor logic• Current-steering

• Regular

• Balanced delay

• Programmable

Page 25: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

25

JMRJMR--Patmos05Patmos05

Some ULV Challenges: (1) Excessive Timing Variance

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

Vdd (V)

σ/µ

(%)

• Timing variance increases dramatically with Vdd reduction

• Design for large yield means huge overhead at low voltages:

– Worst case design at 300mV means over 200% overkill

Page 26: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

26

JMRJMR--Patmos05Patmos05

Managing Systematic Variations Through Self-Adaptation

ModuleTest

Module

Vbb

Test inputsand responses

Tclock

Vdd

Move test onto the chipDynamically adjust supply and threshold design parameters to center the design!

Courtesy: K. Cao, Arizona

5

10

15

20

25

30

35

40

45

50

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Path Delay (ps)

Esw

itch

ing

(fJ) Adaptive Tuning

Worst Case, w/o Vth tuningNominal, w/ Vth tuning

Energy-performance trade-off

10x

Page 27: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

27

JMRJMR--Patmos05Patmos05

Some ULV Challenges: (2) The Memory Data-Retention Voltage (DRV)

DRVV when , DD

inverterRight 2

1

inverterLeft 2

1 =∂∂=

∂∂

V

V

V

VV

DD

V1

M4

M3

M6M5

M2

M1

Leakagecurrent

V2

Leakagecurrent

VDDVDD

0 0

0 0.1 0.2 0.3 0.40

0.1

0.2

0.3

0.4

V1 (V)

2VTC1VTC2

VDD=0.18V

VDD=0.4V

VTC of SRAM cell inverters

V2

(V)

When Vdd scales down to DRV, the Voltage Transfer Curves (VTC) of the internal inverters degrade to such a level that Static Noise Margin (SNM) of the SRAM cell reduces to zero.

DRV Condition:

Source: Huifang Qin, QEDTI 2004

Page 28: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

28

JMRJMR--Patmos05Patmos05

The Impact of Process Variations

DRV Spatial Distribution (256*128 Cells)

130 nm CMOS

100 200 300 4000

1000

2000

3000

4000

5000

6000

DRV (mV)

His

togra

m o

f 32K

SR

AM

cel

ls

Page 29: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

29

JMRJMR--Patmos05Patmos05

Reducing the DRV

100 200 300 4000

1000

2000

3000

4000

5000

6000

DRV (mV)

His

togr

am

of 3

2K S

RAM

cel

ls

Option : ULV SRAM circuit optimization

SRAM Chip DRV

Solution II: Error-tolerant SRAM design (with Redundancy and ECC)

Combination of sizing and aggressive ECC reduces DRV to 150 mVCombination of sizing and aggressive ECC reduces DRV to 150 mV

Page 30: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

30

JMRJMR--Patmos05Patmos05

How about Mixed-Signal?

• Reduced headroom challenges traditional mixed-signal design

• Process variation makes design centering tough

• Does further scaling help?Courtesy: R. Rutenbar, CMU

Page 31: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

31

JMRJMR--Patmos05Patmos05

The Lure of the Sub-Threshold Region

10-4

10-3

10-2

10-1

100

101

102

103

10-1

100

101

102

g m /

I D

Inversion Coefficient (IC)10

-410

-310

-210

-110

010

110

210

310

6

107

108

109

1010

1011

f T (H

z)

• Greater transconductance (gm) for a given bias current

• Lower ft, but CMOS scaling helps

• Greater transconductance (gm) for a given bias current

• Lower ft, but CMOS scaling helps

Page 32: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

32

JMRJMR--Patmos05Patmos05

Baseband Processor

Amplitude estimation: 10 bits

Timing estimation: 25 bits (worst case)

Synchronization Header

< 1 VPower Supply

200 µWTotal Power (Analog+Digital)

2.1mm x 2.1mm (pad limited)Chip Area

0.13um CMOSTechnology

Synchronization is done !

30mVData Input

Reset 1

Integration 1

Data Output(from Analog)

Data Output(from Digital)

Synchronization is done !

30mV

Synchronization is done !

30mV30mVData Input

Reset 1

Integration 1

Data Output(from Analog)

Data Output(from Digital)

Data Input

Reset 1

Integration 1

Data Output(from Analog)

Data Output(from Digital)

Courtesy: Yan-Mei Li, UCB, CICC 2005

Page 33: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

33

JMRJMR--Patmos05Patmos05

Example: Energy-Efficient Data Conversion

Source: S. Gambini, UCB

.5VVdd

~2 uWPd

6 bitsResolution

800KS/sFs

Low-Voltage Low-PowerSuccessive-Approximation A/D

Simplest architecture wins!Simplest architecture wins!

Page 34: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

34

JMRJMR--Patmos05Patmos05

ULV(I) RF?

Absolutely!• Aggressive use of passives• Unorthodox architectures to create gain (receiver) or increase efficiency (transmitter) at low voltage/current levels• Stacking of components often helps (current re-use)• Efficient oscillators are essential!

Page 35: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

35

JMRJMR--Patmos05Patmos05

Extensive Use of (Innovative) Passives

• High Q-factor• Small form factor• MEMS/CMOS co-design• Integration into IC

process

Q > 1000

Ruby et. al. (Ultrasonics Symposium 2001)

Si SiAir

AirAlN

Electrodes Drive Electrode

Sense Electrode

100µm

FBAR

Carpentier et. al. (ISSCC 2005)

LNA

MixerBAW Filter

100M 1G 10G1

10

100

1000

Impe

danc

e (Ω

)

Frequency (Hz)

Page 36: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

36

JMRJMR--Patmos05Patmos05

Exploring the Limits: (Almost) Passive 1.9GHz Receiver

• PRX=200nW

• BW-3dB=4MHz

• Sensitivity=-38dBm (12dB SNR)

• |S11|: -9.3dB

Courtesy: B. Otis, N. Pletcher

1mm

FBAR

Page 37: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

37

JMRJMR--Patmos05Patmos05

Providing Gain: The Return of Super-Regenerative

• Super-regenerative receiver creates gain at low-current level

• Sub-threshold operation

• No external components (inductors, crystals, capacitors)

• 0.13µm CMOS

2mm

Total Rx: 380µW

1mm

Otis, Chee, Rabaey, ISSCC 2005

Page 38: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

38

JMRJMR--Patmos05Patmos05

SuperRegenerative: Gain at Low Current

no signal-100dBm-90dBm-80dBmfq=100kHz -70dBm

Page 39: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

39

JMRJMR--Patmos05Patmos05

SuperRegenerative: Gain at Low Current

ST 0.13mm CMOS

Detector oscillator transient:

• OOK modulation

• -80dBm, 5kbps

1

0

Eye

Page 40: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

40

JMRJMR--Patmos05Patmos05

FBAR

C1 C2

M1

M2

Rb

Vdd

RmCmLm

Co Ro

LsRs

Low power design techniques• Complementary Gm stages to reduce Ibias

• Large Rb to reduce FBAR loading• Sub-threshold MOSFET maximizes gm/Id• Optimal choice of C1 and C2

Low-Voltage / Energy Oscillators

FBAR

Electrodes

Bond wires

CMOS Die

Y.H. Y.H. CheeChee, CICC 2005, CICC 2005

Page 41: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

41

JMRJMR--Patmos05Patmos05

Low-Energy FBAR Oscillator - Measurements

FBAR oscillator phase noise at 90µW power consumption

FBAR oscillator voltage swing

(~140mV 0-pk @ 90 µW)

10k 100k 1M 10M-140

-130

-120

-110

-100

-90

Ph

ase

No

ise

(d

Bc/

Hz)

Frequency offset (Hz)

-98 dBc/Hz

-120 dBc/Hz

Instrument’s noise floor

10k 100k 1M 10M-140

-130

-120

-110

-100

-90

Ph

ase

No

ise

(d

Bc/

Hz)

Frequency offset (Hz)

-98 dBc/Hz

-120 dBc/Hz

Instrument’s noise floor

50 100 150 200 250 300100

150

200

250

300

Ze

ro t

o p

ea

k vo

ltag

e s

win

g (

mV

)

Power Consumption (µW)

Page 42: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

42

JMRJMR--Patmos05Patmos05

Dealing with Variations

• Calibrate LC oscillator with high accuracy reference (FBAR)

• Convert control voltage to digital signal and control oscillator frequency digitally

• Turn off FBAR oscillator and control loop after calibration

High-accuracy (500ppm)

FBAR oscillator (300µW)

Low-accuracy LC

oscillator (<100µW)

To calibrate over 200MHz span better than 500kHz accuracy, 400 steps (9 bits) required

FBAR

oscPD LPF ADC

9

...

fFCLSB 1=

Page 43: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

-115dBc/HzPhase noise

@ 1MHz offset

~400kHz

(9 bits)

Resolution

150MHzTuning Range

1.9GHzNominal frequency

100µWPower consumption

0.5VSupply voltage

Bondwire oscillator performance

Digitally Tuned VCO

0.13µm ST CMOS, (2x2)mm2 area

One bondwire and one integrated version implemented for comparison

Courtesy N. Pletcher, UCB, ESSCIRC 2005

Page 44: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

44

JMRJMR--Patmos05Patmos05

Output Swing vs Bias Current

0

50

100

150

200

250

100 200 300 400 500 600 700

Core bias current (uA)

Diff

eren

tial V

ou

t (m

V,p

-p)

Bondwire Integrated

Low Accuracy LC Oscillator - Results

0.5V supply Minimum startup conditions:• Vdd = 0.3V• Ibias = 140µA

(42µW)

Tuning range (10 bit code)

Page 45: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

45

JMRJMR--Patmos05Patmos05

Innovative Architectures: Injection Locked Transmitter

• Use LC power oscillator instead of a power amplifier

– Self-drive reduces driver power

• Capacitive bank to tune oscillation within locked range

• Reference oscillator to lock the power oscillator to an accurate carrier frequency

Input balun

Output balun

Bond wire inductor

CMOS Die

Y.H. Chee et al, CICC 2005Y.H. Chee et al, CICC 2005

Page 46: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

46

JMRJMR--Patmos05Patmos05

TX Performance

• TX consumes an average power of 1.5mW while delivering 1mW OOK signal (32% efficiency).

• Degradation of TX efficiency due to driver stage (FBAR oscillator) is only 1%.

ST 0.13µm CMOS

Unlocked output spectrum Locked output spectrum

200 400 600 800 100020

22

24

26

28

30

32

Tra

nsm

itter

Eff

icie

ncy

(%)

Radiated Power (µW)

Vdd = 280mV Vdd = 260mV Vdd = 230mV Vdd = 210mV

Page 47: Traveling the Wild Frontiers of Ultra-Low Voltage Designbwrcs.eecs.berkeley.edu/faculty/jan/JansWeb... · 6 JMR-Patmos05 The Reality May Be Worse! 1st Mega Trend: Slowing V CC / Growing

47

JMRJMR--Patmos05Patmos05

Perspectives

There is plenty of room at the bottom!

• Further scaling of energy/operation (or current per function) is essential for scaling to produce its maximum impact

• Current digital gates 5 orders of magnitude from minimum

• Exciting opportunities offered by new paradigms in computing

• Innovations at circuit, architecture and system level are essential

• Ample opportunity still to tame some wild horses

The art of ingenuityH. De ManISSCC 05