towards spectral intensity interferometry -...

7
Towards spectral intensity interferometry GEORGIY SHOULGA 1 AND EREZ N. RIBAK 1,* 1 Department of Physics, Technion – Israel Institute of Technology, Technion City, Haifa 32000, Israel *Corresponding author: [email protected] Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXX We use intensity interferometry to image a group of point sources, in a computer simulation and laboratory demonstration. We acquire the image of this ‘asterism’ by measuring the second and third order correlations between photon arrival times, using three single photon detectors. To reduce noise effects, we divide the light collector into segments, and each segment is dispersed into spectral bands, where photons in each band are correlated separately. This comprises a new optical design that is (1) stable for partially collimated beams; (2) is light efficient; and (3) is not any wider than the incoming beam. © 2016 Optical Society of America OCIS codes: (100.3175) Interferometric imaging; (270.5585) Quan‐ tum information and processing; (100.6640) Superresolution. http://dx.doi.org/10.1364/AO.99.099999 1. INTRODUCTION In the 1970's Hanbury Brown and Twiss built an intensity interferome‐ ter and successfully measured diameters of a several bright stars 1 . Since the average intensity distribution of the star and its coherence function in the far field are related by a Fourier transform 2 , one can obtain the image of the star by taking the inverse Fourier transform of the coher‐ ence function. However, measured intensity fluctuations in the far field domain provide only the amplitude distribution in the Fourier domain, but all phase information is lost. In order to obtain the phase as well, it is possible to measure triple correlations between photon arrival times 3 . Wide band measurements reveal the structure of achromatic objects, while narrow band ones provide additional spectro‐spatial information. In this work, we simulate in the computer and measure in the lab an asterism of three artificial stars, detected by three movable photon sen‐ sors. We acquire the image of the asterism by first measuring the second and third order correlation functions between photon arrival times, then taking an inverse Fourier transform of the correlation function. It was shown recently that multiple‐photon correlations allow re‐ solving the object beyond the diffraction limit 4‐7 , provided the flux is suf‐ ficient 8, 9 . However, cross‐spectral occasional correlations and single photon counts might screen the signal, weak as it is. Thus we propose an optical system, which disperses the light into multiple spectral bands. This dispersion can be used to measure the correlation function at each band separately, leading to an image with different spectral regions in a source structure. As this dispersion can improve the signal to noise ratio, we anticipate being able to detect finer details of the source. Amplitude interferometry, although more efficient than intensity in‐ terferometry 10 , cannot reach shorter wave lengths due to atmospheric turbulence 1 . Unfortunately, our atmosphere is opaque in the ultra‐vio‐ let, which raises the option of space intensity interferometry with its lesser accuracy requirements 10‐12 . We have already started laboratory experiments 13 and simulations 14 . 2. RESEARCH GOAL The ultimate goal of this research is to build a space intensity interfer‐ ometer (Fig. 1). Such an interferometer will be made up of a small flotilla of light collectors in a formation flight. Each such collector is of low opti‐ cal quality, since the effective temporal bandwidth of ~1 GHz allows sur‐ face errors and path differences of a few centimeters. Decameter‐size collectors, placed kilometers apart, provide good uv (far field plane) cov‐ erage while not resolving small object details 1 . Each such collector pro‐ vides basic spectral dispersion, to improve the signal to noise ratio of the final image to be composed (see also Section 7). Thus a few spectral channels provide each a stream of photon events, which needs to be cor‐ related with all the other stations at some central station. That central station can be at space or on the ground, and it needs to collect the data streams from all stations, perform multiple correlations on them, and produce images. Fig. 1. Schematic setup of the research goal: a) recording photon arri‐ vals in a number of telescopes in a formation, b) transmission of the rec‐ orded data to ground antennas, c) correlations of the received signals, d) calculation of the coherence function, e) reconstruction of the angular diameter of a star. We have already experimented with fast transmitters and receivers, and with fast data processors 13 . Due to the expected data load, it might be essential to compress the data between stations. Since the data are totally random and resist compression, it is necessary to choose care‐ fully overlapping temporal windows from the different stations 14 .

Upload: others

Post on 30-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Towards spectral intensity interferometry - Technionphweb.technion.ac.il/~eribak/ShoulgaRibakTowardsSpectralIntensity... · Towards spectral intensity interferometry G EORGIY S HOULGA

Towards spectral intensity interferometry 

GEORGIY SHOULGA1 AND EREZ N. RIBAK1,* 1Department of Physics, Technion – Israel Institute of Technology, Technion City, Haifa 32000, Israel *Corresponding author: [email protected]  

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXX 

Weuseintensityinterferometrytoimageagroupofpointsources,inacomputersimulationandlabora‐torydemonstration.Weacquiretheimageofthis‘as‐terism’bymeasuringthesecondandthirdordercor‐relationsbetweenphotonarrivaltimes,usingthreesinglephotondetectors.Toreducenoiseeffects,wedividethelightcollectorintosegments,andeachseg‐ment isdispersed into spectralbands,wherepho‐tons in each band are correlated separately. Thiscomprisesanewopticaldesignthatis(1)stableforpartiallycollimatedbeams;(2)islightefficient;and(3)isnotanywiderthantheincomingbeam.©2016OpticalSocietyofAmerica

OCIS codes: (100.3175) Interferometric imaging; (270.5585) Quan‐tum information and processing; (100.6640) Superresolution.  

http://dx.doi.org/10.1364/AO.99.099999 

1. INTRODUCTION Inthe1970'sHanburyBrownandTwissbuiltanintensityinterferome‐terandsuccessfullymeasureddiametersofaseveralbrightstars1.SincetheaverageintensitydistributionofthestaranditscoherencefunctioninthefarfieldarerelatedbyaFouriertransform2,onecanobtaintheimageofthestarbytakingtheinverseFouriertransformofthecoher‐encefunction.However,measuredintensityfluctuationsinthefarfielddomainprovideonlytheamplitudedistributionintheFourierdomain,butallphaseinformationislost.Inordertoobtainthephaseaswell,itispossibletomeasuretriplecorrelationsbetweenphotonarrivaltimes3.Widebandmeasurementsrevealthestructureofachromaticobjects,whilenarrowbandonesprovideadditionalspectro‐spatialinformation.Inthiswork,wesimulateinthecomputerandmeasureinthelaban

asterismofthreeartificialstars,detectedbythreemovablephotonsen‐sors.Weacquiretheimageoftheasterismbyfirstmeasuringthesecondand thirdorder correlation functionsbetweenphotonarrival times,thentakinganinverseFouriertransformofthecorrelationfunction.Itwasshownrecently thatmultiple‐photoncorrelationsallowre‐

solvingtheobjectbeyondthediffractionlimit4‐7,providedthefluxissuf‐ficient8, 9. However, cross‐spectral occasional correlations and singlephotoncountsmightscreenthesignal,weakasitis.Thusweproposeanopticalsystem,whichdispersesthelightintomultiplespectralbands.Thisdispersioncanbeusedtomeasurethecorrelationfunctionateachbandseparately,leadingtoanimagewithdifferentspectralregionsinasourcestructure.Asthisdispersioncanimprovethesignaltonoiseratio,weanticipatebeingabletodetectfinerdetailsofthesource.

Amplitudeinterferometry,althoughmoreefficientthanintensityin‐terferometry10,cannotreachshorterwavelengthsduetoatmosphericturbulence1.Unfortunately,ouratmosphereisopaqueintheultra‐vio‐let,whichraisestheoptionofspaceintensityinterferometrywithitslesseraccuracyrequirements10‐12.Wehavealreadystartedlaboratoryexperiments13andsimulations14.

2. RESEARCH GOAL Theultimategoalofthisresearchistobuildaspaceintensityinterfer‐

ometer(Fig.1).Suchaninterferometerwillbemadeupofasmallflotillaoflightcollectorsinaformationflight.Eachsuchcollectorisoflowopti‐calquality,sincetheeffectivetemporalbandwidthof~1GHzallowssur‐faceerrorsandpathdifferencesofafewcentimeters.Decameter‐sizecollectors,placedkilometersapart,providegooduv(farfieldplane)cov‐eragewhilenotresolvingsmallobjectdetails1.Eachsuchcollectorpro‐videsbasicspectraldispersion,toimprovethesignaltonoiseratioofthefinalimagetobecomposed(seealsoSection7).Thusafewspectralchannelsprovideeachastreamofphotonevents,whichneedstobecor‐relatedwithalltheotherstationsatsomecentralstation.Thatcentralstationcanbeatspaceorontheground,anditneedstocollectthedatastreamsfromallstations,performmultiplecorrelationsonthem,andproduceimages.

Fig.1.Schematicsetupoftheresearchgoal:a)recordingphotonarri‐valsinanumberoftelescopesinaformation,b)transmissionoftherec‐ordeddatatogroundantennas,c)correlationsofthereceivedsignals,d)calculationofthecoherencefunction,e)reconstructionoftheangulardiameterofastar. Wehavealreadyexperimentedwithfasttransmittersandreceivers,

andwithfastdataprocessors13.Duetotheexpecteddataload,itmightbeessentialtocompressthedatabetweenstations.Sincethedataaretotallyrandomandresistcompression,itisnecessarytochoosecare‐fullyoverlappingtemporalwindowsfromthedifferentstations14.

Page 2: Towards spectral intensity interferometry - Technionphweb.technion.ac.il/~eribak/ShoulgaRibakTowardsSpectralIntensity... · Towards spectral intensity interferometry G EORGIY S HOULGA

Herewedescribetheessentialnextstep:staticexperimentsinthelabor‐atory,photonstatistics,performingmeasurementsofcoherencefunc‐tionsofdifferentorders(andclosurephases),andprocessingthemtoobtainanimageofanon‐trivialobject.

3. OPTICAL SYSTEM TheschematicsetupoftheopticalsystemispresentedinFig.2.Lightproducedbya532nmgreenlaserwaspassedthroughaneutraldensityfilter(NDF)inordertoreducetheintensity,toavoiddamagetothepho‐tomultipliers(PMTs)andsignalamplifiers.Then,itwassentontoaro‐tatinggroundglass(GG)disk(Newport,100diffuser)poweredbyaDCmotor.TherotationspeedoftheDCmotorwasadjustedto500rpm,toreducethecoherenceofthescatteredlight.Thescatteredlight,thuscon‐sideredapseudo‐thermallight15,illuminated350μmpinholes,thuscre‐atingartificialstars.Thesetofpinholeswasplacedascloseaspossibleto the rotating ground glass, because the scattered light produces aspecklepatternwhoseaveragesizeshouldbelessthanareaofeachar‐tificialstar.Then,light(thespecklepattern)fromtheartificialasterismwassplittothedetectorsintheuvplane.ThecollectionareaofeachPMT(Hamamatsu,R7400UPMT)shouldbelessthantheaveragespecklesize,andthus,15μmpinholeswereplacedinfrontofeachPMTtolimittheircollectionarea.PhotoneventsfromthePMTwereaugmentedbyhighspeedamplifiers(Becker&HicklHFAC‐26DB‐10UA,poweredbyseparate12vbatteries)andtheirmutualcorrelationswasperformedinMATLAB.

Fig.2.Schematicsetupoftheopticalsystem.

Insimilarsetups3,16themeasurementsofthefulluvplaneinafarfieldweredonebyfixingthedetectorsandrotatingthesourcestarfordiffer‐entorientations.Herewefixedthesourceasterismandmeasuredtheintensitiesintheuvplanedirectlybymovingthedetectorsinafarfieldplane.Thisisclosertoasituationwherethelightcollectorsaremovingandmappingthefarfieldplane.

4. PHOTON STATISTICS Thecoherencetimeofthesourceiscontrolledbytherotationspeedofthegroundglassdisk.Theslowertherotation,thehigherthecoherencetimeandviceversa.Byappropriatechoiceofthecoherencetimerela‐tivetotherecordedlengthofthesignal(patch)wecanacquiredifferentphotonstatisticsbyplottingthenumberofpatcheswithagivennumberofphotonsasafunctionofnumberofphotonsineachpatch.Indeed,inalimitwherecoherencetimeismuchshorterthanapatchlength,pho‐tonswillobeyaPoissonstatistics.Ontheotherhand,inalimitwherecoherencetimeismuchlongerthanapatchlength,photonswillobeyaBose‐Einstein(BE)statistics.Inanycase,purePoissonstatistics(BEsta‐tistics)forphotonarrivaltimeswilltakeplaceonlyinthecasewhere

coherencetimeiszero(infinity).Therefore,therewillalwaysbeamix‐tureofthetwo.Theshorterthecoherencetime,thelargerfractionofthephotonswillobeyPoissonstatisticsandlessBEstatisticsandviceversa.Inthecurrentwork,agroundglassdiskwasrotatingataconstant

speedcorrespondingtothecoherencetimeofabout35μs.ThiswasdonebymeasuringaHWHMofthebunchingpeakaftercrosssignalcor‐relationprocess.Thesinglepatchlengthshavebeenchosentobe2μs(muchshorterthanacoherencetime,BEstatisticswereexpected),160μs (much longer than a coherence time, Poisson statisticswere ex‐pected)and35μs(aboutthecoherencetime,anequalmixtureofPois‐sonandBEstatisticswereexpected).Overall,10 equallengthpatcheswereusedtoacquireeachofthestatisticsgraphs(Fig.3).

Fig.3.Photonstatisticshistogramsfordifferentpatchlengths:timein‐tervalismuchshorter(top),equal(middle)andmuchlonger(bottom)thanthecoherencetime.Reddottedlinesrepresentthebestfitforsta‐tistics:Bose‐Einstein(top),Poisson(bottom)andacombinationofthetwo(middle).

Ascanbeseen,incasewherethepatchlengthismuchshorter(longer)thanthecoherencetimethelargerfractionofthephotonsobeystheBE(Poisson)statistics.Incasewherethepatchlengthisequaltothecoher‐encetimethecorrespondingdistributionisanequalmixtureofBEandPoissonstatistics.

5. IMAGE RECONSTRUCTION Forreconstructionoftheobjectweusedthemeasuredcorrelations,butthelackofphaseisaseverelimitation.Phaseambiguitycanberemovedbytriplecorrelation,whichforthreesignalsf,g,hisdefinedby15

, ≡ ∗ , (1)

where and areintroducedtimedelays(aphasecosineambiguityremains,seeAppendix).Therefore,triplecorrelation,incontrasttothesecondordercorrelation,isatwodimensionalstructure,whereeachaxisrepresentsadifferenttimedelay.Themethodispresented,asde‐velopedoriginally,fortemporalcorrelations,butthesamelogicappliestoourcaseoftwo‐dimensionalspatialcorrelations.Itisverydifficultandtimeconsumingtocalculatethetriplecorrela‐

tiondirectly,pointbypoint,withthefullsetoftimedelays and .Themethodwehaveusedinsteaddoesnotcalculatethetriplecorrelation

Page 3: Towards spectral intensity interferometry - Technionphweb.technion.ac.il/~eribak/ShoulgaRibakTowardsSpectralIntensity... · Towards spectral intensity interferometry G EORGIY S HOULGA

pointbypoint,ratherwewanttoconstructthetwodimensionalstruc‐turerowbyrow.Thatis,freezingthefirsttimedelayat 0inEq.(1)weget

0, ≡ ∗ , (2)

where ∗ ∗ isjustadirectmultiplicationoffirsttwosig‐nals.Asaresult,wegetasimplecross‐correlationbetween and

,whichcanbecalculatedintheFourierdomain.Inthiswayweob‐tainthefirstrowofthetriplecorrelationgraph.Tocalculatethenextrow,weuse 1unit(0.8ns)i.e.valuesofthesecondsignalarefirstshiftedby1unitandthenmultipliedbythefirstsignal.Then,again,thecrosscorrelationwiththethirdsignalisperformed.Repeatingthispro‐cessfordifferent delays,weconstructthetriplecorrelationrowbyrow.Theresulting2Dstructurehassomeimportantfeatures:ittendstobemaximalinthedirectionswhere 0,or 0,or (Fig.4).Thisresultisobvious,sincethecorrelationtendstobehighwithinthe

coherencetime(small timedelays)anddecreasesastimedelays in‐crease18,19.ThetriplecorrelationiszeroatthetopleftandbottomrightcornersinFig.4,right,sinceattheseregionsthefirsttwosignalsarede‐layedby(atleast)halfsignallengthsandinoppositedirections,resultinginacombinedsignal ∗ whichisidenticallyzeroforallvalues,evenbeforeperformingacrosscorrelationwithathirdsignal.

Fig.4.Experimentaltriplecorrelation(left)anditstopview(right).

Evenifthismethodismuchfasterthanapointbypointcomputation,thewholetriplecorrelationisnotnecessarytoevaluatethedegreeofthethirdordercoherence.Itisenoughtocomputetherowforeitherof

0, 0,or (Fig.5).Thedegreeofthethirdordercoher‐enceisthenobtainedbynormalization,bydividingthepeakvaluebythevalueofthemaximumofthe“triangle”beneath,whichisresponsibleforallnon‐bunchedphotons.

Fig.5.Slicesofthetriplecorrelationfunctionfor 0(left), 0(middle)and (right).

6. SIMULATIONS AND LABORATORY MEASUREMENTS Anartificiallymadeasterismofthreestarswasmeasuredinthelabora‐torywiththreesinglephotondetectors.Suchanasterismwasamask

withthreepinholes,withnon‐redundantdistancesbetweeneachtwocomponentsofthetriplestarsystem(Fig.6,right).Themaskwasmadebydrillingthree350μmholesinasheetofaluminum.ThenweranaMATLABsimulationtocomputetheintensitydistributionofthesameasterisminthefarfieldandfromitreconstructedanimageintwocases:withandwithoutphaseinformation.TheintensitydistributioninthefarfieldwascalculatedbyFouriertransformofthemask(orcouldbedonebyusingFraunhoferdiffractionintegral).TheimagereconstructionwasobtainedbyaninverseFouriertransformappliedtotheuvimage(Fig.6,left)containingtheamplitudeandphaseateachpoint(Fig.6,right)andtotheuvimagewithabsolutevaluesoftheamplitudeateachpoint(Fig.6,center),thuslosingthephaseinformation.Alreadyfromthelat‐terreconstructionwecandeducethattheobjectconsistsofthreepin‐holes, but the orientation of these three pinholes (the phase infor‐mation)willbesuppliedbythedegreeofthethirdordercoherence.

Fig.6.MATLABsimulation:intensitydistributioninthefarfield(left),imagereconstructionwithout(middle)andwith(right)phaseinfor‐mation:aperfectreconstruction.Thebottompanelsarethenegativesofthetopones,toemphasizethefaintparts.TheexperimentitselfwassetupasdepictedinFig.2.ThreePMTswereplacedinsuchamannerthatPMT1andPMT3werefixedintheirplacesthroughout thewholeexperimentwithaconstantbaselineof~0.15mm.WemovedPMT2intheuvplane(perpendiculartotheopticalaxis)frompointtopoint,producingnewbaselinesbetweenitandPMT1andPMT3,andrecordedthesignalsatallthreePMTs.TherecordingsignalsforPMT2weretakenat0.15mmstepsbetween‐1.5mmand1.5mm.Thisway,ineachdirection21differentbaselineswereproduced,result‐inginagridof21×21measurementsmatrix(overall,441measurementpoints).Finally,fromtherecordedsignalsateachpoint,wecalculatedthedegreesofthesecondandthirdordercoherence(seeAppendix).Fig.7presentsgreyscaleresultsofthedegreeofthesecondordercoherenceateachpoint(21×21matrix).

Page 4: Towards spectral intensity interferometry - Technionphweb.technion.ac.il/~eribak/ShoulgaRibakTowardsSpectralIntensity... · Towards spectral intensity interferometry G EORGIY S HOULGA

Fig.7.Degreeofthesecondordercoherenceγ(2)intheuvplane:PMT1‐PMT2 (left), PMT2‐PMT3 (middle)andPMT1‐PMT3 (fixedbaseline,right).Asexpected, ,thedegreeofthesecondordercoherencebetweenPMTs1‐3isratherconstant,sincethesePMTswerefixedataconstantbaseline.Moreover, and areverysimilar,differingonlybyasmallshift,causedbythebaselinebetweenPMT1andPMT3.Therecon‐structedimage(withoutphaseinformation)isshowninFig.8.Asex‐pected,alreadyatthispointthestructureofthemask(threecompo‐nents)canbededucedfromthesixweeksatellites,butnotitsorienta‐tion.Asseen,thePMT1‐PMT3imagereconstruction(Fig.8,right)leadstonoadditionalinformationduetotheirfixedbaseline.Sincetheeffec‐tiveapertureofthedetectorswastentimessmallerthantheirspacing,wepaddedthedataatthebottomrowinFig.8toachievealesspixelatedimage.

Fig.8. Imagereconstructionwithoutphaseinformation.Top:PMT1‐PMT2 (left), PMT2‐PMT3 (middle) and PMT1‐PMT3 (right). Imagesizesare21×21.Bottom:thesameafterydirectionbiasremoval,andzeropaddingoftheresultsdepictedinFig.7.Imagessizesare441×441.Thesquarepixelsizesare119μm(top)and5.67μm(bottom).

Oncewehadtheamplitudesoftheobject’stransform,weneededtoaddphasestothem.Essentiallytheorientationoftheimageismissing.Aftercalculationofthethirdordercoherenceusingphaseclosurewewereabletoconstrainthephasevalues.Thisconstraintwasappliedtothetheoretical21×21matrixofphasevaluesatthepossibleorientations.Thismatrixofphasevalueswascombinedwiththematrixofamplitudevaluesderivedfromthedegreeofthesecondordercoherencematrix(Fig.7,left)usingtheSiegertrelation20,producingthefullintensitydis‐tribution(amplitudeandphase)inafarfield(Fig.9).

Fig.9.Imagereconstructionwithphaseinformation:MATLABsimula‐tion(left)andexperimentalresults(right).

7. SPECTRAL INTENSITY INTERFEROMETRY Tillnow,thesourcewasconsideredasquasi‐monochromatic.Realstarsarenotmonochromatic,andmeasurementusuallyinvolvesaband‐passfilter.Thisway,allphotonsatallotherwavelengthsarelost.AlreadyHanburyBrown1pointedoutthatadditionalspectralchannelsincreasethefinalsignal,despitethefactthattheysplittheincomingphotonsontomanydetectors.Sinceintensityinterferometryhaslowsignaltonoiseratio,itisimportanttomeasureallincomingphotons,regardlessoftheirwavelength.Onesolutionistodividetheincomingraysbyconsecutivecolor filters intomultiplebeams, eachcontaining adesired rangeofwavelengths,eachtobedetectedandcorrelatedseparatelywithotherbeamsofthesamecolors.Anothersolutionistodispersetheincomingraysintoacontinuousspectrum,andtoproceedsimilarly.Herewepro‐poseonesuchopticaldesign.Intensityinterferometryisusedtomeasuretheintensityfluctuations,

andallthatisrequiredisphotonshittingthedetector.Itdoesnotdependonthewaya(bunched)photonhasarrivedaslongasitwaswithinthecoherencetimeofthesource.Therefore,animagingsystemisnotre‐quiredanditisenoughtojustcollectthephotons,forexampleusingso‐lar collectors21,22. Similarly, Cherenkov telescopes measure photonsfromatmosphericscintillations23.Radiotelescopescanreach100me‐tersindiameter,andhavesurfaceprecisionofmillimeters(enoughforintensity interferometry if reflective in thevisible regime). Forverylargelightcollectors,weconsideramulti‐inputscenario:theapertureissegmentedoptically. Eachcollectorsectorisimagedontoaseparatechannel,andthesechannels’detectorsarecorrelatedintheuvplane.Theresultsaresomewhatsimilartopupilplaneinterferometers,exceptthatwemeasureγ(2)insteadofγ(1).Welosesensitivitytolightbutgainimmunitytoaberrations,spectralresolution,redundantbaselines,etc23.Hereweproposethateachaperturesectorisnotimageddirectlyon

asingledetector,butinsteadhasadispersionelementinfrontofanareadetector.However,low‐qualityopticsalsomeanthatlightarrivingatthedispersionelement,beitadiffractiongratingoraprism,isnotwellcol‐limated.Thiscanbeduetolow‐qualityoptics,atmosphericturbulence,vibrations,gravitysag,spacedeployment,orotherfactors.Thuswecan‐notusethetechnologyofintegralfieldunits(IFU)whichdisperseper‐fectlycollimatedlight.Suchadispersingopticaldesignshouldthus(1)bestableforraysthat

arenotcompletelycollimated;(2)collectasmuchlightaspossible;and(3)theopticalsystemdimensionsdonotexceedtheareaoftheincom‐inglight,enablingthecreationofatwo‐dimensionalarrayofsuchopti‐calsystemmodules.Thislastrequirementallowsustotilethepupilplane(oranimage

thereof)withanarrayofspectralintensitydetectors.Inaddition,wearealwaysinterestedinacompactsystem,especiallywhenweconsiderspace‐basedinstrumentation.Suchanarraycanbeaslargeasasingleopticaldish(≳5m)andbeusedtoimageobjectsatloworhighresolu‐tionwithouttheneedfordetectorsdisplacementorskyrotation.In‐deed,suchanarraywillprovideahugenumberofdifferentbaselinesonitsown,andbeingstatic,itreducestherequirementsonprecisebaselinemeasurements.

Page 5: Towards spectral intensity interferometry - Technionphweb.technion.ac.il/~eribak/ShoulgaRibakTowardsSpectralIntensity... · Towards spectral intensity interferometry G EORGIY S HOULGA

Fig.10.Opticaldisperserdesignforspectralintensityinterferometer.Itconsistsofturbulenceaberratingzone(a),plano‐convexlenses(b,c,g),aconcavemirror(e),aflatmirror(f),aprism(d)andadetector(h).Wetestedanumberofdesignsfordispersionofnearly‐collimated

light,andweshowhereanopticaldesign(performedwithZEMAX)whichmeetstheaboverequirements(Fig.10).

Fig.11.Detectorirradiancebycolor,foradeviationangleof0°,i.e.com‐pletelycollimatedbeam(left),and(toright)deviationanglesof0.1°,0.2°,0.3°,0.4°and0.5°.Thethirdconditionismet,sincethedimensionsofthedesigndonot

exceedthedimensionsofthecollectionareaofthere‐imagedcollectoraperturesegment(elementb).Inordertotestthefirstcondition,atur‐bulencevolume(a)wasinsertedattheentranceoftheopticalsystem.Suchavolumedisplaceseachrayfromcollimationbyarandomanglebetweenzeroandamaximumdeviationangle(Fig.11).Totestthesecondcondition,wecalculatedthepercentageofinitial

raysthathitadetectorfordifferentdeviationangles(Fig.12).Sinceab‐errationsandatmosphericturbulencearemostlybelow0.1°~0.2°,wecanconcludethatsuchasystemcanbestablenotonlyforbadweatherconditions,butalsoinlargetelescopesorlightcollectorswithmirrorde‐formations.

Fig.12.Fractionofrayshittingthedetectorasfunctionofturbulenceorsurfaceaberrationangle.

Tocheckhowthearea,illuminatedbyphotonsofthesamewavelength,increasesasafunctionofdeviationangle,wetakesimilarimagesaspre‐sentedabove,butacquiredforfourwavelengths:400nm,500nm,600nmand700nm,atnegligiblebandwidth.Thenweplottheirradianceasafunctionofthelateralaxisofeachpic‐ture(Fig.13).Inotherwords,wemeasuretheverticalsmearofthedis‐persedspotsinFig.11.Aswecansee, thenumberofdetectorsthatmeasuredifferent spectral bands canbe evaluated according to themaximumdeviationangleallowedinthesystem.

Fig.13.Irradiancealongthedispersionaxisofthedetectorforphotonswithwavelengthof400nm,500nm,600nmand700nm.Deviationfromcollimationismarkedineachpanel.Forhighturbulenceorlargetelescopesurfaceerrors(0.20deviation

angle)aboutfivedifferentspectralbandscanbemeasuredsimultane‐ously.Forlowerdeviationangles(e.g.spacetelescopes)thenumberofsuchbandscanbeincreasedsignificantly.Thefullwidthsathalf‐maxi‐mum(FWHM)oftheabovecurvesasafunctionofthedeviationangle(fromperfectcollimation)arepresentedinFig.14.

8. CONCLUSIONS Insummary,inlaboratorytestsofpotentialspaceintensityinterferom‐etryinstrumentation,wewereabletoreconstructanimageofatriplestarfromtwodimensionalmeasurementsofthesecondandthirdordercoherencefunctions,byaddingclosurephaseinformation.Therecon‐structedimage,althoughmadeofonlyafewpixels,showsarathergoodagreementwiththesourceinsimulation.Forthecaseofasinglelargelightcollectorofaloweropticalquality,weproposetoperformspectralintensity interferometrybetweenthecollectorsegments. Wedevel‐opedanopticaldesignforadispersionsystem,whichistoleranttonon‐collimatedincomingrays.Thisallowsreconstructionoftheimagebyin‐tensityinterferometryfordifferentwavelengths.Alternativelyiftheob‐ject ismonochromatic,weimprovethequalityof the imagewithouthavingtopayforthecolorsplittingamongmultipledetectors.

Fig.14.FWHMofthecurvesinFig.13asafunctionofdeviationangle.Funding:TheIsraeliMinistryofScience(inpart).

Page 6: Towards spectral intensity interferometry - Technionphweb.technion.ac.il/~eribak/ShoulgaRibakTowardsSpectralIntensity... · Towards spectral intensity interferometry G EORGIY S HOULGA

References 1. R. H. Brown, The Intensity Interferometer (Taylor & Francis, London, 

1974). 2. A. Labeyrie, S. G. Lipson, and P. Niesenson, An Introduction to Optical 

Stellar Interferometry (Cambridge, 2006). 3. T. Sato, S. Wakada, J. Yamamoto and J. Ishii, "Imaging System Using an 

Intensity Triple Correlator". Appl. Opt. 17, 2047‐2052 (1978). 4. S. Oppel, T. Buettner, P. Kok and J. von Zanthier, “Superresolving Mul‐

tiphoton Interferences with In‐dependent Light Sources”, Phys. Rev. Lett. 109, 233603 (2012). 

5. M. E. Pearce, T. Mehringer, J. von Zanthier, and P. Kok, “Precision esti‐mation of source dimensions from higher‐order intensity correlations”, Phys. Rev. A 92 043831 (2015). 

6. A. Kellerer, “Beating the diffraction limit in astronomy via quantum clon‐ing”, Astron. Astroph. 561, A118 (2014), Corrigendum, Astron. Astroph 582, C3 (2015). 

7. A. Kellerer and E. N. Ribak, “Beyond the diffraction limit via optical ampli‐fication”, Optics Letters 41, 3181‐3184 (2016). 

8. T. Wentz and P. Saha, “Feasibility of observing Hanbury Brown and Twiss phase”, Mon. Not. R. Astr. Soc. 446, 2065–2072 (2015). 

9. P. D. Nuñez and A. D. de Souza, “Capabilities of future intensity interfer‐ometers for observing fast‐rotating stars: imaging with two‐ and three‐telescope correlations”, Mon. Not. R. Astr. Soc. 453, 1999–2005 (2015). 

10. A. Ofir and E. N. Ribak, “Offline, Multidetector intensity interferometers – I. Theory”, Mon. Not. R. Astron. Soc. 368, 1646‐1651 (2006a). 

11. A. Ofir and E. N. Ribak, “Offline, Multidetector intensity interferometers – II. Implications and Applications”, Mon. Not. R. Astron. Soc. 368, 1652‐1656 (2006b). 

12. I. Klein, M. Guelman, and S. G. Lipson, “Space‐Based Intensity Interfer‐ometer”, Applied Optics 46, 4237‐4242 (2007). 

13. E. N. Ribak, P. Gurfil and C. Moreno, “Spaceborne intensity interferome‐try via spacecraft formation flight”, SPIE 8445‐8 (2012). 

14. E. N. Ribak and Y. Shulami, “Compression of intensity interferometry sig‐nals”, Experimental Astrono‐my 41, 145‐157 (2016).  

15. W. Martienssen and E. Spieler, "Coherence and Fluctuations in Light Beams". Am. J. Phys. 32, 919‐926 (1964). 

16. D. Dravins, T. Lagadec, and P. D. Nuñez. "Long‐Baseline Optical Intensity Interferometry". Astronomy & Astrophysics 580, A99 (2015). 

17. A. W. Lohmann and B. Wirnitzer, "Triple correlations," Proc. IEEE 72, 889‐901 (1984). 

18. Bartelt, A. Lohmann, and B. Wirnitzer, "Phase and amplitude recovery from bispectra," Appl. Opt.  23, 3121‐3129 (1984). 

19. A. Lohmann, G. Weigelt, and B. Wirnitzer, "Speckle masking in astron‐omy: triple correlation theory and applications," Appl. Opt.  22, 4028‐4037 (1983).   

20. A. J. F. Siegert, MIT Radiation Laboratory Report 463 (1943). 21. E. N. Ribak, A. Laor, D. Faiman, S. Biryukov, N. Brosch, “Converting 

PETAL, the 25m solar collector, into an astronomical research facility”,  SPIE 4838‐172 (2002). 

22. C.  Barbieri , D. Dravins , T. Occhipinti , F. Tamburini , G. Naletto , V. Da deppo , S. Fornasier , M. D'Onofrio, R. A. E. Fosbury , R. Nilsson and H. Uthas, “Astronomical applications of quantum optics for extremely large telescopes”, Journal of Modern Optics 54, 191‐197 (2007). 

23. D. Dravins, S. LeBohec, H. Jensen and P. D. Nunez, “Optical Intensity In‐terferometry with the Cherenekov Telescope Array”, Astroparticle Phys‐ics 43, 331‐347 (2013). 

24. P.H. van Cittert, “Die Wahrscheinliche Schwingungsverteilung In Einer Von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene“. Physica 1.1‐6 201‐210 (1934). 

25. F. Zernike, “The Concept of Degree of Coherence and its Application to Optical Problems“. Physica 785‐795 5.8 (1938). 

26. J. Nam and J. Rubinstein, “Numerical reconstruction of optical surfaces” J. Opt. Soc. Am. A 25, 1697‐1709 (2008). 

 

Appendix: 2nd and 3rd order coherence functions Weconsiderafinitequasi‐monochromaticlightsourceSofsizeb,locatedatdistancezfromtheobservationplane(Fig.15).

Fig.15.SchemeforvanCittert–Zerniketheorem.AccordingthevanCittert‐Zerniketheorem24,25,aspatialcorrela‐tionfunctionofthefirstorderΓ(1)(D)isaFouriertransformoftheradiationintensitydistributionofthesourceJ(ξ)

Γ Γ | | . (3)

InthiscasethefrequencyωisaspatialfrequencykD/z.Thenor‐malizeddegreeofspatialcoherenceis

. (4)

Generalizing,wecanwriteasecondordercorrelationfunc‐tionas

Γ , , ⟨ , , ⟩ ⟨ ∗ , ∗ , , , ⟩ .

(5)

Afternormalizationwegetthesecondordercoherence

, , ⟨ ∗ , ∗ , , , ⟩

⟨ ∗ , , ⟩⟨ ∗ , , ⟩

⟨ , , ⟩⟨ , ⟩⟨ , ⟩

(6)

Thisisageneralformula.Inthecasewherer1=r2,wegetthedegreeofthesecondordertemporalcoherenceγ(2)(τ),andwhereτ =0wegetthedegreeofthesecondorderspatialcoherenceγ(2)(r1,r2).WecancalculatethenumeratorinEq.(6)Error!Referencesource

notfound.evenfurther⟨ , , ⟩

⟨ ∗ , ∗ , , , ⟩ ⟨ ∗ , , ⟩⟨ ∗ , , ⟩ ⟨ ∗ , , ⟩⟨ ∗ , , ⟩

⟨ , ⟩⟨ , ⟩ |⟨ ∗ , , ⟩|

⟨ , ⟩⟨ , ⟩ Γ , ,

(7)

Normalizationgivesusaconnectionbetweenafirstorderandasecondordercoherence20 , , 1 , , (8)

Bymeasuring wecanobtain andfromitcalculatetheautocorrelationofthesource.Inordertoreconstructthesourcecompletelythephaseofγ(1)isrequiredaswell.Thephaseinfor‐mationcanberecoveredfromthetriplecorrelationfunction.Usingthenotation , ≡ fortheintensityIandamplitudeV,

andΓ Γ e forthespatialcorrelationfunctionof

thefirstorder,thespatialtriplecorrelationcanbeevaluatedas

Page 7: Towards spectral intensity interferometry - Technionphweb.technion.ac.il/~eribak/ShoulgaRibakTowardsSpectralIntensity... · Towards spectral intensity interferometry G EORGIY S HOULGA

⟨ ⟩ ⟨ ∗ ∗ ∗ ⟩ ⟨ ∗ ⟩⟨ ∗ ⟩⟨ ∗ ⟩ ⟨ ∗ ⟩⟨ ∗ ⟩⟨ ∗ ⟩ ⟨ ∗ ⟩⟨ ∗ ⟩⟨ ∗ ⟩ ⟨ ∗ ⟩⟨ ∗ ⟩⟨ ∗ ⟩ ⟨ ∗ ⟩⟨ ∗ ⟩⟨ ∗ ⟩ ⟨ ∗ ⟩⟨ ∗ ⟩⟨ ∗ ⟩

⟨ ⟩⟨ ⟩⟨ ⟩ ⟨ ⟩|⟨ ∗ ⟩| ⟨ ⟩|⟨ ∗ ⟩| ⟨ ⟩|⟨ ∗ ⟩|

Γ Γ Γ

Γ Γ Γ

⟨ ⟩⟨ ⟩⟨ ⟩ ⟨ ⟩ Γ ⟨ ⟩ Γ ⟨ ⟩ Γ

2 Γ Γ Γ cos

(9)

Normalizing,weobtainthethirdorderdegreeofspatialcoher‐ence

1

2 cos ,(10)

wherethephaseinthecosineargumentistheclosurephasesinceitisasumofthephasesofthreebaselines(detectorsspacings)overaclosedloop.

Thereisaspecialcase,whenallthreedetectorsarelocatedonthesameline3.Ifnowdetectors2and3arefixedinplaceandseparated by a distance∆ , and detector 1 is free tomove instepsofsamedistanceinaline,wehavetheintensityateachoneofthedetectorsas ∆ , , , and ∆ , ,re‐spectively.Thetriplecorrelationisthen

⟨ ∆ , , ∆ , ⟩ ⟨ ∆ , ⟩⟨ , ⟩⟨ ∆ , ⟩

⟨ ∆ , ⟩ Γ ∆

⟨ , ⟩ Γ 1 ∆

⟨ ∆ , ⟩ Γ ∆ 2 Γ 1 ∆ Γ ∆ Γ ∆ cos 1 ∆ ∆ ∆ .

(11)

Normalizing,weobtainthethirdorderdegreeofspatialcoher‐ence

, , 1 ∆ 1 ∆

∆ 2 1 ∆ ∆ ∆ cos 1 ∆ ∆ ∆

(12)

Eq. (12)Error!Reference sourcenot found. tells us that bymeasuringthethirdordercorrelationfunctionandtheabsolutevalueofthefirstordercorrelationfunction(fromtheSiegertre‐lation)thephasecanbefoundby

Φ ∆ ≜ 1 ∆ ∆ ∆

cos, , 1 ∆ 1 ∆ ∆

2| 1 ∆ || ∆ || ∆ |(13)

Solving Error!Reference source not found. as a differenceequationwecanobtainthephaseby

∆ Φ ∆ ∆ ; 1,2,… (14)

Theterm ∆ isaconstanttermforsettingthecenterofthereconstructedimageandthuscanbesetarbitrary.ThesignoftheΦ ∆ termateachstepofthetriplecorrelationmeasure‐mentcanbefoundfromtakingdoubleintervals, Φ ∆ ≜ 2 ∆ ∆ 2∆ . (15)Fromthedifferentialphasesforthedoubleintervalsweobtainthesignofthecos function,exceptwhereΦ ∆ 0.Inthiscasetripleintervalscanbeconsidered.Sincethismethodrequiresthreedetectorstobeplacedonthesame

line,inordertofindthephasevaluesonaplane,arotationoftwodetec‐torsaroundthethirdone, locatedatorigin, isrequired.Skyrotation

againstthelightcollectorscanbeusefulathighlatitudes,butotherwiseitisnecessarytomovethe(heavy)collectorsaround.Thelocationofspaceandgrounddetectorsshouldbeknownverypreciselyinordertoimprovetheresults.Indeed,theprecisioninthiscaseplaysaveryim‐portantrole,sinceEq.(14)isarecurrencerelation,i.e.anydeviationofameasuredphasevaluefromtherealonewillnotonlyaffectthecurrentmeasurement,butallofthefollowingonesaswell.Followingtheideaabove,wecancalculatethephasesonaplaneus‐

ingfourdetectors.Threearefixedinplacewithbaselines∆ and∆ andthefourthistheonlyonewhichismovingandmappingtheplane.Then,the intensity at each one of the detectors is , y , , ∆ , , , , ∆ , and ∆ , ∆ , . Then,Eq.(13)becomesasetoftwoequationsfordetectors1,2,4and1,3,4,re‐spectively,

Φ ∆ , ∆ ≜ 1 ∆ , ∆ ∆ , ∆ ∆ , 0Φ ∆ , ∆ ≜ ∆ , 1 ∆ ∆ , ∆ 0, ∆ . (16)

Solving Error!Reference source not found. as a differenceequationwecanobtainthephaseby

∆ , ∆ Φ ∆ , ∆ ∆ , ∆ , 1,2, … (17)

where ≜ |gcd , |isagreatestcommondivisorof and .Thisway,wecanconstructmultiplepathsfromtheorigin , y tothepointofthemeasuredphase ∆ , ∆ .Forexample,thephaseat∆ , 2∆ canbecalculatedthroughthreedifferentpaths,leadingto

amoreaccuratevalue(Fig.16),∆ , 2∆ 2 0, ∆ ∆ , 0 Φ 0, ∆ Φ 0,2∆ #∆ , 2∆ 2 0, ∆ ∆ , 0 Φ 0, ∆ Φ ∆ , ∆ #∆ , 2∆ 2 0, ∆ ∆ , 0 Φ ∆ , 0 Φ ∆ , ∆ #

(18)

Fig.16.Differentpathsforevaluationof ∆ , 2∆ accordingto(18).Amongthebenefitsofthistechnique:onlyonedetectorismoving,

providingbetterprecisiononthe locationsofthedetectors;multiplepathsimprovetheaccuracyofthephasecalculation(withfurthercalcu‐latedpointsawayfromtheorigin,moredifferentpathscanbetakenintoaccount26).Afteracquiringthephaseofthecoherencefunctionthroughthispro‐

cess,itisaddedtotheabsolutevalueofthecoherencefunction(found,forexample,fromthesecondordercoherencemeasurements),leadingtothecomplexcoherencefunctionγ(1).Finally,theimageoftheobjectisreconstructedbytakinganinverseFouriertransformofγ(1)usingthevanCittert‐Zerniketheorem.