tob system test status report

30
Juan Valls 1 TOB System Test Status Report DS ROD System Test Setup DAQ Software DS ROD Characterization PLL, FED Timing Scans OPTO Scans Noise Characterization (ROD vs OTRI) Effect of Decoupling Caps on TOB Modules Conclusions Juan Valls CERN

Upload: herne

Post on 31-Jan-2016

59 views

Category:

Documents


0 download

DESCRIPTION

TOB System Test Status Report. Juan Valls CERN. DS ROD System Test Setup DAQ Software DS ROD Characterization PLL, FED Timing Scans OPTO Scans Noise Characterization (ROD vs OTRI) Effect of Decoupling Caps on TOB Modules Conclusions. SS ROD System Tests. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: TOB System Test Status Report

Juan Valls

1

TOB System Test Status Report

DS ROD System Test Setup DAQ Software DS ROD Characterization

PLL, FED Timing Scans OPTO Scans

Noise Characterization (ROD vs OTRI) Effect of Decoupling Caps on TOB Modules Conclusions

Juan VallsCERN

Page 2: TOB System Test Status Report

Juan Valls2

SS ROD System Tests

SS ROD electrical design validated optical readout (6 modules) electrical controls (electrical FEC, no DOHM)

Grounding scheme found ok and validated Cooling performance and thermal behavior studied

and verified at room temperature Noise performance studied

Conclusions from past TOB system tests

Overall system performance validated

Bartalini et al.Chierici et al.

Page 3: TOB System Test Status Report

Juan Valls3

DS ROD New Vienna AOH (LLD2 ICs, 3 laser drivers) New final CCUM module (CCU25 IC) Redistribution of resets and back-plane pulses on ROD ICB

CCU6

CCU25

New FEC2CCU PCB to mimic DOHM controls functionality (present during the testing of cabled RODs in production) (G. Magazzu, F. Ahmed)

reset out

PIO

PIO

SS ROD ICB

top resetbottom reset

6 back-plane pulse lines

reset out

DCU

DS ROD ICB

2 back-plane pulse lines

6 reset lines

top BP pulsebottom BP pulse

Page 4: TOB System Test Status Report

Juan Valls4

DS ROD New (prototype) LV PS (Sandor’s design)

DELTA switching power supply (8 V, 50 Amp) (old DELPHI HPC) Linear regulators (fixed 2.5 V and 1.25 V) Fast reacting PS (V2.5 overvoltage < 0.2 V, long cables, up to 10 A) Sense voltages on the regulators for fast feedback Current limitation on both lines Interlock controls + V/I monitoring next version

The CCUM voltages are provided through the FEC2CCUM board

I2.5 ~ 6.4 AI1.25 ~ 2.6 AICCU ~ 0.17 A

DS ROD12 modules

48 APVs

I2.5 (max) ~ 9.2 AI1.25 (max) ~ 3.2 A

Page 5: TOB System Test Status Report

Juan Valls5

DS ROD Assembly (Controls)

CCUM(with CCU25)

LV adapter cardand connector

HV adapter cardand connector

SC in(and LV in)

SC out(and LV out)

ICBGround

Page 6: TOB System Test Status Report

Juan Valls6

DS ROD Assembly (Readout)

New ViennaAOHs (LLD2 ICs)

24fibers

from Jan Troska(Tracker Optical Links

Web Page)

Page 7: TOB System Test Status Report

Juan Valls7

DS ROD Setup (Building 598)

FEC2CCUMboard

Optical Readout

ElectricalControls

TOB DS RODLayer 1

HV

LV

C6F14

Cooling Plant

1 kW +5C/+32C

(~3 m)

Page 8: TOB System Test Status Report

Juan Valls8

DAQ Software

XROD System Tests Electrical and Functionality Tests of RODS

Introduces a non-flat CMN picked-upby some of the modules in the ROD

(see past talks on SS ROD)

Subestructure Burnin Test Station (W. Beaumont)

XDAQ System Tests Test-Beam Controls integration Needed optical control

Separate location of BE boards (FEC card)

Software throttleif FED overflow inhibit TSC triggers

Simultaneous readout ofFED buffers while arrival

of input frames

Page 9: TOB System Test Status Report

Juan Valls9

XROD

ROD FAST debugging tool

CMS-like DAQ hardware

Access to BE boards TSC, FEC, FED, CCUM

Handles CCU6 and CCU25

Access to FE registers PLL, MUX, APV, DCU, AOH

Handles DCU1 and DCU2

Handles LLD1 and LLD2

Internal/external TSC triggers (and FED internal)

Single GUI Interface

TSC

FED

APV

Page 10: TOB System Test Status Report

Juan Valls10

XROD

XROD handles up to 3 PMC-FED cards

8 modules (4 or 8 APVs)

1 SS ROD (6 modules, 4 or 8 APVs)

2 SS RODs (4 modules, 4 APVs)

1 DS ROD (12 modules, 4 APVs)

The use of K-MUX will enhance this capability

Noise

Pulse Shape Scan

Frames

Gain Scan

http://cern.ch/valls/CMS_SST/xrod.htm

Page 11: TOB System Test Status Report

Juan Valls11

PLL Time Alignment Scan Scan through PLL

fine delays (1.04 ns) and with a fixed FED digitization delay

Reconstruct APV tick marks

The DS ROD introduces shift delays of ~2 ns on the trigger arrival time to APVs.

FED 0

FED 1

FED 2 XROD

Page 12: TOB System Test Status Report

Juan Valls12

FED Timing Scan Find the FED optimal

digitization point

Reconstruct APV tick marks by varying FED skew clock delay wrt data (PLL settings fixed)

Choose sampling point close to the back edge of the tick mark

FED 0

FED 1

FED 2 XROD

Page 13: TOB System Test Status Report

Juan Valls13

Optical Scan Characterization

Based upon Mirabito’s code

Run FEDs in Scope Mode

Fix AOH settings. Get distribution of ticks and baselines (over events and samples)

Inverted ticks into AOH !(connector mismatch between ICC and AOH PCBs)

fixed by patching OEC outputconnectors

Ticks still arriving inverted into the AOH

Page 14: TOB System Test Status Report

Juan Valls14

Optical Scan Characterization

Plot ticks and baselines as a function of bias (for a fixed gain)

Get the tick amplitude from the difference between these distributions

baselines

ticks

AOH bias

AOH Gain = 1 (24 fibers)

AOH bias

tick amplitudes

Page 15: TOB System Test Status Report

Juan Valls15

Optical Scan Characterization

Find optimal settings (gain and bias) for an 800 mV AOH input tick amplitude What does this correspond to at the FED (in ADC counts)? Need to calibrate FED cards: FED gain ~3.5 mV/count, Optolink gain ~0.8V/V

1516171819202122232425

0a 0b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 8a 8b 9a 9b 10a

10b

11a

11b

Gain 0Gain 1Gain 2

Gain 0 Gain 2Gain 1

Bia

s

150-210 counts

Page 16: TOB System Test Status Report

Juan Valls16

Measurements All measurements taken with:

Optimized timing (PLL, FED) and opto settings (gain and bias)

RMUX = 100 (to match termination with AOHs)

APV bias generator registers (as from “Procedures for Module Test”, Draft 2)

All results given in terms of: Total noise (tot)

CMN substracted noise (CMN-substracted)

Differential noise (diff) RMS of ½(ADCi-ADCi+1)

)1(~ 1 toti

diffi

toti

toti

Page 17: TOB System Test Status Report

Juan Valls17

DS ROD NoiseDeconvolutionNon-Inverting

(Doracil)(200 V)

CCUM

CicorelRO

D IC

B

Position 2 Position 1

Position 3Position 4

Position 5Position 6

tot

diff

CMN

Page 18: TOB System Test Status Report

Juan Valls18

DS ROD CMNCMN (flat) Calculation

(running average pedestals)

Non-Inverting Inverting

~40%

Page 19: TOB System Test Status Report

Juan Valls19

HV Bias Scan on DS ROD6 HV channels for 12 modules(CAEN SY-127, A343 boards)

Total noise (ADC) = f (Vbias)

FNAL M658 (Cicorel) placedon top side of ROD

(near to CCUM)

Full depletion at ~150 VoltsSimilar behavior for all modules

DS ROD HV Scans

Page 20: TOB System Test Status Report

Juan Valls20

FNAL M658 (Cicorel/HybridSA)

OTRI Setup

Total Noise

Differential Noise

CMN substracted

Noise

Peak ModeInverting

Peak ModeNon Inverting

DeconvolutionNon Inverting

DeconvolutionNon Inverting

(tot)

(diff)

(CMN-substracted)

Page 21: TOB System Test Status Report

Juan Valls21

Noise (DS ROD vs OTRI)

DS ROD noisier than OTRI

Slighter higher differential noise than total noise (uncorrelated CMN)

Peak Mode(Non-Inverting)

Deconvolution(Non-Inverting)

tot

diff tot

diff

tot

diff

OTRI Cdec

DS ROD

Page 22: TOB System Test Status Report

Juan Valls22

Full Gain Scans (DS ROD)

Fit Range: Ical=18 to Ical=70

0.6 – 2.7 MIPs

Ical=29 ~ 25000 elec

DS RODGains/APV

Offsets/APV

Page 23: TOB System Test Status Report

Juan Valls23

Full Gain (DS ROD vs OTRI)

Gains (M658)DS ROD vs OTRI

(electrons/ADC count)

~850 elec/ADC (OTRI)~650 elec/ADC (ROD)

OTRI ROD

OTRI ROD

Peak ModeNon-Inverting

DeconvolutionNon-Inverting

Page 24: TOB System Test Status Report

Juan Valls24

Noise (DS ROD vs OTRI)

APV25 bare chip on PCB(Cinp=18 pF)Peak: 900 elec.Dec: 1500 elec.

OTRI SetupPeak: 1600 elec.Dec: 2600 elec.

DS ROD SetupPeak: 1600 elec.Dec: 2700 elec.

tot

diff

tot

diff

Peak ModeNon-Inverting

DeconvolutionNon-Inverting

Page 25: TOB System Test Status Report

Juan Valls25

Effect of Decoupling Cap

Detector Return Decoupling

Cdec = 100 nF

TOB Cycorel Hybrid

Edge effect improvement

on TIB modules(see Civinini talk)

Page 26: TOB System Test Status Report

Juan Valls26

Edge Strip Correlation

No improvement

No edge effect on ROD(w/o Cdec)

OTRI OTRI

DS ROD

Cdec=100 nF

Page 27: TOB System Test Status Report

Juan Valls27

TOB/TEC and TIB

NAIS HVConnector on Kapton Cable

Vbias

Vbias

GND

GND(wirebond to bias ring)

BiasConnector

on Kapton Cable

TIBTOB

Page 28: TOB System Test Status Report

Juan Valls28

CMN (DS ROD vs OTRI)

Common Mode NoiseDS ROD vs OTRI

CMN CMN (Cdec=100 nF)

CMN

OTRI

DS ROD

Peak Mode (Non-Inv)

Deconvolution (Non-Inv)

Page 29: TOB System Test Status Report

Juan Valls29

Conclusions (I)

Flat noise, flat CMN in both setups Similar noise results for both setups (OTRI/ ROD) after full

gain values applied) Slightly larger CMN for OTRI than for DS ROD No evidence of noise edge effects on ROD (optical readout) Edge effect seen in OTRI setup (FNAL modules M658 and

M657, electrical readout), not cured with Cdec

Most of the software tools and hardware designed for the system test setups will also be used during production for electrical and functionality tests of RODs

Page 30: TOB System Test Status Report

Juan Valls30

Conclusions (II)

-source and cosmics studies (see next talk) Study the cooling performance (thermal behavior) of DS ROD

in the cold (with final LV PS + interlocks) Integration of DOHM (or use of FEC2CCUM) Exercise >1 RODs in a control loop Exercise the back-plane pulse functionality Integration of K-multiplexer into the DAQ Integration of ROD objects into DB

Next...

http://cern.ch/valls/CMS_SST/rod_system_tests.htm

More at...