the effects of kepone on the estuarine copepod acartia tonsa

57
Old Dominion University ODU Digital Commons Biological Sciences eses & Dissertations Biological Sciences Summer 1982 e Effects of Kepone on the Estuarine Copepod Acartia tonsa Judith Marie Wilson Old Dominion University Follow this and additional works at: hps://digitalcommons.odu.edu/biology_etds Part of the Ecology and Evolutionary Biology Commons , Environmental Sciences Commons , and the Oceanography Commons is esis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences eses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Recommended Citation Wilson, Judith M.. "e Effects of Kepone on the Estuarine Copepod Acartia tonsa" (1982). Master of Science (MS), thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/bh64-3n56 hps://digitalcommons.odu.edu/biology_etds/89

Upload: others

Post on 19-Feb-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

Old Dominion UniversityODU Digital Commons

Biological Sciences Theses & Dissertations Biological Sciences

Summer 1982

The Effects of Kepone on the Estuarine CopepodAcartia tonsaJudith Marie WilsonOld Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds

Part of the Ecology and Evolutionary Biology Commons, Environmental Sciences Commons,and the Oceanography Commons

This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion inBiological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please [email protected].

Recommended CitationWilson, Judith M.. "The Effects of Kepone on the Estuarine Copepod Acartia tonsa" (1982). Master of Science (MS), thesis, BiologicalSciences, Old Dominion University, DOI: 10.25777/bh64-3n56https://digitalcommons.odu.edu/biology_etds/89

Page 2: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. I f it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. I f necessary, sectioning is continued again-beginning below the first row and continuing on until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

UniversityMicrofilms

International300 N. Zeeb Road Ann Arbor, Ml 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 3: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 4: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

1325013

WILSON, JUDITH MARIETHE EFFECTS OF KEPONE ON THE ESTUARINE COPEPOD ACARTIA TONSA

OLD DOMINION UNIVERSITY M.S. 1982

University Microfilms

International 300 N. Zeeb Road, Ann Arbor, M I 48106

Copyright 1932

by

WILSON, JUDITH MARIEAll Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 5: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 6: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V .

t . Glossy photographs or pages_____

2. Colored illustrations, paper or print_____

3. Photographs with dark background_____

4. Illustrations are poor copy______

5. Pages with black marks, not original copy______

6. Print shows through as there is text on both sides of page_____

7. Indistinct, broken or small print on several pages. j /8. Print exceeds margin requirements_____

9. Tightly bound copy with print lost in spine_____

10. Computer printout pages with indistinct print_____

11. Page(s)__________ lacking when material received, and not available from school orauthor.

12. Page(s)__________ seem to be missing in numbering only as text follows.

13. Two pages numbered__________ . Text follows.

14. Curling and wrinkled pages_____

15. Other______________________________________________ __

University Microfilms

International

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 7: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 8: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

THE EFFECTS OF KEPONE ON

A.B

A Thesis Si

in P a r t i a l

THE ESTUARINE COPEPOD A c a r t i a t o n s a .

by

Jud i t h Mar ie Wi lson

. May 1977, Randolph Macon Women's Col l ege

j b m i t t e d to the Facu l t y of Old Dominion U n i v e r s i t y

F u l f i l l m e n t of the Requirements f o r the Degree of

MASTER OF SCIENCE

BIOLOGY

OLD DOMINION UNIVERSITY

August 1982

A p n r o v e a D y :

' D i r e c t o r )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 9: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

Copyri ght by J ud i t h Mar ie Wi lson 1982

A l l Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 10: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

ABSTRACT

The E f f e c t s o f Kepone on the Es t u a r i n e Copepod A c a r t i a tonsa

J u d i t h Mar ie Wi lson Old Dominion U n i v e r s i t y , 1982

D i r e c t o r : Raymond W. Alden

Due to the c on tami na t ion of a 113 km reach of t he James

R i v e r , Kepone poses a ser i ous env i ronmenta l t h r e a t to the

Chesapeake Bay. The pupose of t h i s study is to determine

the a c u t e l y t o x i c and s u b le t h a l l e v e l s of Kepone f o r the

e s t u a r i n e copepod A c a r t i a t o n s a , and to i n v e s t i g a t e what

e f f e c t s those l e v e l s may have on f i l t r a t i o n r a t e s .

Kepone was determined to be a c u t e l y t o x i c to t o n s a ,

w i th a 96 hour LC50 o f 4 . 9 6 u g / 1 . D u n a l i e l l a t e r t i o l e c t a was

s e l e c t e d as the food source f o r the g r az ing e x p e r i me nt s .

Kepone concent r a t i o n s of 0 . 046 ug/1 s i g n i f i c a n t l y ( 0 . 0 5

l e v e l ) reduced the f i l t e r i n g r a t e under c o n d i t i o n s of

chron ic exposure. The l e s s e r c on c e n t r a t i o n s of 0 . 025 and

0 . 0046 ug/1 of kepone were not s i g n i f i c a n t l y d i f f e r e n t from

the c o n t r o l s . I t is hoped t h a t research i n t o the chron ic

s t ress of t h i s p e s t i c i d e may p o t e n t i a l l y prov i de i n f o rm a t i o n

which would be useful in the o v e r a l l unders tand ing of the

s ub le t ha l impact of c h l o r i n a t e d p e s t i c i d e s on a global

s e a l e .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 11: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

This work is ded ica ted to my f a t h e r ,

James E. Wi lson J r .

and my l a t e mother Ethel S. Wilson

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 12: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

This acknowledges the spe c i a l help of Beth Heste r in

c u l t u r i n g D u n a l i e l l a t e r t i o l e c t a . Brook Haven Na t i ona l

L a b o r a t o r i e s of Upton, New York provided t h e P u n a ! i e l l a

t e r t i o l e c t a c u l t u r e . The s u b - c u l t u r e was obta ined from the

department of oceanography at Old Dominion U n i v e r s i t y . I

would a lso l i k e t o thank J e f f Hal l f o r the a ss is t anc e in gas

chromotography; and Dr . Raymond W. Alden f o r the b e n e f i t of

his knowledge and unending a s s i s t a n c e .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 13: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

Table of Contents

LIST OF TABLES............................................................................v i i

LIST OF FIGURES........................................................................v i i i

Chapter

1. INTRODUCTION....................................................................1

2. MATERIALS AND METHODS.............................................. 10

3. STATISTICAL ANALYSES................................................. 15

4. RESULTS............................................................................16

5. DISCUSSION......................................................................18

BIBILIOGRAPHY................................................................................22

APPENDIXES

A. Tables..............................................................................26

B. Figures............................................................................39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 14: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

vi i

LIST OF TABLES

TABLE Page

1. List of Registered Producers of Kepone Products....................................26

2. Average Environmental Kepone Concentrations............................................27P

3. Kepone in Chesapeake Bay Fish.........................................................................28

4. Kepone in James River Fish............................................................................... 29

5. Calculation of Kepone Concentrations Recovered by EC-GC...................30

6. Calculations for F ilte rin g and Feeding Rates..........................................31

7. Results of EC-GC Kepone Analysis from Collection S ite ....................... 32

8. Acartia tonsa Acute Toxicity Bioassay M ultiple Range Test-Duncan Procedure for the 0.05 le v e l........................................................... 33

9. Puna!iel la te rtio le c ta Chronic Toxicity Test. M ultipleRange Test-Duncan Procedure for the 0.05 le v e l.....................................34

10. Acartia tonsa Grazing Experiment Under Chronic Exposure.M ultip le Range Test-Duncan Procedure for the 0.05 le v e l..................35

11. Data from Carbon Analysis of Dunaliella te rtio le c taCulture Averaged from Three R eplicates....................................................36

12. Derived F ilte r in g and Feeding Rates of Acartia tonsaon Dunaliella te r t io le c ta ................................................................................37

13. Computer LC,q and LC5q Values with 95% Confidence Limitsfor 96-Hour Exposure Acartia Tonsa............................................................. 38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 15: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

LIST OF FIGURES

FIGURE PAGE

1. Similar Molecular Structures of Kepone and Mirex.................................39

2. Hopewell, V irg in ia and Bailey Bay James River .....................................40

3. James River Sediment Concentrations from Hopewell, V irg in iato Newport News, V irg in ia , August 1976 .................................................. 41

4. Collection Site at Long Creek Bridge......................................................... 42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 16: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

1

I n t r o d u c t i on

Kepone ( d e c a c h l o r o o c t a h y d r o - 1 , 3 , 4 , - m e t h a n o - 2 H - c y c l o b u t a

( c d ) - p e n t a l e n - 2 - o n e ) i s a c h l o r i n a t e d organ ic compound

s i m i l a r t o such p e s t i c i d e s as c h l o r dan e , DDT, a l d r i n ,

d i e l d r i n , and e n d r i n . Many of the physica l and chemical

p r o p e r t i e s of Kepone which s a t i s f i e d i t s i n d u s t r i a l use are

the same p r o p e r t i e s which make Kepone a se r ious t h r e a t to

the env i ronment . Kepone i s a whi te to tan c r y s t a l l i n e s o l i d

which subl imes w i th decomposi t ion a t 350° C. I t s vapor

pressure is very low and s o l u b i l i t y in water is only 0.4% at

100°C (Dawsey, 1 9 6 4 ) . Kepone is known to be s t r o n g l y

l i p o p h i l i c and b i o a c c u m u l a t i v e , w i t h a h a l f l i f e of one

decade or more ( S u t a , • 1 9 7 8 ) . Chemical s t a b i l i t y in n a t u r e ,

an a f f i n i t y f o r the b i o t a , and a broad spectrum of

b i o l o g i c a l e f f e c t s causes Kepone to be an env i ronmenta l

hazard of e c o l o g i c a l concern.

Kepone has been used to e r a d i c a t e roaches, a n t s , rust

m i t e , p i neapp le mealy bug, potato w i r e worm, and tobacco

w ir e worm ( S u t a , 1 9 7 8 ) . Kepone is a cumul at ive poison,

meaning t h a t t o x i c l e v e l s are reached a f t e r smal l amounts

are taken over a long per i od of t i m e . The p e s t i c i d e a f f e c t s

i ns ec t s as a nerve poison, i n t e r f e r i n g wi t h the passage of

impulses of the nervous system. I n i t i a l t o x i c a c t i on may be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 17: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

2

a r educ t i on of ATP syn the s i s by i n h i b i t i o n of o x i d a t i v e

p ho sphor y l a t ion in the m i t o c h o n d r i a , which has been

i n d i c a t e d by the i n h i b i t i o n of the enzymat ic f u n c t i n of

ATPase ( S t e r r e t t , 1977 and Desa i ah , 1 9 7 5 ) . This e f f e c t is

p a r t i c u l a r l y i m p o r t an t to mar ine organisms whose p o l a r

l i p i d s on e x t e r n a l membranes (based on Na+ + K+-dependent

ATPases) are engaged in i o n i c r e g u l a t i o n ( S a r g e n t , 1 9 7 6 ) .

Kepone was f i r s t r e g i s t e r e d as a p e s t i c i d e wi th the

USDA in 1959, w i t h the o r i g i n a l pa t en t s granted in 1952 . I t

i s found both as a degre da t ion product and a contaminant of

M i r e x , another c h l o r i n a t e d p e s t i c i d e s i m i l a r in chemical

c h a r a c t e r i s t i c s and b i o l o g i c a l a c t i v i t y (Mackenthun, 1978;

S t e r r e t t , 1 9 7 5 ) . Mi rex s lowly biodegrades t o Kepone in the

presence of anaer ob i c microbes and l i g h t ( n a t u r a l or

a r t i f i c i a l ) . Due to the presence of an oxygen atom in the

m o l ecu l a r s t r u c t u r e , Kepone is more water s o l u b l e ( through

hydrogen bonding) than Mi rex ( F ig u r e 1 ) . These cyc lo d ie n e

(or c y c l o d i o l e f i n e , a c y c l i c hydrocarbon which con ta i ns two

double bonds of the general formula C C^H^) p e s t i c i d e s are

s yn thes i zed from he x ac h l o ro cy c lo p en t ad i en e (HEX) .

The product i on dates of Kepone span from 1958 to 1975,

the main manufacturers being A l l i e d Chemical Company wi th

p l a n t s at B a l t i m o r e , Maryland and Hopewel l , V i r g i n i a ( 19 66 -

1 97 3 ) ; L i f e Science Products Company at Hopewel l , V i r g i n i a

( 1 9 7 3 - 1 9 7 5 ) ; and Hooker Chemicals and P l a s t i c s Corp or a t i on

at Niagara F a l l s , New York. See Table 1 f o r a d d i t i o n a l

producers of Kepone p r odu ct s . E v e n t u a l l y , more than 70 out

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 18: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

3

of 150 employees at t he L i f e Science Products Company in

Hopewell were diagnosed as having Kepone po i son i ng .

Symptoms ranged from s l u r r e d speech and loss of memory to

l i v e r damage and s t e r i l i t y (Mackenthun, 1 9 7 8 ) .

The L i f e Science p l an t manufactured between 1360 t o

2720 kg of Kepone per day, o p e r a t i n g nonstop seven days a

week. Between March 1974 and A p r i l 1975, moni tored

suspended a tmospher ic p a r t i c u l a t e s conta i ned at l e a s t 40%

Kepone ( S t e r r e t t and Boss, 1 9 7 7 ) . Kepone e f f l u e n t s from the

L i f e Science p l a n t went d i r e c t l y to the Hopewell sewage-

t r e a t m e n t p l a n t , i n h i b i t i n g normal b a c t e r i a l a c t i o n , causing

a shutdown of sewage- t rea tment o p e r a t i o n s . Unt rea t ed sewage

then p o l l u t e d t h e James Ri ver and ass oc i a t e d w a t e r s . As a

r e s u l t A l l i e d Chemical was f i n e d 13 . 2 m i l l i o n d o l l a r s , the

l a r g e s t p o l l u t i o n p e n a l ty a ga ins t any U.S. company, and L i f e

Science Products was f i n e d 3 . 8 m i l l i o n d o l l a r s f o r t h e i r

p a r t i c i p a t i o n in p o l l u t i n g t h e James Ri ver w i th Kepone

( S t e r r e t t and Boss, 1977) ( F i g ur e 2 ) .

U .S . pr oduct i on in 1974 alone r e s u l t e d in app ro x i mat e l y

3 63 . 00 0 kg of Kepone, 90% of which was expor ted to La t in

America, A f r i c a , and As i a , making Kepone a wor ld wide

concern . The amount of Kepone l o s t from the L i f e Science

op e ra t io n was app ro x i mat e l y 91 , 000 kg out of an es t imated

777 .000 kg produced ( Su t a , 1 97 8 ) . Lost Kepone was the

combined r e s u l t of atmospher ic r e l e a s e , waste water

d i s c h a r g e , equipment m a l f u n c t i o n s , r e l e as e of substandard

product i on batches , and car e l es s dumping of waste loads at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 19: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

4

t he Hopewell l a n d f i l l . The present s t a t us of Kepone is t h a t

i t i s no l onger manufactured. However, as of October 1976,

t h e r e were 227 kg o f Kepone l e f t in s t o c k p i l e s in the

c o n t i n e n t a l U . S. which were s u f f i c i e n t t o cont i nue meet ing

the demands as a component of ant and roach b a i t and t ra p s

f o r at l e a s t t h r ee years ( Su t a , 1 97 8 ) .

In September of 1975 the EPA informed the FDA of James

R i v e r con tami na t ion and in February of 1976 the EPA

recommended a c t i o n l e v e l s to the FDA f o r s e i z u r e of

co n ta i m i n a t e d f i n f i s h and s h e l l f i s h . These l e v e l s begin at

0 . 3 ug/g f o r f i n f i s h , o y s t e r s , and clams, and 0 . 4 ug/g f o r

crabs ( S u t a , 1 97 8 ) . Schimmel, et a l . ( 1979 ) r epor t ed t h a t

based on t h e i r data "Kepone may be a f a c t o r in the d e c l i n e

of the James Ri ver crab f i s h e r y . " Publ ished average

env i ronmenta l c on c en t r a t i o n s of Kepone in both James River

seafood, and Chesapeake Bay seafood may be found in Tables

2, 3 and 4 of the Appendix (Mackenthun, 1 9 7 8 ) . Today Kepone

l e v e l s remain under c lose s c r u t i n y . Kepone has now been

found in land animals which are ass oc i a te d w i th mar ine

animals v ia the food web. The EPA es t ima te s 45 , 300 kg of

Kepone is in the James R i v e r , which is r e spo ns i b l e f o r 15%

a n n u a l l y of the f re s h water f low i ng i n t o the Chesapeake Bay,

and 10% a n n u a l l y of the sediments expected to move i n t o the

Bay ( S u t a , 19 7 8 ) .

Due to contaminat ion of a 113 km reach of the James

Ri ver ( t h r e a t e n i n g the Chesapeake Bay) ( F i g u r e 3)

p r e l i m i n a r y t rends in Kepone a n a ly s i s were concerned wi th

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 20: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

5

the chemical aspects of t r a n s p o r t , downstream

t r a n s f o r m a t i o n , and exposure to mar ine l i f e . The p o t e n t i a l

human h e a l t h hazard from e d i b l e t i s s u e s t i m u l a t e d the t rend

in t o x i c i t y , up t ake , and depuraion s t ud i es of the p e s t i c i d e

in marine mo l lus ks , c r us t ac eans , and f i n f i s h . Present

research i d e n t i f i e s the need f o r a more comprehensive

knowledge in assessment of the b i o l o g i c a l and e c o l o g i c a l

impact of Kepone on the mar ine env i r onment . In l a b o r a t o r y

e v a l u a t i o n s of env i ronmenta l impact , the chron ic t o x i c i t y

and b i o c o n c e n t r a t i o n p o t e n t i a l of Kepone are as i mpor tant as

i t s acute t o x i c i t y . Research i n t o the chron ic s t re ss of

t h i s p e s t i c i d e i s of e co l o g i c a l s i g n i f i c a n c e on a l oca l

l e v e l and in the Chesapeake Bay, and may p o t e n t i a l l y prov ide

i n f o r m a t i o n which would be usefu l in the o v e r a l l

understanding of the sub l e t ha l impact of c h l o r i n a t e d

p e s t i c i d e s on a g lobal s c a l e . Kepone con tami na t ion is a

c u r r e n t problem w i t h f u t u r e economic i m p l i c a t i o n s in regard

to the James R i ve r and Chesapeake Bay f i s h e r i e s and

e c o l o g i c a l l y in regard to the o t her b i o t a in the Bay.

The purpose of t h i s study is to de termine a c u t e l y t o x i c

and s u b le t h a l l e v e l s of Kepone f o r the e s t u a r i n e copepod

A c a r t i a tonsa and to i n v e s t i g a t e what e f f e c t s those l e v e l s

may have on f i l t r a t i o n and i n g e s t i o n r a t e s . There are

seveal reasons f o r using a copepod as a t e s t organism.

Zooplankton , because of t h e i r high metabol ism and rap i d

r e p r o d u c t i v e a b i l i t y , respond q u i c k l y to env i ronmenta l

changes. Th e re f or e zooplankton p op u l a t i on dynamics may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 21: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

6

prove to be s e n s i t i v e i n d i c a t o r s of the q u a l i t y of t h e i r

s ur ro un d in g s . Copepods are regarded as g e n e r a l l y

r e p r e s e n t i n g the dominant group among e s t u a r i n e and mar ine

zooplankton ( P a r r i s h and Wi l son , 1978; Bougis, 1976; and

Deevey, 1 9 5 6 ) . A c a r t i a tonsa is g e n e r a l l y the dominant

z o o p la nk t or along most of the eas te rn seaboard. Copepods

are a p a r t i c u l a r l y i mp or tan t food source t o m i g r a t i n g

species t h a t use e s t u a r i e s f o r breed ing grounds and

n u r s e r i e s . A c a r t i a tonsa is of spe c i a l e c o l o g i c a l

s i g n i f i c a n c e at the f i r s t consumer l e v e l in f i s h e r y cha ins ,

p l a y i n g a v i t a l r o l e in the energy t r a n s f e r of h i gher

t r o p h i c l e v e l s ( P a r r i s h and Wi l son , 1 9 7 8 ) . Because t h i s

Copepod occurs in no t eab le q u a n t i t i e s in l i t t o r a l zones, i t

plays a major pa r t in the n u t r i t i o n of young and

pianktophagous f i s h . Research has a lso shown t h a t Kepone

can be taken up and bioaccumulated by zooplankton (Bahner ,

et al . , 1 977 ) .

A c a r t i a tonsa may be among the most s e n s i t i v e of

e s t u a r i n e organisms, about two orders of magni tude lower in

t o l e r a n c e t o t o x i n s than grass shrimp (Palaemonetes p u g i o )

(APHA, 1 9 7 5 ) . There is a vast amount of i n f o r m a t i o n

pub l i shed on the phys io logy and b i o l ogy of _A. tonsa

(Conover , 1956; Durbin and Durb in , 1978; Gonzales, 1974;

J e f f r i e s , 1962; K h a t t a t , 1976; Lance, 1965; Landry, 1976;

M i l l e r , et a l . , P a r r i s h and Wi l son , 1975; Reeve and W a l t e r ,

1977; S e k i g u c h i , et a l . , 1980; and Wyman and O'Connors, 1980

among o t h e r s ) . Standard Methods (APHA, 1975) suggests t h a t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 22: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

7

the f o l l o w i n g are pr ime c o n s i d e r a t i o n s in choosing a t e s t

organism: a) s e n s i t i v i t y to the t e s t m a t e r i a l ; b)

geographica l d i s t r i b u t i o n , abundance, and a v a i l a b i l i t y ; c)

r e c r e a t i o n a l , economica l , and e co l o g i c a l importance l o c a l l y

and n a t i o n a l l y ; d) a v a i l a b i l i t y of c u l t u r e methods and

knowledge of env i ronmenta l r equ i rement s; e) general physica l

c o n d i t i o n and f reedom from p a r a s i t e s and d i s e a s e ; and

f i n a l l y f ) s u i t a b i l i t y f o r bioassay t e s t s . I n f o rm a t i on thus

f a r prov ided i n d i c a t e s h_. tonsa may be a we l l s u i t ed t e s t

organism by meet ing t he prime c on s i d e r t i o n s l i s t e d above.

In copepods t h e r e are two p r i n c i p a l ways of

n u t r i t i o n : f i l t r a t i o n and p r e d a t i o n . A c a r t i a tonsa is a

f i l t e r f e e d e r . This could be i mpor tan t because accumulat ion

of Kepone on p l a n t d e t r i t u s may be an i mpor tan t mechanism by

which i t e n t e r s e s t u a r i n e food webs ( D r i f m ey e r et a l . ,

1 9 8 0 ) . Because of Kepone's l a r g e mol ecu l ar weight and i t s

low s o l u b i l i t y in w at e r i t has a tendency to s e t t l e in

a q u a t i c bodies and accumulate in the sediments ( S t e r r e t t and

Boss, 1 9 7 7 ) .

Kepone l e v e l s in the water column are not b e l i e v e d to

be c on c e n t r a t e d enough to r e s u l t in acute t o x i c i t y a l though

t h e r e is no proof f o r t h i s . However chron ic exposure to low

l e v e l s could produce s ub l e t h a l e f f e c t s which are not r e a d i l y

a p p a r e n t , y e t d i s r u p t i v e to the system over a per i od of

t i me . The l i t e r a t u r e c a l l s f o r a b e t t e r unders tand ing of

the more s u b t l e e f f e c t s r e qu i r e d to assess envi ronmental

hazards of Kepone and i t s f u t u r e impact (Hansen, et a l . ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 23: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

8

1976; Hansen, e t a l . , 1977a; Schimmel and Wi lson, 1977;

Wyman and O'Connors, 1 98 0 ) .

Hansen, Goodman, and Wilson (1977a) upon t e s t i n g the

chron ic e f f e c t s o f Kepone on Sheepshead Minnows r epor t ed

t h a t :

Growth, r e p r o d u c t i o n , or s u r v i v a l was a f f e c t e d by a l l c o n c e n t r a t i o n s t e s t e d . I t is g e n e r a l l y accepted t h a t 0.01 of the acute t o x i c i t y of a p e r s i s t a n t o r gan ic chemical to an organism should be p r o t e c t i v e of a s pe c i es . Our data however i n d i c a t e t h a t a Kepone c o n c e n t r a t i o n o f 0.001 of t h e 96 hr LC50 f o r Sheepshead Minnows a f f e c t e d t h i s species d e t r i m e n t a l l y in chron ic t o x i c i t y t e s t s .

Another study of the chron ic e f f e c t s of Kepone on e s t u a r i n e

organisms r e p or t s t h a t s u r v i v a l , growth, and repr oduct i on of

mysid shrimp (Mysidopsis b a h i a ) were decreased (Hansen, et

a l . , 1 9 7 7 b ) . Wyman and O'Connors (1980 ) i n d i c a t e t h a t

perhaps the i n cr e a se of PCB ( s y n t h e t i c c h l o r i n a t e d

hydrocarbons s i m i l a r t o DDT and Kepone) accumulat ion due t o

i n g e s t i o n of contaminated phy top lank ton is s u f f i c i e n t to

i n c r ease m o r t a l i t y and reduce f e c u n d i t y among the

copepods. I t i s t h e r e f o r e reasonable to hypothes ize t h a t

s u b le t h a l q u a n t i t i e s of Kepone in chron ic exposure could

a f f e c t the physio logy of A c a r t i a t o n s a . Whether or not the

copepod feeds normal ly under c o n d i t i o n s of chron ic exposure

t o Kepone w i l l i n d i c a t e i f the copepod has been

p h y s i o l o g i c a l l y a f f e c t e d . The l e v e l and q u a l i t y of energy

i nput ( f rom inges t ed food) i s v i t a l to an organism's

f u n c t i o n i n g and s e l f p r e s e r v a t i o n . A c a r t i a t o n s a , having a

high metabol ism and a rap i d t u r n o v e r , may have to s a c r i f i c e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 24: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

9

energy f o r metabol ism and growth, c u t t i n g down on a v a i l a b l e

energy d i r e c t e d towards r e p r o d u c t i o n . Studies by P a r r i s h

and Wilson (1978) i n d i c a t e t h a t tonsa females have

reduced energy reserves in comparison wi th some "deep-water

or near su r face c o l d - w a t e r copepods" which use wax e s t e r s as

energy reserves in t imes of food d e p r e i v a t i o n . They

cont inue to observe t h a t the lack of f ood- energy a p p a r en t l y

r e s u i t s in a lower egg p r o du c t i o n . The i n g e s t i o n ra tes and

growth e f f i c i e n c y of organisms on an i n d i v i d u a l basis may

t her eby a f f e c t the success and s u r v i v a l of the popu l a t ion as

a whole .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 25: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

10

M a t e r i a l s and Methods

Exper imenta l animals were c o l l e c t e d weekly between June

1981 and October 1981. The c o l l e c t i o n s i t e was Long Creek

Br idge l o c a t e d j u s t east of Lynnhaven I n l e t in V i r g i n i a

Beach, V i r g i n i a ( F i g u r e 4 ) . Long Creek j o i n s Lynnhaven Bay

t o Broad Bay on the west w i t h r e s i d e n t i a l and business areas

to the nor th and south . During the c o l l e c t i o n p er i od

s a l i n i t i e s f l u c t u a t e d from 24.1 to 2 4 . 9 ° / o o and tempera tures

ranged from 1 6 . 3 to 2 0 . 1 ° C . The average d i s so l v ed oxygen

l e v e l was 8 . 4 mg/1. Heavy t i d a l f low both ebb and f lood

made t h i s l o c a t i o n i de a l f o r p lankton tows.

For c o n s i s t a n c y , a l l tows were taken on incoming

t i d e s . A 250 micron mesh, 0 . 5 meter p lankton n e t , o u t f i t t e d

w i t h a PVC cod end b o t t l e , was u t i l i z e d f o r the

c o l l e c t i o n s . By l ower i ng the net d i r e c t l y below Long Creek

B r i d g e , a good h o r i z o n t a l tow could be mai nta ined by t i d a l

f l o w . A f t e r severa l p r e l i m i n a r y tows had been made, i t was

decided t h a t due to high j e l l y f i s h c o n c e nt r a t i on s in t h i s

a r e a , a t h r e e minute tow per iod was a p p r o p r i a t e . On each

c o l l e c t i o n t r i p , ten tows were t a k e n . A p o r t a b l e

i n d u c t i o n s a l i n o m e t e r was used to measure c o n d u c t i v i t y ,

s a l i n i t y , and t e m p e r a t u r e , BOD b o t t l e s were a lso f i l l e d f o r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 26: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

11

l a b o r a t o r y d e t e r m i n t i o n of D.O. by W in k le r T i t r a t i o n in

c o n j u n c t i o n wi th the use of a f i e l d D.O. m e t e r .

Water from the c o l l e c t i o n s i t e was t e s t e d f o r the

presence of Kepone. Samples were e x t r a c t e d as o u t l i n e d by

the EPA H ea l th E f f e c t s Research L a b o r a t o r y , Research

T r i a n g l e P a r k , N.C. ( W a t t s , e t a l . , 1 9 8 0 ) . Kepone

c o n c e n t r a t i o n s were determined by i n j e c t i o n of e x t r a c t s i n t o

a Shimadzu Model 6AM gas chromatograph w i t h an e l e c t r o n

cap tur e d e t e c t o r . The method of c a l c u l a t i o n of Kepone

c o n c e n t r a t i o n appears in Tab le 5 . A n a l y t i c a l p e s t i c i d e

standards (Kepone and M i r e x ) were ob t a i ned from the

r e f e r e n c e s t andards r e p o s i t o r y , ETD, HERL, EPA, Research

T r i a n g l e Pa rk , N.C.

The zoop lank ton samples were kept in an i n s u l a t e d

a er a t e d c o n t a i n e r u n t i l reaching t he l a b o r a t o r y , which was

always w i t h i n one hour of c o l l e c t i o n . To min imi ze any shock

the samples were a c c l i m a t e d to l a b o r a t o r y t e mper a t ur e ( 2 2 °

C) f o r a 24 hour p e r i o d , and then a d j us t ed to 2 5 ° / o o

s a l i n i t y . Adul t A c a r t i a tonsa were then sor ted out using a

Nikon Model 102 d i s s e c t i n g microscope and a wide bore

pi p e t t e .

Acute t o x i c i t y was determined f o r 96 hours in s t a t i c

b i oa ss a ys . The 96 hour LC10, LC50, and LC100 va lues were

based on nominal c o n c e n t r a t i o n s . The values w i th conf idence

l i m i t s were computed based on t he L i t c h f i e l d and Wilcoxon

( 1949 ) method of s t a t i s t i c a l a n a l y s i s . Checks were made at

12 hour i n t e r v a l s . C r y s t a l l i z i n g dishes (170 ml ) were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 27: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

12

f i l l e d wi t h 150 ml each oxygenated a r t i f i c i a l seawater

( Standard Methods APHA, 1 97 5 ) , t r e a t e d wi t h t e c h n i c a l grade

Kepone d i s s o l v e d in 0.1 ml ace tone . This l e v e l of acetone

produced no s i g n i f i c a n t e f f e c t s on _A. t o n s a . A f t e r 45

minutes , ten a d u l t s were randomly p laced in each one of the

c r y s t a l l i z i n g d i s h e s , which were subsequent ly covered.

Feeding was omi t t ed f o r the d u ra t i on of the b i oass ays . Each

bioassay was performed in t r i p l i c a t e w i th both an acetone

and a clean water c o n t r o l . The Kepone f o r a l l stock

s o l u t i o n s was weighed out on a Cahn E l e c t r o n i c Ba lance.

Si ng l e a d d i t i o n s o f Kepone were admi n i s t e r ed to achieve the

t e s t l e v e l s t hroughout the e xp er iment s . There were two

reasons f o r t h i s d e c i s i o n . Zooplankton are f r e e f l o a t i n g

p op ul a t i ons in the water column t h a t move away from the

source of i nput along wi th the w a t e r . T h e r e f o r e they are

exposed to c o n t i n u a l l y decreas ing l e v e l s of p o l l u t a n t s .

Also s i n g l e a d d i t i o n s more c l o s e l y approximate the normal

ocean s i t u a t i o n i f the source of the p o l l u t a n t is from

o u t f a l l s , r i v e r s or dumping (Menzel and Case, 1 9 7 7 ) , which

i s the case w i th Kepone contami nat ion in the Chesapeake Bay.

The r e s u l t s of the acute t o x i c i t y t e s t s were used to

detemine which s u b le t h a l l e v e l s should be used in subsequent

t e s t i n g f o r chr on ic s t r e s s . Three d i f f e r e n t s u b l e t h a l

l e v e l s ( 0 . 0 0 4 6 , 0 . 0 2 5 , and 0 . 046 ug/1 ) of Kepone were used

to compare t h e i r r e l a t i v e e f f e c t s in a graz i ng exper iment

under c o n d i t i o n s of chron ic exposure . Chronic exposure in

t h i s case is de f i ned as 48 hours of prev ious exposure to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 28: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

13

sub l e t ha l l e v e l s before t e s t i n g begins f o r 24 hours.

P r e p a r a t i o n of water and a d d i t i o n of _A. tonsa were c a r r i e d

out as in the acute t o x i c i t y b ioassays.

D u n a l i e l l a t e r t i o l e c t a was s e l e c t e d as the food source

because i t i s u n i c e l l u l a r , t h e r e f o r e p a r t i c l e m o d i f i c a t i o n

by _A. tonsa (as wi th chain forms) would not be a f a c t o r in

v i sual counts . D u n a l i e l l a t e r t i o l e c t a l i k e _A. tonsa i s

e u r y h a l i n e . Because _D. T e r t i o l e c t a is f l a g e l l a t e d ,

suspension throughout the water column f o r a 24 hour per iod

i s p os s ib l e (and p r e f e r a b l e ) in graz ing exp er iment s .

D u n a l i e l l a t e r t i o l e c t a was c u l t u r e d in ,lf / 2 " medium at a pH

of 8 . 0 , 22°C, and 25 ° / oo s a l i n i t y according to the methods

of G u i l l a r d (1 9 7 5 ) . Before using D . t e r t i o l e c t a in the

graz i ng exp er iment s , c u l t u r e s were exposed t o 0 . 0046 and

0 .046 ug/1 of Kepone f o r 72 hours each to determine any

r e l a t i v e d i f f e r e n c e s in growth r a te from the cont ro l

c u l t u r e .

A f t e r a 36 hour exposure p e r i o d , A_. tonsa a du l t s were

t r a n s f e r r e d to one l i t e r of f r e s h Kepone t r e a t e d water f o r a

12 hour s t a r v a t i o n p e r i o d , at which t ime p r e v i o u s l y exposed

D_. t e r t i o l e c t a c u l t u r e was added. The graz i ng exper iments

were c a r r i e d out f o r 24 hours in t r i p l i c a t e using both a

clean water and an acetone c o n t r o l . F i l t e r i n g and f eed i ng

r at es were de r ived from the c a l c u l a t e d graz i ng rates

according t o Edmondson and Winberg (1971) ( Tab l e 6 ) .

D u n a l i e l l a t e r t i o l e c t a was a lso ana lyzed f o r carbon

content using an Oceanogrphy I n t e r n a t i n a l Tot a l Carbon

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 29: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

14

Ana lyzer t o supplement the v i sua l counts using a P e t r o f f -

Hausser B a c t e r i a Counter . Ampules c o n t a i n i n g ^ . t e r t i o l e c t a

c u l t u r e were purged wi t h oxygen to remove any carbonate ions

and then were sea led w i t h o u t contami nat ion by the ampule

purging and s e a l i n g u n i t . The ampule a n a l y z i n g u n i t

( c o n t a i n i n g an Hor iba Model P I R-2000 General Purpose

i n f r a r e d a n a l y z e r ) was used to determine the c on c e n t r a t i o n

of carbon d i o x i d e r e s u l t i n g from the wet o x i d a t i o n of

or gan ic m a t t e r in the t e r t i o l e c t a c u l t u r e . F luoresence

a n a l y s i s was also a t tempted but the r e s u l t s proved to be too

i n c o n s i s t a n t f o r t he d e t e r m in a t i o n of f ee d i n g r a t e s .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 30: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

15

S t a t i s t i c a l Analyses

Three parameters were s t a t i s t i c a l l y ana lyzed in order

to get a c l e a r e r p i c t u r e of the e f f e c t s of Kepone on A c a r t i a

t o n s a . These were 1) m o r t a l i t y of _A. tonsa due to acute

t o x i c i t y , 2) r e l a t i v e growth ra t es of D u n a l i e l l a t e r t i o l e c t a

exposed to Kepone, and 3) f i l t e r i n g r at es of _A. tonsa at

d i f f e r e n t s u b l e t h a l l e v e l s o f Kepone.

M o r t a l i t y data was t r e a t e d w i t h a l i n e a r r e g r e s s i o n , a

one-way a n a l y s i s of v ar i ance (ANOVA), and a Duncan's

m u l t i p l e range t e s t (Sokal and R o h l f , 1 9 6 9 ) , f o l l o w i n g the

t r a n s f o r m a t i o n of Kepone c o n c e n t r a i t o n to l o g s , and percent

m o r t a l i t y to a r c s i n e - fP . D u n a l i e l l a t e r t i o l e c t a growth ra t es

were t e s t e d f o r homogeniety using the one-way a n a l y s i s of

v a r i a n c e and a Duncan's m u l t i p l e range t e s t (Sokal and

R o h l f , 1 9 6 9 ) . F i l t e r i n g r a t e s were a l so t e s t e d by ANOVA in

a d d i t i o n to the Duncan's and the more s e n s i t i v e W i l l i a m ' s

t e s t ( W i l l i a m s , 1 9 7 1 ) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 31: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

16

Resul ts

The Kepone d e t e r m i n a t i o n procedure y i e l d e d 91.25%

recovery of t h e Kepone s tandard and 103% recovery of the

Mi rex s p i k e . R e p l i c a t e s of water samples from the

c o l l e c t i o n s i t e showed Kepone l e v e l s to be non de t ec t ab l e

( < 0 . 0 2 ug/1 ) (Table 7 ) . T h e r e f o r e , the copepods were

presumed to be from a c l ean c o l l e c t i o n s i t e w i t h no

s i g n i f i c a n t Kepone c o n t a m i n a t i o n .

The 96 hour LC50 f o r A c a r t i a tonsa was determined to be

4 . 9 6 ug/1 w i t h 9 . 4 ug/1 at the upper l i m i t and 2 . 6 ug/1 at

the lower l i m i t , as determined by the L i t c h f i e l d and

Wilcoxon Method ( 1 9 4 9 ) . The l i n e a r r egr ess ion between log

c o n c e n t r a t i o n and a r c s i n e m o r t a l i t y was shown to be p o s i t i v e

and h i g h l y s i g n i f i c a n t at a p of 0 . 0 1 . Homogenei ty of

va r ia nc e was t e s t e d by the B a r t l e t t ' s and Cochran's t e s t .

These showed the data be be homogeneous. The ANOVA and

Duncan's i n d i c a t e d t h a t each Kepone c o n c e n t r a t i o n ( 0 . 0 5 ,

0 . 5 , 5 . 0 , 5 0 . 0 , and 500 .0 u g / 1 ) was s i g n i f i c a n t l y d i f f e r e n t

(p o f 0 . 0 5 ) in the l e v e l of m o r t a l i t y t h a t was caused ( Tab l e

8 ).The ANOVA and Duncan's t e s t i n d i c a t e d t h a t t h e r e were

no s i g n i f i c a n t d i f f e r e n c e s (p of 0 . 0 1 ) between mean c e l l

number of _D. t e r t i ol ec ta in the con t r o l or the su b le t ha l

l e v e l s of (based on nominal concentrations o f Kepone)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 32: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

17

0 . 0046 ug/1 or 0 . 046 ug/1 a t 72 hours of exposure (Table

9 ) . T h e r e f o r e , counts of _D. t e r t i o l e c t a f o r the graz ing

exper iments could be considered r e l i a b l e and u n a f f e c t e d .

To moni tor r e l a t i v e e f f e c t s of s u b le t h a l s t ress in the

graz i ng exper iments 0 . 0 4 6 , 0 . 0 2 5 , and 0 . 0046 ug/1 o f Kepone

were used. The l e v e l of 0 . 0 4 6 ug/1 was shown to be

s i g n i f c a n t l y d i f f e r e n t (p o f 0 . 0 1 ) from 0 . 025 or 0 . 0046

u g / 1 . The more s e n s i t i v e Wi l l i ams t e s t was used to

determine i f 0 . 025 or 0 . 0046 ug/1 were s i g n i f i c a n t l y

d i f f e r e n t from the c o n t r o l . The r e s u l t s y i e l d e d were the

same as those from t he Duncan' t t e s t . The two lower

c o n c e n t r a t i o n s were grouped as being not s i g n i f i c a n t l y

d i f f e r e n t from the c o n t r o l s (See Table 1 0 ) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 33: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

18

Di scussi on

Kepone was found t o be a c u t e l y t o x i c to _A. tonsa

a d u l t s . The 96 hour LC50 o f 4 . 9 6 ug/1 as determined by t h i s

s t udy , is c o n s i s t a n t w i t h the b e l i e f t h a t the s e n s i t i v i t y of

_A. tonsa may be about two orders of magni tude lower than

Palaemonetes pugio whose LC50 as determined by Hansen et a l .

(1 977b) i s 120 u g / 1 . Hansen et al . (1 977b) found in acute

t o x i c i t y t e s t s of the z o o p la nk t or Mysidopsis b a h i a , a 96

hour LC50 of 10 ug/1 of Kepone. The animals become l e t h a r g i c

be f or e d ea t h . There was no c o l o r change in t he organism as

a r e s u l t of p o i son i ng . A c a r t i a tonsa e x h i b i t e d the same

l e t h a r g y bef or e dea th , r e t a i n i n g normal c o l o r appearances.

When a d u l t A_. tonsa were t e s t e d f o r acute t o x i c i t y of

the f o l l o w i n g p e s t i c i d e s they ranked h i ghes t to l owest ;

toxaphene , d i a z i n o n , a z o d r i n , and then methyl p a r a t h i o n .

Kepone appears to rank wi th diaznon in i t s acute t o x i c i t y to

A_. t o n s a . Azodr in was f our t imes as t o x i c as methyl

p a r a t h i o n , and d i az i non was 100 t imes more t o x i c than

azodr i n ( Tab l e 13) ( K h a t t a t and F a r l e y , 1 9 7 6 ) . Un l i ke o ther

c y c l o d i e n e p e s t i c i d e s such as Kepone, toxap. iene has no

e f f e c t on the nervous system, r a t h e r i t is d i s t r i b u t e d

t hroughout the hemolymph. Azodr in (an organophosphorous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 34: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

19

compound) u n l i k e Kepone is water s o l u b l e , which may enhance

i t s uptake and metabol ism of chronic l e v e l s , r e s u l t i n g in

q u i c ke r t o x i c a c t i o n . This could lend e x p l a n a t i o n to i t s

g r e a t e r t o x i c i t y to _A. tonsa than Kepone. Methyl par a t h i on

was found to be more t o x i c to Palaemonetes v u l g a r i s (96 hour

LC50 of 3ppb) than Kepone was to Palaemonetes pugio (96 hour

LC50 of 120ppm). Methyl p ar a t h i on was 10 f o l d more t o x i c to

A* tonsa than Kepone was found to be from the present s tudy .

In g r az ing exper iments of chron ic t o x i c i t y , Kepone was

shown to be d e t r i m e n t a l . Sub le tha l l e v e l s began at 0.01 of

the acute t o x i c i t y , which according t o EPA c r i t e r a , should

be p r o t e c t i v e f o r a s p e c i e s . The 0 . 046 ug/1 dose l e v e l

produced s i g n i f c a n t l y reduced f i l t e r i n g r a t e s . The 0.001

l e v e l of 0 . 0046 ug/1 y i e l d e d no d i f f e r e n t r e s u l t s than did

the c o n t r o l s or t he 0 . 025 ug/1 dose. In chron ic t e s t i n g of

ot her organisms Hansen, Goodman, and Wi lson ( 1977a) r epor t ed

t h e i r data i n d i c a t e d t h a t 0.001 of the LC50 a f f e c t e d

sheepshead minnows d e t r i m e n t a l l y . A 96 hr LC50 f o r a d u l t

sheepshead minnows was shown to be 70 ug/1 of Kepone. In 28

day chron ic exposure t e s t s , the a d u l t s died [ 22. 2%) from

c o n c e n t r a t i o n s as low as 0 . 0 8 ug / 1 .

The d i f f e r e n t l e v e l s of response could be due to the

f a c t t h a t tonsa responds to i t s sur roundings r a p i d l y and

i s more e n v i r o n m e n t a l l y a d a p t a b l e . Fac tors not ye t

i n t r oduced t h a t might modi fy r e s u l t s ob t a i ned here are the

i n c r e a s i n g of the l engt h of chron ic exposure , the use of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 35: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

20

females and males s e p a r a t e l y , i n s t e ad o f randomly mixed

a d u l t s , and the use of a wide range of t empera tures as

opposed t o constant t e m p e r a t u r e . Perhaps in f o l l o w up

s t u d i e s i t can be determined i f chron ic exposure t ime should

be l e ng t h e n e d . I t i s probable t h a t the males and c e r t a i n l y

developmental s t a t e s are a f f e c t e d by changes in the

envi ronment be f or e the females (Conover , 1 9 5 6 ) . The re fo r e

under t h i s assumption chron ic s t r e ss could show up in males

bef or e f e ma l e s . Because A tonsa i s e u r y h a l i n e , s a l i n i t y

changes should have no n o t i c a b l e a f f e c t , however tempera ture

has a profound a f f e c t on metabol ism and a c t i v i t y and thereby

could a l t e r the response to s u b le t h a l l e v e l s .

P r e l i m i n a r y examinat ion of the e f f e c t s of l i g h t showed

no s i g n i f i c a n t d i f f e r e n c e s in g r az ing exper iments between

the l i g h t and dark c o n t r o l s . F i l t e r i n g r a t e has the

dimensions of volume x t i m e - * and is a measure of

the volume of ambient medium conta i ng the number of c e l l s

eaten by one animal in a given t i m e . Use of t h i s term does

not imply t h a t a l l the p a r t i c l e s of any given type are

removed from t h i s w a t e r , or t h a t the volume of water passed

over the f i l t e r i n g appendages i s known (Edmondson and

Winberg, 1 9 7 1 ) . At a c o n c e n t r a t i o n of 10 ug/1 of

c h l o r o p h y l l a, mean f i l t e r i n g r a t e s ( s i m i l a r to the

c o n t r o l s ) ranged from 5 . 15 t o 5 . 4 4 m l ‘ copepod- * * day- .

These r e s u l t s are in keeping w i th the r e s u l t s obta ined by

Conover (1956) and Reeve and W a l te r ( 1 9 7 7 ) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 36: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

I

21

An approx imat i on of f eed i ng r a t e was der i ved from the

f i l t e r i n g r a t e by m u l t i p l y i n g F by the a r i t h m e t i c mean of Cg

and Ct r a t h e r than by CQ alone (Edmondson and Winberg,

1 9 7 1 ) . This f eed i ng r a t e has the dimensions of

cel 1s ‘ copepod- * ( Tab l e 1 1 ) , which is in agreement wi th

Goldman and Peavey ( 1 9 7 9 ) , these f eed i ng r at es could then be

conver ted to ugC*copepod"* ( Tab l e 1 2 ) . Using the average

dry weight of A. tonsa of 7 ug (Conover , 1956 and Reeve and

W a l t e r , 1977) the f ee d i n g r a t e was then put i n t o terms of

ugC’ mg dry wt _ 1 * day_ 1 .

According to Conover (1956) the a du l t carbon

requ i rement f o r _A. tonsa a t 20°C is approx i mat e l y 130 ug

C'mg dry w t " ^ *d ay " ^ . Der ived f eed i ng ra t es of 158-164

ugC*mg dry w t “ * * d ay ~ * i n d i c a t e A . tonsa was meet ing i t s

carbon r e qu i re me nt . However a t 0 . 046 ug/1 of Kepone f o r

t h r e e days of exposure carbon i n g e s t i o n was s i g n i f i c a n t l y

l owered . This i n d i c a t e s the p o s s i b i l i t y t h a t su b le t ha l

l e v e l s of Kepone (were exposure long enough) in ambient

wate rs could reduce the l e v e l of carbon i n t a k e to

d e t r i m e n t a l l e v e l s f o r t o n s a . In 1976 Kepone l e v e l s in

wat er t aken from the James R i ve r ranged from <0.01 to lOppb,

no r ecent l e v e l s have been publ i shed ( Su t a , 1 97 8 ) .

Fo l low up s t ud i es t h a t would be v a l u a b l e to the o v e r a l l

unders tand i ng of the e f f e c t s o f Kepone in the e s t u r a t i n e

envi ronment i nc l ude work on a s s i m i l a t i o n e f f i c i e n c y ,

r e s p i r a t i o n r a t e s , r e p r o d u c t i o n , and b ioaccumula t ion

f a c t o r s .

■Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 37: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

22

Ameri can

Bahner ,

Bougi s ,

Conover ,

Dawsey,

Deevey,

Desaiah,

Dubin, E

BIBLIOGRAPHY

P u b l i c He a l th S e r v i c e . 1975. Methods f o r the C u l t u r e and Short Terms Bioassay of the Ca lanoid Copepod A c a r t i a t o n s a . I n : Standard Methods f o rthe Examinat ion of Water and Wastewater. 14th Ed. APHA-AWWA-WPCF. New York.

. H . , A . J . Wi lson, J . M. Sheppard, J . M. P a t r i c k , and L.R. Goodman, 1977. Kepone B i o c o n c e n t r a t i o n , Accumul at i on , Loss and T r a n s f e r Through E s tua r i ne Food Chains, Chesapeake Sc ience . 1 8 ( 3 ) : 2 9 9 - 3 0 8 .

. 1976. Mar ine Plankton Ec ol ogy . Nor th-Hoi 1 and Pub!si hing Co . , Amsterdam-Oxford. 3 5 5 p .

R . J . 1956. Oceanography of Long I s l a n d Sound.1 952-54 VI Biology of A. c l a u s i and _A. t o n s a . Bul l Bingham Oceanogr. ColTec" 1 5:1 5 6 - 2 3 5 .

•H. 1964. P e s t i c i d e Reference Standards of the Entomological Soc ie ty of Amer ica. B u l l e t i n of Entomological So. Amer ica. 1 0 ( 2 ) : 9 5 - 1 03.

.B. 1956. Oceanography of Long I s l a n d Sound. 1952- 54. V Zooplankton . B u l l . Bingham Oceanogr.Col 1e c t . 1 5 : 1 1 3 - 1 5 6 .

D . , R.B. Koch. 1975. I n h i b i t i o n of ATPases A c t i v i t y in Channel C a t f i s h Brain by Kepone (Trade Name) and i t s Reduct ion Product . B u l l e t i n of Envi ronmental Contaminat ion and T o x i c o l o g y .1 3 ( 2 ) : 1 5 3 - 1 5 8 .

G. , A.G. Durb in . 978 Length and Weight R e l a t i o n s h i p of A c a r t i a c l a u s i from N a r r a ga ns e t t Bay R . I . Limnology and Oceanogr. 2 3 : 9 5 8 - 9 6 9 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 38: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

23

Edmondson, W.T. and G. G. Winberg. ed. 1971. A Manual on Methods f o r the Assessment of Secondary P r o d u c t i v i t y in Fresh Wat er s . B i a ck w e l 1 S c i e n t i f c Publ . Oxford .

Goldman, J . and D.C. Peavey. 1979. Steady S t a t e Growth and Chemical Compostion of the Mar ine Chlorophyte D u n a l i e l l a t e r t i c l e c t a in N i t rogen L i mi ted C u l t u r e s . Appl i ed and Envi ronmental Microb . 894- 901.

Gonzales, J . G . 1974. C r i t i c a l Thermal Maxima and Upper Letha l Temperatures f o r the Ca lano id Copepods A c a r t i a tonsa and A. c l a u s i . Mar ine B i o l ogy .2 ? : 2 1 9 - 2 2 3 . “

G u i l l a r d , R.L 1975 . C u l t u r e of Phytoplankton f o r Feeding Mar ine I n v e r t e b r a t e Animals . R e pr in t e d From: Cu l t u r e of Mar ine I n v e r t e b r a t e A n im a l s . Ed W.L. Smith and M.H. Chanley. Plenum P u b l i s h i n g Co. Mew York 2 9 - 6 0 .

Hansen. D . J . , A . J . Wi lson, W.R. Nimmo, S.C. Schimmel , L.H. Bahner . 1976. Kepone: Hazard t o Aquat icOrganisms. Sc ience . 1 9 3 ( 4 2 5 3 ) : 5 2 8 .

Hansen. D . J . , L . R . Goddman, A . J . Wi l son . 1977a. Kepone: Chronic E f f e c t s on Embryo. F r y , J u v e n i l e , and Adul t Sheepshead Minnows (Cypr inodon v a r i e g a t u s ) . Chesapeake Sc ience . 1 8 ( 2 ) : 2 2 7 - 2 3 2 .

Hansen, D . J . , D.R. Nimmo, S.C. Schimmel , G.G. Walsh, A . J .Wi l son . 1977b. E f f e c t s of Kepone on E s t ua r i ne Organisms. I n : Recent Advances in Fish Toxi cology . Envi ronmental P r o t e c t i o n Agency, E c o lo g ic a l Research S e r i e s . EPA.6 0 0 / 3 - 7 7 - 0 8 5 . : 20 - 30.

J e f f r i e s , H.D. 1962 . Succession of Two A c a r t i a Species in E s t u a r i e s . Limn, and Oceanogr. 7 : 3 5 4 - 3 8 4 .

K h a t t a t , F .H. and F a r l e y . 1976. Mar ine B i o t o x i c i t y ofC e r t a i n P e s t i c i d e s to A c a r t i a t o n s a ( D a n a ) . E.P. 1 . 2 3 : 6 0 0 / 3 - 7 6 - 0 3 3 .

Lance, J . 1963. The S a l i n i t y To l erance of Some E s t ua r i ne P l a n k t o n i c Copepods. Limn, and Oceanogr. 8 : 4 4 0 - 449.

Lance, J . 1965. R e s p i r a t i o n and Osmotic Behavior of theCopepod A c a r t i a tonsa in D i l u t e d Sea Water . Comp. Biochem. P h y s i o l . 1 4 : 1 5 5 - 1 6 5 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 39: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

24

Landry, H.R. 1976. The R e l a t i o n s h i p Between Temperature and the Development of L i f e Stages of the Marine Copepod A c a r t i a c l a u s i ( G e i s b r . ) . Limn, and Oceanogr . 2 0 : 8 5 4 - 8 5 7 .

L i t c h f i e l d , J . T . , F. Wi lcoxon. 1949. A S i m p l i f i e d Method of E v a l u a t i n g Dose E f f e c t Exper iments . J . Pharm. Exper . T h e r . 9 6 ( 2 ) : 9 9 - 1 1 5.

Mackenthun, K . M . , M.W. Broosman, J . A . K o h l e r , C.R.T e r r e l l . 1977 . M i t i g a t i o n F e a s i b i l i t y f o r the Kepone Contaminated James R i v e r , V i r g i n i a . In: Management of Bottom Sediments Cont a i n i ng Toxic Subst ances ; Proceedings of the T h i r d U . S. -Japan E x p e r t ' s Mee t ing . 1978. E P A - 6 0 0 / 3 - 7 8 - 0 8 4 . 153-181 .

M i l l e r , C . B . , J . K . Johnson, D.R. H e i n l e , 1977. Growth Rules in the Mar ine Copepod. Genus A c a r t i a . Limn, and Oceanogr . 2 0 : 3 2 6 - 3 3 5 .

P a r r i s h , K . K . , D .F . Wi lson . 1978. Fecundi ty Studies onA c a r t i a tonsa (Copepoda: C a l a n o i d a ) in Standard ized C u l t u r e . Mar ine B i o l o g y . 4 6 : 6 5 - 8 1 .

Reeve, M . R . , M.A. W a l t e r . 1977. Food Thresholds in A c a r t i a . J . Exp. B i o l . E c o l . 2 9 : 2 1 1 - 2 2 1 .

S a rg e n t , J . R . 1976. The S t r u c t u r e , Metabol ism and Funct ion of L i p i d s in Mar ine Organ isms. I n : Bi ochemi caland B i oph ys i ca l P e r s p e c t i v e in Mar ine B i o l o g y . Ed. D.C. Mal ins and J . R . S a r g e n t . Academic Press . New York . 447 p.

Schimmel , S . C . , A . J . Wi lson. 1977. Acute T o x i c i t y of Kepone to Four Es t u a r i n e Animals . Chesapeake S c i en c e . 1 8 ( 2 ) : 2 2 4 - 2 2 7 .

Schimmel , S . C . , M. P a t r i c k , L . F . Faas, J . L . Oglesby,A . J . W i l s o n . 1 979 Kepone: T o x i c i t y and Bi oaccumul at i on in Blue Crabs. E s t u a r i e s . 2(1 ) : 9 - 15.

S e k i g u c h i , H . , I . A . McLaren, C . J . C o r k e t t . 1 980. TheR e t a t i o n s h i p Between Growth Rate and Egg Product ion in the Copepod A c a r t i a c l a u s i hudsonica. Mar ine B i o l o g y . 5 8 : 1 3 3 - 1 3 8 .

S o k a l , R.R. and F . J . R o h l f . 1 969 . Bi o m et r y . W.H. Freeman and Company, San F r a n c i s c o . 766p.

S t e r r e t t , F . S . , C.A. Boss. 1977. Care less Kepone. Envi ronment . 1 9 ( 2 ) : 3 0 - 3 7 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 40: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

25

Stua, B.

W at ts , R

W i l l i ams

Wyman, K

. 1 978. Human Popu la t i on Exposures to Mi rex and Kepone. EPA 6 0 0 / 1 - 7 8 - 0 4 5 . 139pp.

R. et a l . 1980. De t er mi na t ion of Kepone in Human Blood and Envi ronmental Samples. In: Manual ofA n a l y t i c a l Methods f o r the Ana lys is fo P e s t i c i d e s in Human and Envi ronmental Samples. ETD, HERL, EPA.6 0 0 / 5 - 8 0 - 0 3 8 . Research T r i a n g l e p a r k , N.C.

D.A 1971 . A Test f o r D i f f e r e n c e s Between Treatment Means When Severa l Dose Levels Are Compared With A Zero Dose C o n t r o l . B i omet r i cs 27:1 03-1 1 7.

D . , H.B. O'Connors. 1980. I m p l i c a t i o n s of Short Term PCB-Contaminated Water , I n o rg an i c Sediments and P h y t o p l a k t o n . E s tu a r i n e and Coastal Mar ine Sc ience . 1 1 ( 2 ) : 1 2 1 - 1 3 1 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 41: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

26

Table 1. LIST OF REGISTERED PRODUCERS OF KEPONE PRODUCTS (1976) (SUTA, 1978 ) .

Company Address*

Act ion Product Corp. North Miami, FLA l l i e d Chemical Co. Morr i stown, NJAthena Corp. D a l l a s , TXBlack Leaf Products Co. E l g i n , ILBlack Magic Co. J a c k s o n v i l l e , flBoyle-Midway, I n c . C r a n fo r d , NJBrown Chemical S p e c i a l t y San Anton io , TXClarence Boord and Sons, I nc . Leon, IACommon Sense Manufactur ing Co. , I nc . B u f f a l o , NYF. C. S t u r t e v a n t Co. Cromwel1, CTGaston Johnson Corp. Long I s l a n d , NYGeneral Pest Se rv ice Co. Los Angeles, CAGrant L a b o r a t o r i e s D i v . , Le isure

E n t e r p r i s e s , I n c . Oakland, CAJ . & F. Manuf act ur ing Co. Houston, TXJohn O p i t z , I n c . Long I s a l n d , NYJudd Ringer Corp. Eden P r a i r i e , MNL e t h e l i n Products Co . , I n c . Mount Vernon , NYMcCal l Manuf ac t ur ing Co. Jas per , FLNott Manuf ac t ur ing Co. , I n c . P l easant V a l l e y , NY0. E. Linck D i v i s i o n , Walco Link Corp. C l i f t o n , NJOld 97 Company Tampa, FLPearson and Company M o b i l e , ALQuinn, Drug and Chemical Co. Greenwood, MSTrager Manuf ac t ur ing Co . , I nc . Scranton , PAVinson Chemical Products Co. Opalocks, FLWinn Chemical Co . , I nc . B I o u n t s v i 11e , al

Asgrow F l o r d i a Co. + P l an t C i t y , flChem Pack CO. + South Miami , FLLandia Chemical Co. + Lakeland, FLSouthern M i l l Creek Products Co. + Tampa, FL

♦Corporate address and not n ec e s s a r i l y manufactur ing add re ss .+These f our companies are s t a t e a p p l i c a n t s f o r federal regi s t r a t i on.Source: EPA, Federal R e g is t e r 4 1 ( 5 9 ) . (March 25 , 19 7 6 ) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 42: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

27

Table 2. Average Envi ronmental Kepone Co ncent ra t ions ( S u t a , 1 97 8 ) .

Source Average C onc en t r a t ion

James R i v e r

f i n f i s h 0 . 4 - 2 . O p pm

crabs 0 . 3 - 3 . 0 ppm

o ys t e r s 0.1 - 0 . 2 ppm

Chesapeake Bay

f i n f i s h 0 . 0 - 0 . 08 ppm

crabs 0 .10 - 0 . 26 ppm

o ys t e r s 0 . 008 - 0 .05 ppm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 43: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

28

Tab le 3.

Specie

B l u e f i s h

Croaker

Grey t r o u t

Flounder

Spot

Tota l

Kepone in Chesapeake Bay Fish ( S u t a , 1 9 7 8 ) .

Sample AverageSi ze Kepone (ppm)

412 0 .03

249 0 . 06

106 0 . 05

45 0 . 08

86 0 .03

898 0 . 04

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 44: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

29

Table 4 . Kepone in Janies R i ver Fish ( S u t a , 1 9 7 8 ) .

Speci eSampli ng Locat i on

Sample Si ze

Average Kepone (ppm)

Channel c a t f i s h Unspeci f i ed 205 0 . 04

White C a t f i s h Unspeci f i ed 32 0 . 16

Largemouth bass Unspeci f i ed 36 1.12

Black c r ap p ie Unspeci f i ed 23 1 .03

Shad Zone 0 26 0 . 02

Zone A 34 0 . 0 2

Zone B 35 0 . 02

Zone C 23 0 . 07

Weyonoke 10 0 . 12

Al l Zones 1 28 0 . 0 4

B I u e f i sh Unspeci f i ed 23 0 . 65

Spot Unspeci f i ed 16 0 . 75

Croaker Unspeci f i ed 33 0 . 62

S t r i p ed m u l l e t Unspec i f i ed 4 0 . 37

S t r i p e d bass Unspeci f i ed 8 0 . 04

Grey t r o u t Unspeci f i e d 4 1 .21

Speckled t r o u t Unspeci f i ed 8 0 .07

American eel Unspeci f i ed 16 2 . 37

Oyster toad Unspeci f i ed 3 2 .53

Hogchoker Unspeci f i ed 18 0 . 93

Whi te perch Unspeci f i ed 31 2.06

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 45: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

30

Table 5. C a l c u l a t i o n o f Kepone Concent ra t ions Recovered by EC - GC.

1) Kepone c o n c e nt r a t i on from G.C. read out in pg = x pg

2) x pg -f- i n j e c t i on vol ume = xpg/ul in in j e c t i on vol ume

3) xpg /u l x ul in t o t a l e x t r a c t = xpg in e x t r a c t

4) xpg in e x t r a c t -f- l i t e r s of water sample e x t r a c t e d =xpg/1 in water

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 46: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

31

Table 6. C a l c u l a t i o n s f o r F i l t e r i n g and Feeding Rates .

G = graz i ng c o e f f i c i e n t a

K = growth c o e f f i c i e n t b

CQ = i n i t i a l c e l l number

Ct = c e l l number at t ime t

t = exper iment a l t ime

V = volume ambient medium

N = number of copepods

F = f i l t e r i n g r a t e c

I = f eed i ng r a t e d

aG = InCo - InCt + Kt t

bK = InCt - InCo t

CF = V x G N

rt Co + CtI = F x ---------------

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 47: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

32

Tab le 7. Resu l ts of EC-GC Kepone An a lys is from C o l l e c t i o n S i t e .

C onc en t r a t ion C onc en t r a t ion %Added Recoveredug/1 ug/1

Mi rex Spike 0 . 8 0 . 83

Kepone Standci rd 1 .6 1 .46

Water Sample 1 Unknown BDL*

Water Sample 2 Unknown BDL*

Water Sample 3 Unknown BDL*

*Below d e t e c t i o n l i m i t s o f 0 . 0 2 ug/1 of Kepone.

Recovery

103

91 .25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 48: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

Table 8 . A c a r t i a tonsa Acute T o x i c i t y Bioassay M u l t i p l e Range Test -Duncan Procedure f o r the 0 . 05 l e v e l

Homogeneous Subsets Nominal Kepone Mean M o r t a l i t y( u g / 1 ) ( Arcs i ne-fP* t ra n s .

1 500 .0 90 . 00

2 50.0 75 .00

3 5 . 0 54 . 78

4 0.5 33 .00

5 0 .05 0 . 00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 49: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

34

Table 9.

Homogeneou s

1

D u n a l i e l l a t e r t i o l e c t a Chronic T o x i c i t y T e s t . M u l t i p l e Range Test-Duncan Procedure f o r the 0 . 0 5 l ev e l

Subsets Nominal Kepone ( u g / 1 )

Mean Cel 1 Number

0.046 7810 .000

0.0046 7883.333

0 . 00 7926.667

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 50: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

35

Table 10.

Homogeneous

1

2

A c a r t i a tonsa Grazing Exper iment under Chronic Exposure. M u l t i p l e Range Test -Duncan Procedure f o r t he 0 . 0 5 l e ve l

Subsets Nominal Kepone Mean F i l t e r i n g( u g / 1 ) Rate

m l ‘ copepod- 1 ‘ day-1

0 .046 4 . 63

0 .025 5 .15

0 . 000 5 .35

0 . 0046 5 .44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 51: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

36

Table 11. Data from carbon a n a l y s i s of D u n a l i e l l a t e r t i o l e c t a c u l t u r e averaged from t h r e e r e p l i c a t e s .

i * i bu l C02 * 5ml sample-1 a pgC * c e l l

1 7 . 2 30( 3 . 4 u l C02 *ml - i )

a Each 5 ml sample conta ined 73000 c e l l s * ml

b There a r e 6 . 357 x 10- gC * u l C0 2- ^

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 52: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

37

Table 12. Derived Fi l ter ing and Feeding Rates of Acartia tonsa on Puna!iel la t e r t i o l ec ta .

Nominal Mean F ilte r in g Rate Mean Feeding RageKepone (ug/1) ml•copepod_1*day" ugC'copepod day ugc'mg dry wt-1

0.046 4.63 1.641 150

0.025 5.15 1.805 158

0.0046 5.44 1.906 165

0.0000 5.35 1.896 164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 53: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

38

Table 13. Computer LCjq and LC^q Values with 95% Confidence Limites fo r 96-Hour Exposure Acartia Tonsa

Pesticide

methyl parathion* (80% Technical)

Azodrin*(80% Technical)

Kepone(94.4% Technical)

diazinon*(97.6% Technical

toxaphene*(100% Technical)

* (Khattat and Farley

0.07 ppm(0.0418 - - / ; ;45 ppm)

0.05 ppb(0.0098 - 0.269 pb)

0.115 ppb (0.0235 - 0.465)

0.04 ppb(0.0164 - 0.0777 ppb)

0.0035 ppt(0.0006 - 0.0187 ppt)

1976)

0.089 ppm(0.685 - 1.163 ppm)

0.24 ppm(0.08536 - 0.66170 ppm)

4.96 ppb(2.610 - 9.433 ppb)

2.57 ppb(1.7259 - 3.8247 ppb)

7.2 ppt(3.540 - 14.636 ppt)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 54: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

Kepone

CL

CL

Cl''C '

C L

*— - (

*V

’'C l

% CS/ \' 'C l

M ire x

/'Cl

'#0

Cl

-Cl

C L

\'C l

C LO “

t \^ ~ ' C I

Cl

Cl

Figure 1. Similar Molecular Strucutres of Kepone and Mirex.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 55: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

JORDAN POINT COUNTRY CLUB/

ALLIEDCHEM. BAILEY

BAYHOPEWELL Industrial 0 Wasto

Ponds

5 ^ "UN16th AVE.

New •: STP-.:-:

< 2 ^

^ IndustrialCATTAILWESTERN RANDOLPH

STREETWasto Ponds

CRE&*ARLINGTON ROAD

Sewogo.^.Disposal >"O ld

STP

SCALE IN MILES

Figure 2. Hopwell, Virginia and Bailey Bay James River (From U.S. Geological Survey, Washington, D.C.)

o

Page 56: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

Reproduced

with perm

ission of the

copyright ow

ner. Further

reproduction prohibited

without

permission.

QUEEN CR.

WILLIAMSBURGHOPEWELL

’CLAREMOI

SEDIMENT CONCENTRATIONS ppm Kepone

New po rtF: NEWSi;

SMITH FI ELD

Figure 3. James River Sediment Concentrations from Hopewell, Virginia to Newport News, Virginia, August 1976 (Mackenthun et al., 1977)

-I*

Page 57: The Effects of Kepone on the Estuarine Copepod Acartia tonsa

42

, 24 *-»-* / ft NAVIGATOR QPENl

/ fc / / 3 n *C D Spans jC ? / / - 0 » C l i 70 FT

g y ,lV 21"

*'“ 39(.0 24. •A O

' .*«» '''/,, O'"', r "//,,34 / L

' f 4 4 « 42

o / b / l * t t 111 i 1111" ' ^ |60

55. PSO s*£" \ 5

' * , “ > « . . a : : ~ ■■*■* AT JV2^ sm< 28 / /VT7f* 16 P

LOOK TR

- I 20»Atf-vls - ‘ TV CAP q Mo (U) 20se 164ft ISM

HORN R Bn 298-------H E N R Y

MCR CL. 84 FTVERT CL. 35 FT

OVHO PWR. CAB AUTH.CL.88 FT

I

\ £ ><4l23««c IS 't ~ ' 3

Alv-\1 .

6 ± J f lW « 5 £Z

Figure 4. Collection Site at Long Creek Bridge.Source. Williams and Neintz Map Corporation, 1977.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.