suppression of quarkonia (and jets) in the quark gluon...

68
Introduction Quenching of jets Quarkonium suppression Suppression of quarkonia (and jets) in the Quark Gluon Plasma Andrea Beraudo INFN - Sezione di Torino Lattice-QCD workshop, 22-23 December 2014 Torino 1 / 54

Upload: others

Post on 28-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Suppression of quarkonia (and jets) in the QuarkGluon Plasma

Andrea Beraudo

INFN - Sezione di Torino

Lattice-QCD workshop,22-23 December 2014 Torino

1 / 54

Page 2: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Heavy-ion collisions: exploring the QCD phase-diagram

QCD phases identified through the orderparameters

Polyakov loop 〈L〉 ∼ energy cost toadd an isolated color charge

Chiral condensate 〈qq〉 ∼ effectivemass of a “dressed” quark in a hadron

Region explored at LHC: high-T/low-density (early universe, nB/nγ ∼10−9)

From QGP (color deconfinement, chiral symmetry restored)

to hadronic phase (confined, chiral symmetry breaking1)

NB 〈qq〉 6=0 responsible for most of the baryonic mass of the universe: only

∼35 MeV of the proton mass from mu/d 6=0

1V. Koch, Aspects of chiral symmetry, Int.J.Mod.Phys. E6 (1997)2 / 54

Page 3: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Heavy-ion collisions: a typical event

Valence quarks of participant nucleons act as sources of strong colorfields giving rise to particle production

Spectator nucleons don’t participate to the collision;

Almost all the energy and baryon number carried away by the remnants

3 / 54

Page 4: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Heavy-ion collisions: a typical event

4 / 54

Page 5: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Heavy-ion collisions: a cartoon of space-time evolution

Soft probes (low-pT hadrons): collective behavior of the medium;

Hard probes (high-pT particles, heavy quarks, quarkonia): producedin hard pQCD processes in the initial stage, allow to perform atomography of the medium

5 / 54

Page 6: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Jet quenching

(in a broad sense: jet-reconstruction in AA possible only recently)

6 / 54

Page 7: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Inclusive hadron spectra: the nuclear modification factor

)c (GeV/Tp0 2 4 6 8 10 12 14 16

AA

R

-110

1

10

PHENIX Au+Au (central collisions):γDirect

0πη

/dy = 1100)g

GLV parton energy loss (dN

PHENIX Au+Au (central collisions):γDirect

0πη

/dy = 1100)g

GLV parton energy loss (dN

RAA ≡

(dNh/dpT

)AA

〈Ncoll〉 (dNh/dpT )pp

7 / 54

Page 8: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Inclusive hadron spectra: the nuclear modification factor

(GeV/c)T

p0 10 20 30 40 50

AA

R

0.1

1

0-5%

20-40%

40-80%

ALICE, charged particles, Pb-Pb

| < 0.8η = 2.76 TeV, | NNs

ALICE Preliminary

RAA ≡

(dNh/dpT

)AA

〈Ncoll〉 (dNh/dpT )pp

7 / 54

Page 9: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Inclusive hadron spectra: the nuclear modification factor

RAA ≡

(dNh/dpT

)AA

〈Ncoll〉 (dNh/dpT )pp

7 / 54

Page 10: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Inclusive hadron spectra: the nuclear modification factor

RAA ≡

(dNh/dpT

)AA

〈Ncoll〉 (dNh/dpT )pp

Hard-photon RAA ≈ 1

supports the Glauber picture (binary-collision scaling);

entails that quenching of inclusive hadron spectra is a final stateeffect due to in-medium energy loss.

7 / 54

Page 11: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Di-jet imbalance at LHC: looking at the event display

An important fraction of events display a huge mismatch in ET

between the leading jet and its away-side partner

Possible to observe event-by-event, without any analysis!

8 / 54

Page 12: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Di-jet imbalance at LHC: looking at the event display

An important fraction of events display a huge mismatch in ET

between the leading jet and its away-side partner

Possible to observe event-by-event, without any analysis!

8 / 54

Page 13: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Dijet correlations: results

JA0 0.2 0.4 0.6 0.8 1

J)

dN/d

Aev

t(1

/N

0

1

2

3

440-100%

JA0 0.2 0.4 0.6 0.8 1

J)

dN/d

Aev

t(1

/N0

1

2

3

420-40%

JA0 0.2 0.4 0.6 0.8 1

J)

dN/d

Aev

t(1

/N

0

1

2

3

410-20%

JA0 0.2 0.4 0.6 0.8 1

J)

dN/d

Aev

t(1

/N

0

1

2

3

40-10%

ATLASPb+Pb

=2.76 TeVNNs

-1bµ=1.7 intL

φ∆2 2.5 3

φ∆)

dN/d

evt

(1/N

-210

-110

1

10

φ∆2 2.5 3

φ∆)

dN/d

evt

(1/N

-210

-110

1

10

φ∆2 2.5 3

φ∆)

dN/d

evt

(1/N

-210

-110

1

10

φ∆2 2.5 3

φ∆)

dN/d

evt

(1/N

-210

-110

1

10Pb+Pb Data

p+p Data

HIJING+PYTHIA

Dijet asymmetry Aj ≡ET1

−ET2

ET1+ET2

enhanced wrt to p+p and increasing

with centrality;

∆φ distribution unchanged wrt p+p (jet pairs ∼ back-to-back)

9 / 54

Page 14: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Physical interpretation of the data: energy-loss at the parton level!

E (≈ pT ) (1 − x)E

xE

hard process

Interaction of the high-pT parton with the color field of the mediuminduces the radiation of (mostly) soft (ω ≪ E ) and collinear(k⊥ ≪ ω) gluons;

Radiated gluon can further re-scatter in the medium (cumulated q⊥

favor decoherence from the projectile).

10 / 54

Page 15: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Average energy loss

Integrating the lost energy ω over the inclusive gluon spectrum:

〈∆E 〉 =

dk ωdN ind

g

dωdk∼

CRαs

4

(µ2

D

λelg

)

L2 lnE

µD

L2 dependence on the medium-length;

µD : Debye screening mass of color interaction ∼ typical momentumexchanged in a collision;

µ2D/λel

g often replaced by the transport coefficient q2, so that

〈∆E 〉 ∼ CRαs qL2

q: average q2⊥ acquired per unit length

2For a lattice-QCD determination see M. Panero et al.,Phys.Rev.Lett. 112(2014) 16, 162001

11 / 54

Page 16: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Quarkonium suppression

(charmonium and now also bottomonium)

12 / 54

Page 17: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Original idea by Matsui and Satz

Statement3: the J/ψ anomalous suppression in high energy AAcollisions represents an unambiguous signature of deconfinement

Underlying assumptions:

The J/ψ’s are produced in the very early stage of the collisionThe medium resulting from the HIC thermalizes in a timeτtherm ≈ 0.5 − 1fm/c;Crossing a deconfined medium the cc bound states tend tomelt (Debye screening of the Coulomb interaction):

V (r) ∼ −α

r+ σr → −

α

re−mD r

Consequences: one expects a sequential suppression pattern, with

Tψ′

diss < TJ/ψdiss and T

Υ(3s)diss < T

Υ(2s)diss < T

Υ(1s)diss

3T. Matsui and H. Satz, PLB 178 (1986).13 / 54

Page 18: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Experimental evidence

Wonderful results found by CMS through µ+µ− invariant mass spectra

14 / 54

Page 19: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Experimental evidence

Wonderful results found by CMS through µ+µ− invariant mass spectra

Suppression dependent on the binding energy of the state and on the

centrality of the collision

14 / 54

Page 20: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

The challenge

Is it possible to make this picture more quantitative through afirst-principle calculation?

A possible answer: take advantage of the results provided bythe lattice-QCD simulations.

15 / 54

Page 21: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Quarkonium in hot-QCD: two independent (?) approaches

Heavy-quark free-energy calculations:evaluate ∆F occurring once a static QQ pair is placed in a thermalbath of gluons and light quarks

e−β∆F

(1)

QQ(x−y,T )+C

=1

3〈W (x)W †(y)〉

Meson Spectral Function reconstruction:look for resonance-peaks4 in the spectral densities extracted fromin-medium quarkonium euclidean propagators

GM(τ) ≡ 〈JM(τ)J†M(0)〉

4S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, PRD 69, 094507 (2004)16 / 54

Page 22: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Polyakov-line correlators

e−β∆FQQ(x−y,T ) ∼ 〈χ(β, y)ψ(β, x)ψ†(0, x)χ†(0, y)〉

They describe a QQ pair propagating from τ =0 to τ =β and can be

measured on the lattice5

-500

0

500

1000

0 0.5 1 1.5 2 2.5 3

r [fm]

F1 [MeV]

0.76Tc0.81Tc0.90Tc0.96Tc1.00Tc1.02Tc1.07Tc1.23Tc1.50Tc1.98Tc4.01Tc

0

500

1000

1500

0 0.5 1 1.5 2

U1 [MeV]

r [fm]

1.09Tc1.13Tc1.19Tc1.29Tc1.43Tc1.57Tc1.89Tc

Can one exploit this information to get an effective QQ potential?

state J/ψ χc ψ′

Td/Tc (Veff ≡ F1) 1.1 0.74 0.1-0.2Td/Tc (Veff ≡ U1) 1.78-1.92 1.14-1.15 1.11-1.12

5O. Kaczmarek and F. Zantow, PoS LAT2005:192 (2006) 17 / 54

Page 23: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Meson Spectral Functions

One measures the imaginary-time propagator

GM(τ) ≡ 〈JM(τ)J†M(0)〉

of a meson produced by the current

JM(τ) ≡ q(τ)ΓMq(τ)

From GM(τ) the MSF has to be reconstructed:

GM(τ) =

∫ ∞

0dω σM(ω)

︸ ︷︷ ︸

MSF

cosh(ω(τ − β/2))

sinh(βω/2)

NB: Typically GM(τ) is known for a quite limited set of points(<∼50) → problems in inverting the above transform.

18 / 54

Page 24: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

MSFs on the lattice: charmonium

Attempting the inversion through a MEM procedure6,7...

2 4 6 8 10ω (GeV)

0

10

20

30

ρ(ω

)/ω²

T = 221 MeVT = 294 MeVT = 353 MeVT = 392 MeVT = 441 MeV

J/ψm= 0.092

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

5 10 15 20

σ(ω

)/ω

2ω[GeV]

T=0, Ndata=16

T=1.5Tc

The vector (left) and pseudoscalar (right) MSFs displaywell-defined ground-state peaks up to temperature T ∼2Tc .

6G. Aarts et al., arXiv:0705.2198 [hep-lat]7A. Jakovac et al., Phys.Rev. D75 (2007) 014506.

19 / 54

Page 25: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

MSFs on the lattice: bottomonium

Employing NRQCD one gets rid of the contribution from energiesω ≪ 2M and it is possible to simulate also bottomonium on the lattice

20 / 54

Page 26: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

MSFs on the lattice: bottomonium

Employing NRQCD one gets rid of the contribution from energiesω ≪ 2M and it is possible to simulate also bottomonium on the lattice

NB Vector MSF directly related to the dilepton production rate

dNµ+µ−

dp0d~p

∣∣∣∣~p=0

∼α2

em

p20

nB(p0)σV (p0)

20 / 54

Page 27: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

MSFs on the lattice: bottomonium

Employing NRQCD one gets rid of the contribution from energiesω ≪ 2M and it is possible to simulate also bottomonium on the lattice

NB Vector MSF directly related to the dilepton production rate

dNµ+µ−

dp0d~p

∣∣∣∣~p=0

∼α2

em

p20

nB(p0)σV (p0)

One is tempted to establish a direct connection with exp data, however...20 / 54

Page 28: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Some open problems: a brief summary

Potential models: which effective potential from the QQfree-energy data?

MSF: in principle would contain the full information on thein-medium quarkonium properties, BUT large uncertaintiesfrom inverting the transform. So far, most of the availableresults reliable just for the existence of a ground-state peak;

Is it possible to establish a link between screened potentialmodels and spectral studies?

21 / 54

Page 29: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

The basic objectof our study

G>(t,r1; t,r2|0,r′1; 0,r

′2)≡〈χ(t,r2)ψ(t,r1)

︸ ︷︷ ︸

JM(t)

ψ†(0,r′1)χ†(0,r′2)

︸ ︷︷ ︸

J†M

(0)

NB: In the M → ∞ limit quarks are frozen to their positions andG>

M=∞(t) reduces to the closed Wilson loop W(t,r)

22 / 54

Page 30: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Real-time static potential in hot-QCD: weak-coupling

Evaluate perturbatively [M. Laine et al., JHEP 0703 (2007) 054]

G>M=∞(t, r) = G (0)>(t, r) + G (2)>(t, r) + . . .

23 / 54

Page 31: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Real-time static potential in hot-QCD: weak-coupling

Evaluate perturbatively [M. Laine et al., JHEP 0703 (2007) 054]

G>M=∞(t, r) = G (0)>(t, r) + G (2)>(t, r) + . . .

Assuming that, for t → ∞, G>M=∞(t, r) is solution of

(i∂t − Veff (r))G>M=∞(t, r) = 0

identify the LO perturbative contribution to the effective potential:

Veff = V(2)eff + . . .

23 / 54

Page 32: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Real-time static potential in hot-QCD: weak-coupling

Evaluate perturbatively [M. Laine et al., JHEP 0703 (2007) 054]

G>M=∞(t, r) = G (0)>(t, r) + G (2)>(t, r) + . . .

Assuming that, for t → ∞, G>M=∞(t, r) is solution of

(i∂t − Veff (r))G>M=∞(t, r) = 0

identify the LO perturbative contribution to the effective potential:

Veff = V(2)eff + . . .

Use it in the finite mass case to solve the equation

(i∂t − T − V(2)eff (r))G>(t) = 0

23 / 54

Page 33: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Some questions to answer

Does G>(t) obey a closed Schrodinger equation? Is the concept ofan effective potential meaningful/necessary?

What’s the link of the effective potential with the QQ free-energy?Does the latter contain all the possible information?

Is it possible to include the effect of collisions in a consistent way?

24 / 54

Page 34: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Our goal

We wish to perform a study resulting

numerically less expensive then lattice calculations (henceallowing a more robust reconstruction of the spectralfunction);

capable to get a deeper physical insight on the processesinvolved.

NB Since we wish to study very general medium effects, notpeculiar of QCD, for the sake of simplicity we will consider the caseof heavy charged particles placed in a QED plasma. This will besufficient to provide and answer to the previous questions

25 / 54

Page 35: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

In-medium correlators

G>(t) ≡ 〈O(t)O†(0)〉

O† creates a Q or a QQ pair;

Spectral decomposition

G>(t) = Z−1∑

n

e−βEn∑

m

〈n|O(t)|m〉〈m|O†(0)|n〉

= Z−1∑

n

e−βEn∑

m

e i(En−Em)t |〈m|O†(0)|n〉|2,

G>(t) is an analytic function in the strip −β< Imt< 0 ⇒unified description of real and imaginary-time propagation;HQs: external probe placed in a hot/dense medium of lightparticles =⇒ {|n〉} do not contain heavy quarks.

26 / 54

Page 36: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

In-medium spectral functions

In the general case the spectral density of a correlator wouldbe given by

σ(ω) ≡ G>(ω) ∓ G<(ω);

Dealing with the propagation of an external probe one hasG< ≡ 0, so that

σ(ω) = G>(ω) =⇒ G>(t) =

∫ +∞

−∞

2πe−iωtσ(ω);

The standard procedure to get σ(ω) is then, exploiting theanalyticity of G>:

G>(t =−iτ)︸ ︷︷ ︸

evaluated

=

∫ +∞

−∞

2πe−ωτ σ(ω)

︸︷︷︸

reconstructed

.

27 / 54

Page 37: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

General setup

A heavy quark (magnetic effects negligible!) coupled to a mediumof light particles (for a relativistic hot plasma M >> T >> m):

H = HQ + Hint + Hmed , where

HQ =

d3r ψ†(r)

(

M −∇2

2M

)

ψ(r),

Hint = g

d3 r ψ†(r)ψ(r)A0(r), with

Hmed the hamiltonian describing the medium;A0 the electrostatic potential created by the light particles.

[H, NQ ] = 0 ⇒ NQ ≡

d3r ψ†(r)ψ(r) is conserved

EoM : i∂tψ(t, r) = [ψ(t, r), H] =

(

M −∇2

2M+ gA0(t, r)

)

ψ(t, r)

28 / 54

Page 38: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Path-integral formulation

Let us fix the main ideas with the simple case of a single particle.The HQ propagator for a given configuration of the backgroundgauge-field reads:

G>A (t, r) =

∫ r

0[Dz] exp

[

i

∫ t

0dt ′

(1

2M z2 − gA0(t

′, z(t ′))

)]

After taking a medium-average over the configurations of thebackgroung field one has:

G>(t, r) = Z−1

[DA]

∫ r

0[Dz] exp

[

i

∫ t

0dt ′

1

2M z2

]

× exp

[

−ig

∫ t

0dt ′A0(t

′, z(t ′))

]

e iSeff [A]

29 / 54

Page 39: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Which action to employ to weight the field configurations fora hot gauge plasma?

30 / 54

Page 40: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Scales in a weakly-coupled relativistic plasma

λ hard = 1/g^4T

λ soft = 1/g^2T

d~1/T

λ dB=1/2piT

λ D~1/gT

most of the scattering processes involve the exchange ofsoft momenta Q∼gT .

31 / 54

Page 41: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

The HTL effective action

The propagation of soft (long wave-length) gauge-bosons(Q∼gT ) is dressed by the interactions with the lightplasma-particle which are hard (K ∼T )

µ νQ Q

K − Q

K

hard

hard

soft soft

The HTL effective action (for an abelian gauge plasma):

SHTL[A] =1

2

d4x

d4y Aµ(x)(D−1

)HTL

µν(x − y)Aν(y).

32 / 54

Page 42: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

A heavy “quark” in a hot gauge plasma

Neglecting possible non-abelian effects we perform Monte Carlosimulations for

G>(−iτ, r1|0, r′1)=

∫ z(τ)=r1

z(0)=r′1

[Dz]exp

[

∫ τ

0

dτ ′

(

M +1

2M z2

)]

×

× exp

[g2

2

∫ τ

0

dτ ′

∫ τ

0

dτ ′′∆TL (τ ′ − τ ′′, z(τ ′) − z(τ ′′))

]

where

∆L(τ,q) ≡ ∆vacL (τ,q) + ∆T

L (τ,q)

=−1

q2δ(τ) +

∫ +∞

−∞

dq0

2πe−q0τρL(q0,q)[θ(τ) + N(q0)]

is expressed in terms of the HTL spectral function

ρL(ω > 0, q) ≡ 2π[

ZL(q)δ(ω−ωL(q))︸ ︷︷ ︸

plasmon pole

+ θ(q2−ω2)βL(ω, q)︸ ︷︷ ︸

Landau damping

]

33 / 54

Page 43: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

HTL longitudinal spectral function

ρL(ω) ≡ 2 ImDretL (ω) = 2 Im∆L(ω + iη),

where:

∆L(q0, q) =

−1

q2 + m2D

(

1 − q0

2qln q0+q

q0−q

)

0 0.2 0.4 0.6 0.8 1ω/m

D

0

2

4

6

8

10

ρ L(ω

,q)/

m2 D

q=0.5mD

Pole + Continuum. The width is put by hand! 34 / 54

Page 44: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Our long term goal...

...would be to address the QQ case within the same approach:

G>(−iτ ; r1, r2|0; r′1, r′2) = e−(M1+M2)τ

∫ r1

r′1

[Dz1]

∫ r2

r′2

[Dz2]×

× exp

[

∫ τ

0

dτ ′

(1

2M1z1

2−g2

2

∫ τ

0

dτ ′′∆TL (τ ′−τ ′′, z1(τ

′)−z1(τ′′))

)]

×

× exp

[

∫ τ

0

dτ ′

(1

2M2z2

2−g2

2

∫ τ

0

dτ ′′∆TL (τ ′−τ ′′, z2(τ

′)−z2(τ′′))

)]

×

× exp

[

−g2

∫ τ

0

dτ ′

∫ τ

0

dτ ′′∆L(τ′−τ ′′, z1(τ

′)−z2(τ′′))

]

The formulation fully accounts for retardation effects,without any need of defining an effective potential

35 / 54

Page 45: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

In terms of Feynman diagrams...

36 / 54

Page 46: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

The static limit

For M =∞ the HQs are frozen to their positions. The asymptoticbehavior of the real-time QQ propagator allows the to identify thein-medium effective potential:

G (t, r1−r2) ∼t→∞

exp[−iVeff(r1 − r2)t],

with

Veff(r1 − r2)effective potential

≡ g2

∫dq

(2π)3

(

1 − e iq·(r1−r2))

D00(ω=0,q)

= g2

∫dq

(2π)3

(

1 − e iq·(r1−r2)) [ 1

q2 + m2D

︸ ︷︷ ︸

screening

−iπm2

DT

|q|(q2 + m2D)2

︸ ︷︷ ︸

collisions

]

=−g2

[

mD +e−mD r

r

]

− ig2T

4πφ(mDr)

One gets ∆FQstatic

= −αmD/2.37 / 54

Page 47: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Consistent treatment of screened self-energy andinteraction8

Veff(r) = −αmD −α

re−mD r

∼r→0

−αmD −α

r+αmD = −

α

r

For bound states of very small size medium effects cancel!

An analogous problem in solid-state physics...

Veff(r) turns out to coincide with the Ecker-Weitzel potential usedto study excitons (e-h bound states) in semiconductors.

8See also R. Rapp, D. Blaschke and P. Crochet, arXiv:0807.247038 / 54

Page 48: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Numerical resultsfrom the MC simulations for the path-integral

39 / 54

Page 49: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Spectral function reconstruction

G>(t =−iτ)︸ ︷︷ ︸

evaluated

≡ G (τ) =

∫ +∞

−∞

2πe−ωτ σ(ω)

︸︷︷︸

reconstructed

.

Spectral analysis performed with the Maximum EntropyMethod9, requiring the introduction of a default model towhich the outcome reduces in case of very poor data for G (τ)

We require the default model to fullfill the (general!) sumrules

∫dω

2πσdef(ω) = 1,

∫dω

2πω σdef(ω) = M

9M. Jarrell and J.E. Gubernatis, Phys. Repts. 269 133 (1996)40 / 54

Page 50: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

In order to interpret the numerical outcomes of thesimulations....

...some physical insight from (weak-coupling)thermal field theory calculations

41 / 54

Page 51: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Dyson equation for HQ propagator

Analytic non-relativistic HQ propagator

G (z) =−1

z − Ep − Σ(z ,p),

where Ep =M+p2/2M and setting z =ω+iη corresponds toretarded boundary conditions;

HQ spectral function:

σ(ω) ≡ 2Im GR(ω) =Γ(ω)

[ω − Ep − Re Σ(ω)]2 + Γ2(ω)/4,

with Γ(ω)≡−2Im ΣR(ω) =⇒ HQ spectral functionnon-vanishing only for energies for which the self-energydevelops an imaginary-part.

42 / 54

Page 52: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Resummed one-loop calculation

p

p0

0

t

t

a

a

The zero-momentum HQ self-energy reads:

Σ(p0) = g2CF

∫dk

(2π)3

∫ +∞

−∞

dk0

2πρL(k

0, k)1 + N(k0)−nF (Ek)

p0 − Ek − k0

Test-particle limit recovered setting nF (Ek)=0, which arisesnaturally in the regime T/M ≪ 1

Σtest(p0)=g2CF

∫dk

(2π)3

∫ +∞

0

dk0

2πρL(k

0, k)

[1 + N(k0)

p0 − Ek − k0+

N(k0)

p0 − Ek + k0

]

43 / 54

Page 53: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

HQ spectrum: physical processes

ω ω ω ω

Ek E E Ek k k

kk0

ωL

L(k)

(k)

(a) (b) (c) (d)

Plasmon-pole contribution (a and b)

Γpole(ω) = g2CF

∫dk

(2π)3(2π)ZL(k)×

×[(1 + N(ωL(k))) δ(ω − Ek − ωL(k)) + N(ωL(k))δ(ω − Ek + ωL(k))]

Continuum contribution (c and d)

Γcont(ω) = g2CF

∫dk

(2π)3

∫ k

0

dk0 βL(k0, k)×

× (2π){[

1 + N(k0)]δ(ω − Ek − k0) + N(k0)δ(ω − Ek + k0)

}

44 / 54

Page 54: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

HQ spectral funtion: one-loop result

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1ω−M (GeV)

0

10

20

30

40

50

60

σ(ω

) (G

eV-1

)

M=1.5 GeVM=4.5 GeVM=45 GeVM=infinite

Negative shift and broadening (larger as M→∞!) of the main peak;

45 / 54

Page 55: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

HQ spectral funtion: one-loop result

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1ω−M (GeV)

0

10

20

30

40

50

60

σ(ω

) (G

eV-1

)

M=1.5 GeVM=4.5 GeVM=45 GeVM=infinite

Negative shift and broadening (larger as M→∞!) of the main peak;

Appearance of secondary peaks at energies corresponding to a largedensity of states for plasmon absorption/emission processes;

45 / 54

Page 56: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

HQ spectral funtion: one-loop result

-3 -2 -1 0 1 2 3(ω-M)/T

0

5

10

15

20

σ (ω

) T

T/M=0.133 (one-loop)T/M=0.200 (one-loop)T/M=0.333 (one-loop)T/M=0.133 (G

one-loop+MEM)

T/M=0.200 (Gone-loop

+MEM)

T/M=0.333 (Gone-loop

+MEM)

Negative shift and broadening (larger as M→∞!) of the main peak;

Appearance of secondary peaks at energies corresponding to a largedensity of states for plasmon absorption/emission processes;

MEM applied to Gone−loop(τ) captures just part of the features ofthe spectrum 45 / 54

Page 57: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

HQ spectral funtion: path-integral result

-3 -2 -1 0 1(ω -M)/T

0

2

4

6

8

10

12

σ (ω

) T

M=infinite (gaussian prior)T/M=0.133 (gaussian prior)T/M=0.200 (gaussian prior)T/M=0.267 (gaussian prior)

-3 -2 -1 0 1 2 3 4 5(ω -M)/T

0

1

2

3

4

σ (ω

) T

M=infinite (constant prior)T/M=0.100 (constant prior)T/M=0.133 (constant prior)T/M=0.200 (constant prior)T/M=0.267 (constant prior)

Proper dimensionless units account for most of the T dependence;

Broadening and negative shift of the main peak and low-energystrenght (common feature);

Secondary bump (gauss.) and high-ω tail (const.) model-dependent;

Vertical lines at ω−M =−αmD

2 and lines at ω−M =±ωpl.

46 / 54

Page 58: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Some recent developments: the setup

We have shown how a static in-medium QQ potential can beobtained from the large-time behavior of the real-time Wilson loop:

V (r) = limt→∞

i∂tW (t, r)

W (t, r)

47 / 54

Page 59: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Some recent developments: the setup

We have shown how a static in-medium QQ potential can beobtained from the large-time behavior of the real-time Wilson loop:

V (r) = limt→∞

i∂tW (t, r)

W (t, r)

The spectral function ρ(ω) allows one to establish a link betweenthe Euclidean Wilson loop W (τ) measured on the lattice and W (t)

W (τ) =

dωe−ωτρ(ω) ↔

dωe−iωtρ(ω) = W (t)

47 / 54

Page 60: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Some recent developments: the setup

We have shown how a static in-medium QQ potential can beobtained from the large-time behavior of the real-time Wilson loop:

V (r) = limt→∞

i∂tW (t, r)

W (t, r)

The spectral function ρ(ω) allows one to establish a link betweenthe Euclidean Wilson loop W (τ) measured on the lattice and W (t)

W (τ) =

dωe−ωτρ(ω) ↔

dωe−iωtρ(ω) = W (t)

The in-medium QQ potential is then given by

V (r) = limt→∞

dω ωe−iωtρ(ω, r)/

dω e−iωtρ(ω, r)

47 / 54

Page 61: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Some recent developments: the setup

We have shown how a static in-medium QQ potential can beobtained from the large-time behavior of the real-time Wilson loop:

V (r) = limt→∞

i∂tW (t, r)

W (t, r)

The spectral function ρ(ω) allows one to establish a link betweenthe Euclidean Wilson loop W (τ) measured on the lattice and W (t)

W (τ) =

dωe−ωτρ(ω) ↔

dωe−iωtρ(ω) = W (t)

The in-medium QQ potential is then given by

V (r) = limt→∞

dω ωe−iωtρ(ω, r)/

dω e−iωtρ(ω, r)

The reconstruction of ρ(ω) exploiting the knowledge of W (τi ) at allvalues of τi is crucial!

47 / 54

Page 62: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Some recent developments: results

A new bayesian approach significantly improves the standard MEMreconstruction of the spectral funtion ρ(ω). One gets for the potential10

The real part turns out to coincide with the color-singlet free energy;

The imaginary part looks in qualitative agreement with theweak-coupling HTL result

10Y.Burnier et al., PRL 111, 182003 (2013) and arXiv:1410.2546 48 / 54

Page 63: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Perspectives

The challenge of interest for QGP phenomenology is toextract real-time information (i.e. transport coefficients) fromeuclidean simulations: viscosity (for the hydrodynamicevolution), diffusion coefficient (for HQ thermalization),electric conductivity (evolution of strong B-fields)

I’m waiting for volunteers for the QQ path-integralsimulations...

49 / 54

Page 64: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Back-up slides

50 / 54

Page 65: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Maximum Entropy Method

G (τ) =

∫ ∞

0

dω K (ω, τ)σ(ω)

G (τ): known for 1 ≤ τi/a ≤ Nτ (∼ 20);

σ(ω): for it one wants a very fine scan. ωl = l ·∆ω, with1 ≤ l ≤ Nω(∼ 102 − 103) =⇒ χ2 method not applicable;

H: a priori information on general properties (e.g. sum rules,positivity...) of the spectral function (key ingredient!)

One looks for the most probable spectral function compatible with thedata and the constraints:

δP[σ|G ,H]

δσ= 0,

where, from Bayes’ theorem

P[σ,G ,H] = P[σ|G ,H] × P[G |H] × P[H] = P[G |σ,H] × P[σ|H] × P[H]

51 / 54

Page 66: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Maximum Entropy Method

G (τ) =

∫ ∞

0

dω K (ω, τ)σ(ω)

G (τ): known for 1 ≤ τi/a ≤ Nτ (∼ 20);

σ(ω): for it one wants a very fine scan. ωl = l ·∆ω, with1 ≤ l ≤ Nω(∼ 102 − 103) =⇒ χ2 method not applicable;

H: a priori information on general properties (e.g. sum rules,positivity...) of the spectral function (key ingredient!)

One looks for the most probable spectral function compatible with thedata and the constraints:

δP[σ|G ,H]

δσ= 0,

hence:

P[σ|G ,H] ∼ P[G |σ,H]︸ ︷︷ ︸

likelihood function

× P[σ|H]︸ ︷︷ ︸

prior probability 52 / 54

Page 67: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

Likelihood function: P[G |σ, H] ∼ e−L, with

L =1

2

i ,j

[G (τi )︸ ︷︷ ︸

MCdata

−Gσ(τi )]

C−1ij

︸︷︷︸

cov matrix

[G (τj)︸ ︷︷ ︸

MCdata

−Gσ(τj)].

Maximizing it would correspond to the standard χ2-fitting.

Prior probability: P[σ|H] ∼ eαS , with

S =

∫ ∞

0

[

σ(ω) − m(ω) − σ(ω) lnσ(ω)

m(ω)

]

dω.

playing the role of an entropy term.

Default model m(ω): contains the a priori information on thespectral density;The entropy is maximum (S = 0) when the spectral functioncoincides with the default model. That’s what happens in theabsence of data!

53 / 54

Page 68: Suppression of quarkonia (and jets) in the Quark Gluon Plasmapersonalpages.to.infn.it/~caselle/turinlatticemeeting... · 2015. 1. 2. · Introduction Quenching of jets Quarkonium

IntroductionQuenching of jets

Quarkonium suppression

(Bryan’s) Maximum Entropy Method

For a given value of α one looks for the maximum ofP[σ|G , H] ∼ e−L+αS ≡ eQ[σ]:

δQ[σ|G , H]

δσ

∣∣∣∣σα(ω)

= 0,

where α controls the relative weight between

L: tends to fit σ to the data;S: tends to fit σ to the default model.

It’s like minimizing the free-energy in statistical mechanics!

One finally integrates over different values of α.

54 / 54