semi-inclusive decay of heavy quarkonium hybrids into

32
Summary and outlook Semi-inclusive decay of heavy quarkonium hybrids into quarkonium in the EFT framework Wai Kin Lai South China Normal University University of California, Los Angeles in collaboration with Nora Brambilla, Abhishek Mohapatra, and Antonio Vairo Work in progress Sep 16, 2021 EXA 2021 1/30

Upload: others

Post on 13-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Semi-inclusive decay of heavy quarkonium hybridsinto quarkonium in the EFT framework

Wai Kin Lai

South China Normal UniversityUniversity of California, Los Angeles

in collaboration with Nora Brambilla, Abhishek Mohapatra, and Antonio Vairo

Work in progress

Sep 16, 2021

EXA 2021

1/30

Page 2: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Exotic quarkonium

Exotic quarkonia (XYZ particles) are quarkonium-likebound states that cannot be interpreted as atraditional quarkonium state.

Interpretations for exotic quarkonia:

Q Q

8c

Q Q

8c

q qQ

Qq

q

hybrid adjoint tetraquark compact tetraquark

Q Q

qq

3c 3c

Q Q

qq

πQ

Q

q

q

diquark-diquark heavy-meson molecule hadroquarkonium

A complete understanding of exotic quarkonia interms of these pictures has not yet been obtained.

EFT together with lattice QCD: a tool to understandthe various pictures in a model-independent way.

Figure from Front. Phys. 10 101401 (2015)

2/30

Page 3: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Studies of quarkonium hybrids with EFT

EFT framework and spectrum with leading operators:M. Berwein, N. Brambilla, J. Tarrus Castella, A. Vairo, Phys. Rev. D92 (2015)N. Brambilla, G. Krein, J. Tarrus Castella, A. Vairo, Phys. Rev. D97 (2018)

R. Oncala, J. Soto, Phys. Rev. D96 (2017)

Spin-dependent potential and spin splitting:N. Brambilla, WKL, J. Segovia, J. Tarrus Castella, A. Vairo, Phys. Rev. D99(2019)

N. Brambilla, WKL, J. Segovia, and J. Tarrus Castella, Phys. Rev. D101 (2020)

Decays to traditional quarkonia:R. Oncala, J. Soto, Phys. Rev. D96 (2017)

J. Tarrus Castella, E. Passemar (2021)

This project:Comprehensive study of decays of quarkonium hybridsinto traditional quarkonia

3/30

Page 4: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Quarkonium hybrids in the EFT picture

Quarkonium hybrid: QQ in color octet with gluon excitation (light d.o.f. withscale ΛQCD)Separation of scales for low-lying states:

m� mv � ΛQCD � mv2 ∼

√Λ3QCD

m=⇒ suitable for EFT description

(m ≡ mQ)Integrate out d.o.f.:QCD → NRQCD → pNRQCD → BOEFT (Born-Oppenheimer EFT)

mv

Scale

m

mv2

ΛQCD

QCD

NRQCD

pNRQCD

BOEFT

Q

light d.o.f.

Q

r ∼ 1/mv

∼ 1/ΛQCD

4/30

Page 5: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Static limit

Dynamics of QQ happens at time scale ∼ 1/mv2 � 1/ΛQCD ⇒ BornOppenheimer approximation. E. Braaten, C. Langmack, D. H. Smith, Phys. Rev. D 90, (2014)

Interquark potential given by energy eigenvalues with Q and Q at fixedpositions.In the static limit of QQ, the system has symmetry group D∞h.Irreducible representation of D∞h: Λση .

Irreducible representations of D∞h

K: angular momentum of light d.o.f.λ = r ·K = 0,±1,±2, ±3 , . . .Λ = |λ| = 0, 1, 2, 3, . . . (Σ, Π, ∆, Φ, . . . )

Eigenvalue of CP : η = +1 (g), −1 (u)

σ: eigenvalue of relfection about a plane containing r (only for Σ states)

σ = +/−

η = CP

Q

Q

5/30

Page 6: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Static energies

In the static limit, when r → 0 the symmetry group reduces to O(3)× C, thequarkonium hybrid turns into a gluelump.State of light d.o.f. at r = 0 labeled by κ = KPC .

State of light d.o.f. labeled by n = (κ,Λση ), with κ denoting the r → 0 limit.

Static energy E(0)n (r): energy eigenvalue of H(0) (NRQCD Hamiltonian in the

limit m→∞), with Q and Q at fixed positions x1, x2.

In terms of Wilson loop:

E(0)n (r) = lim

T→∞

i

Tlog〈Xn(T/2)|Xn(−T/2)〉

|Xn(t)〉 = χ(x2, t)φ(x2,R, t)On(R, t)φ(R,x1, t)ψ†(x1, t)|0〉

Λση KPC On

Σ−u 1+− r ·B, r · (D ×E)

Πu 1+− r ×B, r × (D ×E)

Σ+ ′g 1−− r ·E, r · (D ×B)

Πg 1−− r ×E, r × (D ×B)

Σ−g 2−− (r ·D)(r ·B)

Π′g 2−− r × ((r ·D)B + D(r ·B))

∆g 2−− (r ×D)i(r ×B)j + (r ×D)j(r ×B)i

Σ+u 2+− (r ·D)(r ·E)

Π′u 2+− r × ((r ·D)E + D(r ·E))

∆u 2+− (r ×D)i(r ×E)j + (r ×D)j(r ×E)i

6/30

Page 7: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Lattice determination of static energies

G. S. Bali et al., Phys. Rev. D62, 054503 (2000)

7/30

Page 8: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Lattice determination of static energies

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14

atEΓ

R/as

Gluon excitations

as/at = z*5

z=0.976(21)

β=2.5as~0.2 fm

Πu

Σ-u

Σ+g’

∆gΠg

Σ-g

Πg’Π’u

Σ+u

∆u

Σ+g

short distancedegeneracies

crossover

string ordering

N=4

N=3

N=2

N=1

N=0

K. Juge, J. Kuti, C. Morningstar, Phys. Rev. Lett. 90

(2003)

Ground state: Σ+g

Gluelump energy Λκ:

En(r) →r→0

V(0)o (r) + Λκ

Degeneracies at r → 0

2

3

4

5

6

0 0.5 1 1.5 2 2.5

[EH

(r)

- E

Σ+ g(r

0)]

r 0

r/r0

1+-

Πu

Σ-u

1--

Σ+g’

Πg2--

∆g

Σ-g

Πg’

2+-

Σ+u

Πu’

∆u

3+-

Φu Πu’’0

++Σ

+g’’

Σ+g + m0

++

4-- ∆g’

Πg’’

1-+

Gluelump energies (at r = 0):M. Foster and C. Michael, Phys. Rev. D59 (1999)

Figure taken from

G. S. Bali and A. Pineda, Phys. Rev. D69 (2004) 8/30

Page 9: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

BOEFT

ΛQCD

mv2

E

r

Σ−u

Πu

Πg

Σ+′g

1+−

1−−

9/30

Page 10: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

BOEFT

Successive matchings to obtain BOEFT

QCD: LQCD = Q(i /D −m)Q− 12

Tr[GµνGµν ]

QCD → NRQCD: Integrate out modes of scale m.

LNRQCD = ψ†(iD0 + D2

2m+ gB·σ

2m

)ψ − χ†

(iD0 + D2

2m+ gB·σ

2m

)χ + . . .

− 12

Tr[GµνGµν ]

W. Caswell, G. Lepage, Phys. Lett. 167B (1986); G. Bodwin, E. Braaten, G. Lepage, Phys. Rev. D51

(1995)

NRQCD → weakly-coupled pNRQCD: Integrate out modes of scale mv ∼ 1/rin the short distance regime (r � 1/ΛQCD).

LpNRQCD =∫d3R

{∫d3r

(Tr[S† (i∂0 − hs) S + O† (iD0 − ho) O

]+gTr

[S†r ·E O + O†r ·E S + 1

2O†r · {E,O}

]+ · · ·

)− 1

2Tr[GµνGµν ]

}A. Pineda, J. Soto, Nucl. Phys. Proc. Suppl. 64 (1998); N. Brambilla, A. Pineda, J. Soto, A. Vairo,

Nucl. Phys. B566 (2000)

Weakly-coupled pNRQCD → BOEFT: Integrate out modes of scale ΛQCD.

LBOEFT =∫d3Rd3r

∑κλλ′

Ψ†κλ

(r,R, t)

{i∂t − Vκλλ′ (r) + P

i†κλ

∇2rmP iκλ′

}Ψκλ′ (r,R, t)

+ . . .

M. Berwein, N. Brambilla, J. Tarrus Castella, A. Vairo, Phys. Rev. D92 (2015); N. Brambilla, G. Krein, J.

Tarrus Castella, A. Vairo, Phys. Rev. D97 (2018); R. Oncala, J. Soto, Phys. Rev. D96 (2017);N. Brambilla,

WKL, J. Segovia, and J. Tarrus Castella, Phys. Rev. D101 (2020)10/30

Page 11: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

BOEFT

Lagrangian of BOEFT

LBOEFT =

∫d3Rd

3r∑κ

∑λλ′

Ψ†κλ

(r,R, t)

{i∂t − Vκλλ′ (r) + P

i†κλ

∇2r

mPiκλ′

}Ψκλ′ (r,R, t) + . . .

d.o.f.: color-singlet field Ψκλ(r,R, t) ∝ P iκλOa†(r,R, t)Giaκ (R, t)

Giaκ (R, t): gluelump operator

H(0)Oa†(r,R, t)Giaκ (R, t)|0〉 → (V(0)o (r) + Λκ)Oa†(r,R, t)Giaκ (R, t)|0〉

as r → 0P iκλ projects Giaκ (R, t) to a representation of D∞h.

BOEFT: EFT for dynamics of QQ at scale mv2 ⇒ Schrodinger equation

Schrodinger equation[−P i†κλ

∇2rmP iκλ′ + Vκλλ′ (r)

]Ψnκλ′ (r) = EnΨnκλ(r)

Ψnκλ(r) ≡ 〈0|Ψ(r,R = 0, t = 0)|n〉Ψnκλ(r): wave function of QQ in quarkonium hybrid |n〉

11/30

Page 12: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Semi-inclusive decay

N. Brambilla, WKL, A. Mohapatra, A. Vairo (in progress)

Typical observed decay channels of XYZ into traditional quarkonia:

XYZ→ quarkonium + light mesons + photons

Consider the decay H → S +X, with H = low-lying hybrid, S = low-lyingquarkonium.

Define ∆ ≡ mH −mS (∼ 1 GeV). We observe that ∆� ΛQCD � mv2.

Assume the hierarchy mv � ∆� ΛQCD � mv2.Integrate out modes of scale ∼ ∆ and ∼ ΛQCD to obtain BOEFT of hybrid atscale mv2.

At scale mv � µ� ΛQCD, we have weakly-coupled pNRQCD.Leading relevant contribution to ImV of BOEFT:

Black dot: vertex of pNRQCD

12/30

Page 13: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Weakly-coupled pNRQCD Lagrangian

LpNRQCD =

∫d3R

{∫d3r(Tr[S†

(i∂0 − hs) S + O†

(iD0 − ho) O]

+ gTr

[S†r ·E O + O

†r ·E S +

1

2O†r · {E,O}

]+

g

4mTr[O†LQQ · [B,O]

]+gcF

mTr[S†(S1 − S2) ·B O + O

†(S1 − S2) ·B S + O

†S1 ·B O− O

†S2O ·B

]−

1

4GaµνG

µν a

}

Spin-preserving decay

Spin-flipping decay

Γ(H → S +X) = Γpert +O(

Λ2QCD/∆

2)

Perturbative diagrams:

13/30

Page 14: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Weakly-coupled pNRQCD Lagrangian

LpNRQCD =

∫d3R

{∫d3r(Tr[S†

(i∂0 − hs) S + O†

(iD0 − ho) O]

+ gTr

[S†r ·E O + O

†r ·E S +

1

2O†r · {E,O}

]+

g

4mTr[O†LQQ · [B,O]

]+gcF

mTr[S†(S1 − S2) ·B O + O

†(S1 − S2) ·B S + O

†S1 ·B O− O

†S2O ·B

]−

1

4GaµνG

µν a

}

Spin-preserving decay

Spin-flipping decay

Γ(H → S +X) = Γpert +O(

Λ2QCD/∆

2)

Perturbative diagrams:

13/30

Page 15: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Weakly-coupled pNRQCD Lagrangian

LpNRQCD =

∫d3R

{∫d3r(Tr[S†

(i∂0 − hs) S + O†

(iD0 − ho) O]

+ gTr

[S†r ·E O + O

†r ·E S +

1

2O†r · {E,O}

]+

g

4mTr[O†LQQ · [B,O]

]+gcF

mTr[S†(S1 − S2) ·B O + O

†(S1 − S2) ·B S + O

†S1 ·B O− O

†S2O ·B

]−

1

4GaµνG

µν a

}

Spin-preserving decay

Spin-flipping decay

Γ(H → S +X) = Γpert +O(

Λ2QCD/∆

2)

Perturbative diagrams:

13/30

Page 16: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Spin-preserving decay

Spin-preserving inclusive decay rate for Hm → Sn +X (perturbative, LO in αs)

Γ(Hm → Sn +X) =4αsTF

3Nc

∑q,q′

∫dE

∫dE′f imq(E)gj

qn′ (E)gj†q′n′ (E

′)f i†mq′ (E

′)

× (Λ + E/2 + E′/2− Esn)3∑n′|hnn′ |2

where

f imq(E) =

∫d3rΨi†m(r)ΦoE,q(r)

gjqn′ (E) =

∫d3rΦo†E,q(r)rjΦsn′ (r)

hnn′ =

∫d3rΦQ†n (r)Φsn′ (r)

Several points to note on the decay formula:

It is a double integral over the energies E,E′ of the octet wave function ΦoE,qand Φo

E′,q′ .

The phase space factor (Λ + E/2 + E′/2− Esn)3 ∼ ∆3 parametrically.

14/30

Page 17: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

As a preliminary exploration, let us apply the assumptions hnn′ ≈ 1, EQn ≈ Esn, andf imq(E) 6= 0 only when Em ≈ E + Λ.

Spin-preserving inclusive decay rate for Hm → Sn +X (simplified)

Γsim(Hm → Sn +X) =4αsTF

3Nc(Em − EQn )3T ij(T ij)∗

where

T ij ≡∫d3rΨi†m(r)rjΦQn (r)

This simplified formula is the same as the formula in R. Oncala, J. Soto (2017)and J. Tarrus Castella, E. Passemar (2021).

In R. Oncala, J. Soto (2017), in numerical evaluations the tensor structureT ij(T ij)∗ was replaced by T ii(T jj)∗, which led to a selection rule that hybridswith L = J (such as Np1 (H2)) do not decay. With the correct tensor structureT ij(T ij)∗, such selection rule does not exist.

15/30

Page 18: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Preliminary result

Spin-preserving decay rates for charmonium hybrids:

16/30

Page 19: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Preliminary result

Spin-preserving decay rates for bottomonium hybrids:

17/30

Page 20: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Spin-flipping decay

Spin-flipping inclusive decay rate for Hm → Sn +X (perturbative, LO in αs)

Γ(Hm → Sn +X) =4αsTF

3Nc

∑q,q′

∫dE

∫dE′f imq(E)wj

qn′ (E)wj†q′n′ (E

′)f i†mq′ (E

′)

× (Λ + E/2 + E′/2− Esn)3∑n′|hnn′ |2

wjqn′ (E) =

∫d3rΦo†E,q(r)(Sj1 − S

j2)Φsn′ (r)

Spin-flipping inclusive decay rate for Hm → Sn +X (simplified)

Γsim(Hm → Sn +X) =4αsTF c

2F

3Ncm2Q

(Em − EQn )3U ij(U ij)∗

U ij ≡∫d3rΨi†m(r)(Sj1 − S

j2)ΦQn (r)

Spin flip: |SH = 1〉 → |SQ = 0〉 or |SH = 0〉 → |SQ = 1〉Formula of Γsim agrees with J. Tarrus Castella, E. Passemar (2021) 18/30

Page 21: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Preliminary result

Spin-flipping decay rates for charmonium hybrids:

19/30

Page 22: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Preliminary result

Spin-flipping decay rates for bottomonium hybrids:

20/30

Page 23: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Preliminary result

Background figure from Olsen, Skwarnicki, Zieminska, Rev. Mod. Phys. 90 (2018)

21/30

Page 24: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Preliminary result

Background figure from Olsen, Skwarnicki, Zieminska, Rev. Mod. Phys. 90 (2018)

22/30

Page 25: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Preliminary result

Background figure from Olsen, Skwarnicki, Zieminska, Rev. Mod. Phys. 90 (2018)

23/30

Page 26: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Preliminary result

Background figure from Olsen, Skwarnicki, Zieminska, Rev. Mod. Phys. 90 (2018)

24/30

Page 27: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Summary and outlook

BOEFT provides a model-independent way to study heavyquarkonium hybrids in a systematic way.

We formulated a way to calculate inclusive decay rates ofquarkonium hybrids into traditional quarkonia. The resultingdecay formulae involve integrals of overlaps of wave functions.We evaluated the decay rates numerically by applyingsimplifying assumptions.

We will

evaluate the decay formulae with integrals of wave functionoverlaps and include radiative correctionsquantify theoretical errors and compare with experimental dataapply the framework to exclusive decaysinclude mixing with excited quarkoniaextend the framework to the study of tetraquarks.

25/30

Page 28: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Thank you.

26/30

Page 29: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Back up slides

27/30

Page 30: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

It is interesting to see how f imq(E)=∫d3rΨi†m(r)ΦoE,q(r) looks like as a function of

E:

H2-multiplet, l = 1, JPC = [1++, (0, 1, 2)+−]H2(4145):

Radial integral of fimq(E) vs E (GeV) Radial hybrid wave function vs r (GeV−1)

The actual peak is slightly off (at a lower E) from the expected peak atE = Em − Λ.

The peak is broad, with width ∼ 1 GeV. The assumption that f imq(E) isnonzero only when Em ≈ E + Λ is not true.

28/30

Page 31: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

H′2(4511):

H′′2 (4863):

Radial integral of fimq(E) vs E (GeV) Radial hybrid wave function vs r (GeV−1)

f imq(E) exhibits multiple peaks for excited hybrid states. All the peaks are at alower E from the expected peak.

29/30

Page 32: Semi-inclusive decay of heavy quarkonium hybrids into

Summary and outlook

Preliminary result

Spin-preserving inclusive decay rates (with overlap integrals):

NLJ → N ′L′ Γ (MeV)charmonium hybrid decay

1p0 → 1s 240.02(s/d)1 → 1p 103.14(s/d)1 → 1p 450.4bottomonium hybrid decay

1p0 → 1s 61.81p0 → 2s 58.52p0 → 2s 14.32p0 → 3s 36.14p0 → 1s 10.94p0 → 1s 16.44p0 → 2s 11.34p0 → 3s 12.7

2(s/d)1 → 1p 43.03(s/d)1 → 2p 13,94(s/d)1 → 2p 181.55(s/d)1 → 1p 53.05(s/d)1 → 2p 47.0

30/30