sugico mok plan 3

159
Page 1 of 30 Business Plan OWNERS Sugico Mök Sugico Mök 3909 Easton Way Jl Iman Bonjol no. 6870 Columbus, OH 43219 Jakarta USA Indonesia (614) 4038912 [email protected] [email protected] Confidential Material Sugico Mök Page 1 of 159

Upload: william-mook

Post on 12-Nov-2014

677 views

Category:

Documents


18 download

DESCRIPTION

This is the complete document set, formerly classified, for my coal to liquid plans in Indonesia. These were based on the failed plans we had in the USA, following the arrest of Jeffrey Epstein when he sought to take counter-party risk on futures we wanted to list on NYMEX to fund the delivery of 250 million barrels of syncrude to the SPR in 2004 at $25 per barrel. This deal blew up when ASTM decided in 2006 that their standards for liquid fuels would no longer apply to coal-derived liquids (thought biodiesel is okay) We went forward anyway, with investors in UAE taking counter-party risk. Those investors were adversely impacted by the meltdown in the US banking sector in 2007. Today I am moving foward with a $20 million hydrogen prodution effort which should start up the process and put us where we were in 2004 by 2012.

TRANSCRIPT

Page 1: Sugico Mok Plan 3

Page 1 of 30 

Business Plan  

 

 

 

OWNERS 

 Sugico Mök           Sugico Mök  3909 Easton Way          Jl Iman Bonjol no. 68‐70 Columbus, OH 43219        Jakarta USA            Indonesia (614) 403‐8912 [email protected]      [email protected]       

Confidential Material    Sugico Mök    

Page 1 of 159

Page 2: Sugico Mok Plan 3

Page 2 of 30 

I. Table of Contents 

I. Table of Contents ................................................................................................... 2

II. Executive Summary............................................................................................... 3

III. General Company Description ............................................................................ 6

IV. Products and Services.......................................................................................... 10

V. Marketing Plan ..................................................................................................... 11

 

Confidential Material    Sugico Mök    

Page 2 of 159

Page 3: Sugico Mok Plan 3

Page 3 of 30 

II. Executive Summary 

Sugico Mök (or the “Company” or the “Venture”) is a solar energy company in the oil and gas business.  That’s because Sugico Mök uses solar power plants that produce clean electricity at a cost  lower  than any other generator  technology  in history  to convert  its abundant coal assets into oil and gas at very low cost.    The company’s solar power plants are based on a series of proprietary technology and process innovations by Mök Industries and will be applied to a portion of Sugico Graha’s coal holdings to double the reserve of petroleum products available to Indonesia while increasing the value of the underlying  coal more  than 85  times  their present value.    If  in  time Sugico Mök  elects  to convert  all  of  Sugico Graha’s  coal  into petroleum products,  the  company would produce  an amount of petroleum products nine  times greater  than  Indonesia’s current proved reserves of petroleum.   This  is enough petroleum  to supply  the nation of Indonesia until 2033, even with 6% compounded annual rates of growth.   Under this assumption per capita income and energy use will be more than 4.8 times what it is today.   Sugico Mök’s  solar electric energy  costs are  so  low  that  for  the  first  time  in history  it makes economic sense  to use electricity  to create synthetic  fossil  fuels directly.    It  is by selling  those fossil fuels into existing oil and gas markets that will make money for the company.    Using electricity to produce synthetic fuels has always been technically feasible, but until Mök’s innovations, making  synthetic  fuels  from  electricity  has  always  been  too  costly.   Now with Mök’s  innovations,  this  simple  approach  of  using  electricity  to make  high‐quality  synthetic fuels makes  economic  sense.   Mök  achieves  low  energy pricing  by  extreme  concentration  of sunlight onto low‐cost photovoltaic generators designed to operate at very high light intensities.   Large scale synthetic fuel production also requires an electrolysis facility capable of producing massive quantities of hydrogen gas.   The production of hydrogen  in the quantities envisioned by the Venture will position the Company to take advantage of any future developments that occur which displace oil with hydrogen.  At that point, the Company will simply sell hydrogen to  those developing  the  “hydrogen  economy.” Hydrogen will be produced on  its  concession lands after mining is completed and Sugico Mök actually improves its margins.   To power synthetic fuel production on the scale Sugico Mök envisions requires solar collection arrays of unprecedented size.  Since current world capacity to produce old style solar collectors is  limited by  the availability of surplus silicon  from  the consumer electronics  industry, Mök’s planned capacity puts  the Company  in  the  forefront of  the solar electric markets  in  its bid  to provide  even  a  small  fraction  of  the world’s  petroleum  needs.    Sugico Mök’s  cost  of  solar electricity will be  so  low  that  the Company could make  significant money on  just  the  sale of 

Confidential Material    Sugico Mök    

Page 3 of 159

Page 4: Sugico Mok Plan 3

Page 4 of 30 

solar  electricity.    Therefore,  Sugico Mök  will  create  a  range  of  alternative  markets  for  its products in addition to producing high‐grade synthetic petroleum products.   

Markets for Sugico Mök Products 

• Coal to Liquids • Carbon‐dioxide to Methane and Methanol • Solar Panel and Electricity  

 Coal to Liquids  Sugico Mök  produces  high‐quality  petroleum  products  for  $15  per  barrel  using  simple  coal hydrogenation  reactors,  the  same  type  that make margarine  from vegetable oil.   Sugico Mök achieves $15 per barrel pricing because it will produce hydrogen at $250 per ton from water and sunlight.   That’s because  the Venture generates electricity at an unprecedented cost of $5 per megawatt‐hour by concentrating sunlight with  low‐cost optics, which  reduces  the area of  the costly photocells without increasing other costs.  Sugico Mök’s ability to make over six barrels of  oil  from  a  single  ton  of  coal using nothing more  than  sunlight, water  and hydrogenation reactors give Sugico Mök  the ability  to create significant value.   Coal  to Liquids  is  the  ‘sweet spot’  of  the  Venture’s  technology  and  coal  to  liquids  is where  Sugico Mök will  create  the greatest value, so this is where the Company will start its development.   The Company will  initially  convert 3,285  tons of  low‐grade  coal  to 20,000 barrels per day of petroleum liquids by 2011. This will require an investment of $693 million and the installation of 8.1 million Mök solar panels covering 3,250 ha of Sugico Mök lands.  Of this total $326 million is  allocated  toward  the  production  of  solar  power  systems  while  $367 million  is  allocated toward the production of coal hydrogenation and processing systems.  Once 20,000 barrels per day is being produced, the company will expand production to 770,000 barrels per day by 2015 and will continue at this rate from its reserves until 2033.  After that time Sugico Mök will sell hydrogen fuels and electricity produced from its solar panel array, or seek other coal reserves to convert to petroleum products.   Although Sugico Mök consumes large amounts coal in making its high‐grade synthetic oil, the company  is dedicated  to  the environment.   That  is why  the petroleum products Sugico Mök produces from coal have a dramatically lower environmental impact than traditional petroleum based fuels.   This comes about because Sugico Mök uses  the coal as a feedstock and does not burn it to produce petroleum.  This means there are no emissions from the Mök process.  Mök even  uses  the  ash  and  tar  left  over  after  processing  to  create  a  new  source  of  asphalt  for roadways.  In Sugico Mök’s process, nothing is wasted.    Confidential Material    Sugico Mök    

Page 4 of 159

Page 5: Sugico Mok Plan 3

Page 5 of 30 

Carbon Dioxide to Methane and Methanol 

Sugico Mök also makes methane with hydrogen and carbon dioxide.  Methane is the principal component of natural gas.  Here, Sugico Mök takes carbon dioxide from the Natuna fields and produces methane and methanol.       Coal  fired generation plants,  steel mills, and others who have significant carbon dioxide emissions are natural customers for our methane and methanol production  process.    Sugico Mök’s  new  source  of  natural  gas  breaks  pipeline  and  supply bottlenecks  while  reducing  damaging  greenhouse  gas  emissions,  effectively  adapting  the Company’s technology  to create a clean coal  technology for  those customers who use or burn coal.  

Solar Panels and Electricity  Sugico Mök has structured its approach to this rich opportunity in a way that  maximizes return on  investment.   Mök  has  already  identified  a  number  of  early  adopters who  use  industrial quantities of direct current electricity.   Direct current electricity  is  the very kind of electricity produced by Mök solar power plants.   The Company  then determines  if electricity  is a major component of those customers’ total cost of production.  These industries benefit the most from Mök’s innovations:  

• Aluminum producers – electrolytic production of metal • Rare earth mines – electrolytic concentration of metal • Electro‐plating operations – electrolytic plating of metal • Brine Electrolysis—bleach, deodorants, disinfectants 

 In addition  to  the sale of direct current electricity, which will bring new  industrial operations and jobs to Indonesia, Sugico Mök will invert the direct current electricity to alternating current and  still  produce  that  electricity  at  a  cost  which  is  more  competitive  than  conventional generation.   Breaking  into the merchant power market serves two direct purposes:    it delivers significant return on investment and it reduces demand for steam coal to provide conventional power  even while  demand  for  electrical  power  increases.    The Company  also will make  its proprietary solar modules available for sale throughout Indonesia and license the technology on an industrial, commercial, or residential basis, easing the nation’s electrical supply difficulties. 

Confidential Material    Sugico Mök    

Page 5 of 159

Page 6: Sugico Mok Plan 3

Page 6 of 30 

III. General Company Description 

Sugico Mök is in the Coal to Liquids (CTL) business using land and coal resources in Indonesia and technology developed in the United States.  Sugico Mök innovatively combines the energy of  coal  with  the  energy  of  sunlight  in  a  brand‐new  way  to  create  high‐quality  petroleum products at very low cost while producing zero emissions.  Over time, as coal deposits decline and mine areas  increase, the company will simply use  its solar panel technolology to produce hydrogen gas as a fuel.  So, over time, Sugico Mök will develop new markets for solar electricity and  solar  derived  hydrogen  fuels  and  feedstocks  putting  Indonesia  at  the  forefront  of alternative energy for the 21st century while meeting immediate national energy needs. 

Sugico Mök creates long‐term energy solutions for a growing world economy by cost‐effectively making use of  sunlight  to meet  real‐world energy needs at  competitive prices while  creating profits for our shareholders.   

PRIMARY PROCESS 

Confidential Material    Sugico Mök 

 

Sugico Mök takes low cost solar energy and 900 million tons of low‐grade coal and creates 5,580 million barrels  of high‐quality petroleum products  over  the next  25 years.   These petroleum products multiply the value of the underlying coal reserve over 85 times.  In creating this value Sugico Mök  takes  solar  energy  to  the  next  level.    Sugico Mök makes  solar  energy  directly competitive with extracted petroleum products.  To achieve this Sugico Mök deploys thousands of  hectares  with  solar  panels  in  less  then  five  years  at  costs  that  are  1/100th  the  cost  of conventional panels.   Sugico Mok panels produce hydrogen from water at costs  less than that achieved by  conventional  shift  reactions while producing  only  oxygen by product,  and  zero carbon dioxide emissions.  Sugico Mök achieves costs 1/100th that of conventional panels by an innovative new design  that allows volume of panel production  to  increase  to 100x  that of  the 

Water  Coal Sunlight 

Electrolysis Bergius Reactor

Solar Collector

Petroleum 

     DC                            Hydrogen                 Electricity    Oxygen 

1 ton coal yields 6.2 barrels petrolelum 

   Page 6 of 159

Page 7: Sugico Mok Plan 3

Page 7 of 30 

world’s current production capacity.  This combination of unique features allows Sugico Mök to make  use  of  solar  energy  to  compete  with  conventional  fuels  cost‐effectively  without government  subsidy.    Sugico  Mök  will  release  Indonesia  from  supply  constraints  of diminishing supplies of extracted  fuels by replacing  those  fuels with  fuels derived  from solar produced hydrogen .     

SECONDARY PROCESSES ADD VALUE 

Confidential Material    Sugico Mök 

Low cost hydrogen and electricity has other uses as well.   Hydrogen may be added to carbon dioxide  to produce methane and methanol.   This  reduces greenhouse gases while producing valuable  commodities,  avoiding  the  need  for  sequestration  altogether.        Direct  Current Electricity can be stored  in batteries and  inverted  to produce alternating current electricity  in demand from inconstant sunlight. 

All prosperous nations have growing energy demands.  All fuels extracted from fixed reserves eventually  enter  a  period  of  decline.    This  is  the  reason  that  in  the  1970s  the United  States demand for oil exceeded  its ability to supply that oil.   Europe and Japan also  import more oil than they make.  Since the 1970s the price of oil has steadily risen as world industry grew.  This steadily  rising  price  has  slowed  the world’s  economy  but  not  reversed  growth.    In  the  21st century all prosperous nations will follow this same path followed by other industrial nations of the 20th century.  All nations will need more oil than can be supplied by existing reserves in the future.   

Sugico Mök  seeks  to  end  this  short  fall  in  Indonesia  using  new  approaches  to  petroleum products.   By  tapping  the unlimited power of  the  sun  at  a price  that  is  competitive with oil 

Sunlight  Water  Coal 

ElectrolysisSolar Collector

Bergius Reactor Gasoline 

DC                                  

Electricity    O2     H2 

Sabatier Methane 

Batteries & Inverters

AC Electricity 

Carbon Dioxide 

MethanolFresh Water 

   Page 7 of 159

Page 8: Sugico Mok Plan 3

Page 8 of 30 

Sugico Mök will  establish  an  era  of  decreasing  fuel  prices  in  Indonesia  and  throughout  the world, while creating huge value for our shareholders.   Lower fuel prices make all economies stronger and create a world that is more prosperous and safer for us now and for our children in the future.  

Sugico Mök markets its petroleum products wherever petroleum products are now sold.  These synthetic petroleum products are chemically and energetically  identical  to existing petroleum products.    So,  Sugico  Mök  is  immediately  competitive  with  existing  petroleum  products worldwide.   

Petroleum products are a $1,800,000 million per year commodity.  Availability of product is the determining factor  in market success.   Quality and price are strongly correlated across a wide range  of  products.   Due  to  limited  supplies  in  the  face  of  rising  demand  prices  have  risen dramatically  in recent years.   Demand for petroleum products  in  larger  industrial nations  like the United States, Europe and  Japan, grows at a steady 4% per year.   Demand  for petroleum products  in  nations with  a  growing  industry  like  Indonesia,  India,  and  China,  growth  can approach 9% per year.   This  rising demand  in  the  face of slowing output  is creating upward pressure on today’s petroleum product pricing.   

Before the beginning of the industrial age the world possessed 2,000,000 million barrels of easily recoverable  petroleum  reserves.    It  is  the  nature  of  the  recovery  process  for  these  naturally occurring reserves to have increasing output until half the entire reserve is produced.  After that time, there is a slowing and then a decrease in rate of production.  This is true for a single well, for many wells, and for the entire world.  The world now possesses 1,200,000 million barrels of easily recoverable petroleum reserves, with no new reserves known.  At current rates of use by the year 2012  the world will enter a period of decreasing petroleum production, at  that  time costs are expected to be three times their current price.  Clearly finding easy to use alternatives to extracted petroleum products is a good business to be in. 

Sugico  Mök  uses  solar  derived  hydrogen  and  direct  coal  liquefaction  to  create  superior petroleum products  from  coal.   Since Sugico Mök does not burn  coal or any hydrocarbon  to obtain the hydrogen it needs to convert coal to liquids, there are no carbon dioxide emissions.  Also, since all  the carbon  in  the coal  is available  for conversion  to petroleum products, yields are higher than competing processes.  And, because cost of production scale with the volume of coal handled, costs are lower for Sugico Mök as well.  Finally, since the solar energy component costs less than the coal component, that solar component can continue to create value as long as the sun shines, even when the coal reserve is long gone. 

Sugico  Mök  is  a  joint‐venture  agreement  between  Mök  Industries,  a  US  company  having uniquely  efficient  solar  energy  technology,  and  uniquely  profitable  approach  to  using  solar energy, and Pt. Sugico Graha, a group of Indonesian coal mines in South Sumatera Province. 

Confidential Material    Sugico Mök    

Page 8 of 159

Page 9: Sugico Mok Plan 3

Page 9 of 30 

Mök  Industries,  a US  company,  has  perfected  its  unique  approach  to  low‐cost  solar  energy production by continuous dedicated research efforts since 1996.   Mök has six patents pending and a strong international intellectual property program for dozens more patents over the next three years and a continuing R&D effort.   

Since  2002  Mök  has  partnered  with  Boeing’s  Spectralab  Division  to  perfect  its  unique PhotoVoltaic  Design,  and  also  with  CH2M  HILL  LTD,  Industrial  Design  Construction Corporation Division,  an  $8  billion  engineering  and  architectural  firm,  to  perfect  large‐scale production  of  its  uniquely  cost‐effective  solar  panel  design.   Mök  has  also  partnered with Accenture  a  $15 billion management  consulting  firm  to develop  the highest‐best methods of creating the greatest value for  its  innovative products while achieving Mök’s  long‐term vision of replacing extracted petroleum products with solar energy on the scale needed and the price needed to sustain growth of the world’s industrial economy throughout this period. 

Pt. Sugico Graha is a group of mines operating in South Sumatera Province.  Sugico consists of Sriwijaya Bintangtiga Energy  in Muara Lakitan District, Brayan Dintangtiga Energy  in Rawar Llir District, Brayan Dintangtiga Energy in Muara Lakitan District, Sugico Pendragon Energy in Rawas Llir District, Lion Power Energy  in Gunung Megang District, Tansri Madjid Energy  in Muara Enim District, and Sugico Graha in Rambang Dangku District.  Total reserves of coal are estimated to be 5,360 million tons and lands having an aera of 90,192 hectares.   

Of  this Mök  Industries has agreed  to  convert and Sugico Graha has agreed  to  contribute  for solar conversion, 900 million tons of coal which the companies expect to yield in excess of 5,000 million barrels of high‐quality petroleum products giving this venture reserves equal to that of a major mega‐cap oil company. 

Sugico Mök  is  an  Indonesian company  created  by  a  Joint‐Venture  Agreement  between Sugico  Graha  and  Mök Industries.    

 

 

Confidential Material    Sugico Mök    

Page 9 of 159

Page 10: Sugico Mok Plan 3

Page 10 of 30 

IV. Products and Services 

Sugico Mök makes synthetic petroleum products using a variant of  the Bergius Process.   This process first developed by Germany in the 1920s has never been cost competitive with extracted oil due to the high cost of elemental hydrogen needed to sustain the process.  That is until now.  Mök’s very low cost solar electricity allows the production of low cost hydrogen This hydrogen, when  combined  directly  with  coal  at  high  pressure,  produces  very  high  quality  synthetic petroleum products.   That’s because  there are very  few cross‐reactions.   And since  the coal  is not burned in the process, no carbon‐dioxide is produced.  This makes the Sugico Mök process very clean, efficient, and productive compared to other processes.  Also, the availability of low‐cost electricity and  low‐cost hydrogen, provide  secondary  sources of  revenue  that grow over time as the world moves toward a future hydrogen economy. 

Sugico Mök produces higher quality petroleum products than competing processes and does so at lower costs.  This has an important impact on the underlying value of coal in the ground. 

Mök’s solar‐assisted Bergius process produces high‐grade synthetic petroleum products at $15 per barrel, while Fischer‐Tropsch produces a  lower‐grade synthetic petroleum products at $35 per barrel.   Since petroleum products now  sell  in excess of $70 per barrel, both products are profitable.  But looking at the impact these processes have on the underlying value of coal, the story is quite different. 

By  dividing  the market  capitalization  of  a  company  by  the  total  reserves  controlled  by  that company  the value of  reserves  in  the  ground  is  computed.   For  a  coal  company  this value  is approximately $1.50 per  ton.   For an oil company  this value  is approximately $29 per barrel.  Mök’s solar‐assisted Bergius process produces 6.2 barrel per ton of coal, while Fischer‐Tropsch produces 2.5 barrels per ton of coal.  Thus the change in value of coal in the ground is the value of the oil that may be produced minus the cost of producing it, so; 

  Mök’s Solar‐Assisted Bergius     6.2 * ($29 ‐ $15) = $86.80   Fischer‐Tropsch     2.5 * ($29 ‐ $35) = ($15.00) 

Mök’s process  creates  tremendous value while Fischer‐Tropsch  reduces value.   This  explains why Fischer‐Tropsch requires large subsidies to be profitably implemented in today’s markets.  As Fischer‐Tropsch becomes more efficient and as  the value of oil  in  the ground rises Fischer Tropsch at some point is expected to add value as well.  

Confidential Material    Sugico Mök    

Page 10 of 159

Page 11: Sugico Mok Plan 3

Page 11 of 30 

V. Marketing Plan 

Sugico Mök will arrange off‐take contracts for its petroleum products at market rates with the relevant purchasers  of petroleum products  operating  in  Indonesia.    Sugico Mök’s petroleum products will meet all  relevant standards  for  these products.   Currently Mök has shown  that solar‐assisted  derived  Bergius  products  meet  US  ASTM  and  US  Mil‐Spec  standards  for petroleum products such as jet‐fuel, diesel‐fuel, gasoline and fuel oil. 

Availability of these products at the prices indicated is the relevant factor of our success. 

Economics Table 1  Cost of 20,000 bpd Coal to Liquids Production 

4.5  Sunlight hours per day 365.25  Days per year 

1643.625  Sunlight hours per year 1000000  Watts/MW 1643.625  MWh/MW‐year 

 $             69,500.00  Cost per MW  $7,937.8  Cost per MW‐year 

$4.83  Cost per MWh 50  MWh/ton Hydrogen 

$241.47  Cost per ton Hydrogen 4698  MW installed Sugico Mök  

 $     326,511,000.00  Total Cost Solar Installation    

0.1  Hydrogen per ton Coal $24.15  Hydrogen Cost per ton Coal 

6.2  Yield Barrels Liquid per ton $3.89  Hydrogen Cost per Barrel 

 $                   49.32  Capital Cost per Barrel $4.80  Annual Cost of Capital/bbl $35  Coal Cost per ton 

$5.65  Cost of Coal per Barrel $14.34  Total Cost per Barrel 

 $     366,904,109.59  Total Cost Petroleum Processing    

 $     693,415,109.59  Total Cost Installation  

Confidential Material    Sugico Mök    

Page 11 of 159

Page 12: Sugico Mok Plan 3

Page 12 of 30 

Facts about the petroleum products industry in Indonesia:  

• In 2002 Indonesia produced 372 million barrels per year of petroleum products from 4.7 billion barrels of proved reserves, while demand for petroleum products in Indonesia in 2002  slightly  exceeded  this  figure.   Additional petroleum products were  created  from gas condensates. 

• Indonesian demand grew at 4.7% per year while production is fell at 3.8% per year.  

• Sugico Mök will produce 7.5 million barrels of liquid fuels starting in 2011 reversing this shortfall and grow  its output  to produce 250 million barrels of petroleum products by 2015 providing nearly half of Indonesia’s need for petroleum products.   

• Sugico Mök will  produce  nearly  1%  of  global demand  today when  it  reaches design capacity of this concession, but  that total is expected to be less than ¾% global demand in 2015.   

• Sugico Mök initial production account for 2% of Indonesian demand in 2011 and grow to nearly ½ of total Indonesian demand in 2015. 

• Sugico  Mök  will  bring  to  market  more  liquid  fuels  than  currently  exist  in  all  of Indonesia’s  reserves  of  petroleum  products  and  produce  them  at  a  rate  to  allow Indonesia to grow without shortages throughout 2033 and beyond. 

• Additional  solar panels  installed  throughout  the  country over  time will produce  low‐cost electricity for Indonesia easing electricity shortages and reversing rising electricity prices while reducing  the demand  for coal and oil  to generate electricity and reducing atmospheric pollution. 

• In  2002  Indonesia  had  21.4  Gigawatts  of  installed  generating  capacity  that produced  75 million MWh  of  electrical  energy.    101 million Mök  solar panels producing 58.7 Gigawatts when the sun shines will provide all this demand and occupy 37,600 ha of land ay 100. 

• Direct  sales  of  electricity  to  utilities  allows  Sugico Mök  to  use more  coal  to  produce petroleum.  Additional coal reserves exist that may be converted to petroleum products using solar hydrogen.  So in this way Sugico Mök expands the production of petroleum products  for export while reversing rising energy prices and ends energy shortages of petroleum products in Indonesia.   

• Sugico’s reserves in excess of 5,000 million tons of coal can produce more than 34 billion barrels of  synthetic petroleum products using Mök’s  advanced  solar  assisted process.  

Confidential Material    Sugico Mök    

Page 12 of 159

Page 13: Sugico Mok Plan 3

Page 13 of 30 

This  is  a  total  amount  of  liquid  fuels  9x  greater  than  Indonesia’s  proved  reserves  of petroleum products today. 

• With a compounded 6% economic growth rate 34 billion barrels  is sufficient  to supply all of Indonesia’s energy needs through 2033 using Sugico Graha’s proved coal reserves and Mök’s solar‐assisted Bergius process. 

• Fully developing the concessions available to the Company give Sugico Mök the ability to become one of the largest most successful energy companies in the world.   

 

Confidential Material    Sugico Mök    

Page 13 of 159

Page 14: Sugico Mok Plan 3

Page 14 of 30 

Product  

Sugico Mök uses a new way to produce higher quality petroleum products from coal reserves at a cost that increases the value of the underlying coal reserves in the ground.  While the process used by Sugico Mök is more costly than drilling and extracting proved oil reserves there are  no exploration costs or discovery risks associated with Sugico Mök’s production method.   

Features and Benefits 

Coal to Liquids 

• Quality  equivalent  to  conventional  oils  due  to  low number  of  cross‐reactions  produced  with  higher yields per ton of coal used. 

• Creates  a  higher  value  petroleum  product  at  lower cost. 

Obtaining high value and greater yields at  lower cost mean the  value  of  the  underlying  coal  reserve  is  dramatically increased in value.  This increase in value can be leveraged to expand production quickly. 

 

 

 

 

Confidential Material    Sugico Mök    

Page 14 of 159

Page 15: Sugico Mok Plan 3

Page 15 of 30 

 

 

 

 

 

 APPENDICES 

Confidential Material    Sugico Mök    

Page 15 of 159

Page 16: Sugico Mok Plan 3

Page 16 of 30 

 

William Mook, CEO  Mök Industries 

 

Advances 1996 through 2006 

Confidential Material    Sugico Mök    

Page 16 of 159

Page 17: Sugico Mok Plan 3

Page 17 of 30 

Low‐cost Photovoltaic Panel Design & Construction 

 

Confidential Material    Sugico Mök 

This  is  a  new  sort  of  concentrating photovoltaic system that consists of arrays of lenses similar to that shown here.  There is  a  fish‐eye  type  wide  angle  refractive imaging  lens  up  top,  a  non‐imaging conical reflector  in  the middle, and a non‐imaging compound parabolic concentrator down below.    In  the exit plane,  is a small photovoltaic cell soldered onto conductive copper foil, embedded in a plastic lattice.   

 

The  lens system consists of  thin  film clear plastic, such as PET, (the same material as soda  bottles)  filled  with  ultra‐pure  clear water.    Since  the water’s  refractive  index matches  the  refractive  index of  the plastic used, any irregularity in the PET surface is invisible.   This  is why water bottles  filled with water  appear  to  be  far  clearer  than water bottles that are empty.   

 

The plastic  film holds  the water  in a  lens‐like  shape, and  the water  itself  is  the  lens medium.  This way the film can be molded into lens shapes at far lower cost than with an all plastic lens.  Also, only a very small amount of plastic  is used  for a given  lens volume.      Large  volume  lenses  can  be made  less  precisely  than  small  volume lenses of the same capacity which reduces manufacturing costs. 

   

 

Page 17 of 159

Page 18: Sugico Mok Plan 3

Page 18 of 30 

 

The film is hot‐press molded in four layers.  The bottom‐most layer has copper foil imbedded in it.   Photo voltaic cells are then soldered onto the foil.   Another layer is thermally  joined to the bottom layer to create a sparse array of photo‐voltaic cells.  The top two layers are formed and joined to the completed bottom layer immersed in a water bath.  A lens array of artibtrary size may be formed. 

 

The  concentrating    photovoltaic  system described  here  consists  of  panels  each  8 feet  by  4  feet  in  area  comprised  of  4,196 lenses.    Each  lens  has  one  square  inch area.  Each lens illuminates a photovoltaic cell one square millimeter  in area.   So,  in each 8 foot by 4 foot panel there are 4,196 photovoltaic  cells  each  one  square millimeter  in  area.    This  means  that  a typical  300  mm  diameter  wafer,  costing $140  for  first  run  commercial  crystalline 

silicon, with  typical yields,  can make 14 panels each 8  feet by 4  feet  in area.   So,  the  cost of photovoltaic materials is only $10 per panel.  These same wafers if used to make a conventional panel would cost $11,820 from the same wafers.  The power produced under illumination is the same in either case.  

 

The plastic  film which  contains the water  costs $4.48 per 8  foot by 4 foot panel.  The water costs $0.30 per ton, and the water cost is nil per panel.  The copper foil, copper  wire,  and  structural stainless  steel  cable  adds  the most  cost,  nearly  $23.00  per panel.    Overall,  the  cost  per panel  is  less  than    $38.00  each.     Each  panel  produces  580 watts under  full  illumination.   This  is 6.54 cents per peak watt.   

Confidential Material    Sugico Mök    

Page 18 of 159

Page 19: Sugico Mok Plan 3

Page 19 of 30 

Panels may  be produced  individually,  and individually  placed  and  wired.    But  the lowest  cost method  of  installation  involves pre‐wiring as many panels at the factory as can  be  conveniently  handled.    Think  of Christmas tree light strings.  Our panels are built the same way. 

One thousand one hundred 8 foot by 4 foot panels  can  be  wired  together  into  110 separate  circuits,  presenting  55  separate circuits at either end of the string.  The 1,100 panels  are  z‐folded  onto  a  53  foot  flat‐bed trailer, to form a shipping volume of 12 feet by  8  feet  by  53  feet,  and  conveniently shipped  anywhere.   Thus,  a  single  tractor‐trailer  combination  can  ship  0.638 MW  of solar panels.   

 

Installing  the  panels  involves  pulling  the string with a special tractor from East to West after staking one end of the string to the ground.  Panels then unzip from  their z‐fold arrangement, and the special tractor equipped with disks, ‘plant’ the panels in an 8 foot wide strip that is nearly 1 mile long.   

Electrical connections are made at either end,  to  variable  load  electrolyzers,  or variable  load sodium‐sulfur batteries.   It is estimated a crew of eight working one shift  with  four  tractors  can  install  520 strings  covering nearly one  square mile of surface area every week.   

 

 

Confidential Material    Sugico Mök    

Page 19 of 159

Page 20: Sugico Mok Plan 3

Page 20 of 30 

Industrial  Design  Construction  Company’s Pittsburgh office, a division of CH2M HILL LTD worked  closely  with  me  detailing  every manufacturing  step  involved  in  creating  a plant that  would  be  most  economical.    The  design shown above  is  for a specific  site  in New Castle PA, at a place  called Millenium Park.   This $1.6 billion facility has the ability to produce 1 square 

mile of solar panels at a cost of less than $0.07 per peak watt installed every 2.8 days.  The plant can produce 71 GW of panels each year.    It employs 690  people  full‐time.    An  associated  silicon foundry  is  also  planned  for  the  site  and  will employ  an  additional  820  people.    This  silicon foundry is typical of this type of facility. 

 

The land needed to operate hundreds of square miles of panels  is obtained  from large  surface  mine  operators  who operate  surface mines  in  sunny  regions.  Anglo  Ashanti  Gold  and  Newmont Mining  both  operate  lands  leased  from Union  Pacific  Railroad  in  Northern Nevada.  These lands have a total area in excess  of  4,400  square  miles  in  this region.  This is an area greater than all the rooftops of all the buildings in the continental United States.  Due to recent ‘brightfield’ legislation enacted in the past year, bonding companies have expressed an  interest  in guaranteeing the reclamation of  land that we cover with our  low‐cost solar panels for a premium that is a fraction of the current reclamation cost for these companies, saving these companies billions of dollars.  Once I have a credible scale of production to cover this  acreage  it  is very well possible  that  I  could  receive  amounts  in  excess of  the  cost of  the proposed factory described above to sign leases that take over this land and use them for solar collector sites. 

Confidential Material    Sugico Mök    

Page 20 of 159

Page 21: Sugico Mok Plan 3

Page 21 of 30 

BREAKTHROUGH TECHNOLOGY 

At  the Earth’s surface direct sunlight posseses 850 Watts per square meter.  That’s 850 micro‐watts per square millimeter.  Converted at 15% efficiency to electricity by silicon PV cells  this represents a power of 127.5 microwatts electrical per square millimeter. At a cost of $1.00 per square inch for silicon a square millimeter costs 100/645.16 = 0.15 cents per sqare mm.  In terms of power this is a penny for every 850 microwatts.  This is $11.76 per watt.  Which is 10x greater than the cost of conventional generators. 

 However, by  concentrating  sunlight  100x  to  500x using mirrors or  lenses,the  energy density may be raised by the same factor as the concentration, reducing costs by the same factor.  So,we can see that its possible by using low‐cost concentrators costs per watt can be reduced to a range of $0.12 and as low as $0.02 per watt! 

 The  trouble with  increasing  the  power  levels  is  the  existence  of  parasitic  losses  in  the  PV device.  The parasitic  losses arise from  i‐squared R heating as the current  increases.  This  loss  mechanism grows as the square of intensity while the output grows linearly. Therefore,we have a  situation where  diminishing  returns  occur,  and  peak  output  is  achieved with  any  further increase in intensity resulting in lowered output. 

 The form of the equation is; 

             Pout = Vout * Rload –  I^2 * Rinternal 

 Where I is the current.  

 Since I is proportional to intensity (i) we can rewrite the equation; 

             Pout = A * ( Vout * Rload – i^2 Rinternal) 

 Typical photocells achieve peak intensity of 2 to 4 x ambient solar output.   

 There are two ways to reduce parasitic losses.  

  

(1)     Reduce Rinternal and 

(2)     Increase Vout (thus reducing I) 

Confidential Material    Sugico Mök    

Page 21 of 159

Page 22: Sugico Mok Plan 3

Page 22 of 30 

  

The reducing Rinternal was  first done by Swanson  through  using  back‐junction photocells.  Increasing  Vout  was  first achieved  by  Sater  through  his  vertical multi‐junction cell technology. 

 By  increasing  the  number  of  junctions 40x the voltage of the PV device increases by 40x. This reduces the impact of I^2 by a factor of 40x40 = 1,600x 

 Swanson  has  achieved  reductions  of Rinternal  by  a  factor  of  100  –  thus increasing  peak  intensity  by  a  factor  of 100.   

 The  object  of  the  following  design  is  to combine  both  improvements  into  a completely  new  innovation  and essentially eliminating parasitic losses. 

 1.5 mm  x  1.5 mm  =  2.25  sq mm.   5” wafers = 12,667  sq mm,  implies 5,630 dies.  With  a  50%  yield,this  is  2,500 dies  per wafer.   5  to  10 wafers  yield 12,500 to 25,000 dies.  

 Each  die  operating  at  150x  solar intensity produces 43 milliwatts.  Each wafer produces therefore 107.5 watts.  At 450x this triples to over 322.5 watts per  wafer.   At  $20  to  $30  per  wafer this  translates  to  $0.10  and  $0.20  per watt.   Doubling yield would improve pricing to $0.05 to $0.10 per watt.  Our ultimate  target  for  PV  costs  is  $0.03 per watt at 500x intensity. 

Confidential Material    Sugico Mök    

Page 22 of 159

Page 23: Sugico Mok Plan 3

Page 23 of 30 

   

EVOLUTION OF PROTOTYPE TECHNOLOGY 

An  important  aspect  in  creating  low‐cost  solar  energy  is  the  ability  to  collect  sunlight  at  a reasonable price and  concentrate  it  to high  intensity.   Mök has achieved  this  in a number of ways.   At  first we used spun aluminum parabolas coated with mylar  to  focus sunlight.   This proved  our  core  technology.   Next, we used  aluminized PET  formed  into  fresnel mirrors  as shown.   Finally, we hit upon making low cost lens arrays from PET to create stationary lenses that need not track the sun.  This final innovation has allowed Mök to build solar collectors for less than three cents per peak watt.  This allows Mök to create energy for 1/5th cent per kilo‐watt hour. 

 

 

PENNSYLVANIA PRODUCTION PLANT AND CENTRAL COLLECTOR LAYOUT 

This 1.2 million square  foot  facility will employ 690 people directly.    It will produce a square mile of solar collectors every 2.8 days.  These  4’ x 8’ x 2” collector panels will be strung together in strings of 1,100 forming a string 1 mile wide.  The string will be ‘z’ folded onto a 52’ truck for shipment anywhere in the US.   The strings will be unfolded and planted by a special planting tractor.  Five tractors and crew will install the output of the plant.  The strings will charge utility scale  batteries.    These  batteries  will  drive  HVDC  power  lines  to  distribute  DC  power  to wherever its needed. 

Confidential Material    Sugico Mök    

Page 23 of 159

Page 24: Sugico Mok Plan 3

Page 24 of 30 

BERGIUS PROCESS   

During World War  Two Germany made  great  use  of  synthetic  fuel  –  this was  based  on  its extensive  deposits  of  bituminous  and  brown  coal.    High  quality  syntheteic  fuel  was manufactured  mainly  by  two  processes:  Bergius  Hydrogenation  (developed  in  1926)  and Fischer‐Tropsch (developed in 1923).  

The  Bergius  process  involved  splitting  the  complex  molecules  of  coal  and  then  forcing hydrogen into them under high pressure to produce liquid oil molecules. In the Fischer‐Tropsch process, molecules  of  hydrogen  and  carbon monoxide,  obtained  by  breaking  up  coal  with steam, were used to form oil molecules. 

The Bergius hydrogenation was superior to Fischer‐Tropsch.  By 1944 Germany was producing about  47%  of  all  it’s  oil  products  including  nearly  100%  of  its  aviation  fuel  using  Bergius hydrogenation  for  this  reason.   The  high  cost  of  hydrogen  today  is  the  only  reason Bergius hydrogenation is not in wide use.  Mök’s low cost solar hydrogen changes this condition. 

The  Mök  Process  uses  renewable  hydrogen  derived  from  sunlight  and  water  to  power  a modified Bergius Process resulting in six barrels of oil from each ton of coal while producing no emissions. 

 

Confidential Material    Sugico Mök    

Page 24 of 159

Page 25: Sugico Mok Plan 3

Page 25 of 30 

 

Presentation  to 

The Office of Science and Technology Policy The Office of the President 

of The United States 

By  

William Mook Mök Industries 

Technology Overview & Implications 

 

December 10, 2004 

 

SUMMARY 

Mök Industries seeks to sell to the United States Strategic Petroleum Reserve 250 million barrels of synthetic oil produced from sunlight and coal at a selling price of $25 per barrel.  Mök needs no money now, only a firm order for $6.25 billion giving Mök the ability to deliver synthetic oil anytime it becomes available within the next eight years.  This synthetic oil will be light Texas crude oil equivalent and made  from solar derived hydrogen and US coal using  the BERGIUS PROCESS.   

Along with  an  initial  order, Mök  also  seeks  the  right  to  use  up  to  20,000  square miles  of available  government  land  along with  lands  surrounding Union  Pacific  rail  lines  to  collect, convert,  and  transmit  solar  power  on  a  scale  unprecedented  in  history.    This  much  land converted to solar panels will make the United States dominant in energy production, not  just self‐sufficient.   

To maximize growth of its solar infrastructure, Mök seeks to avoid fees and taxes for use of this land  as well  as  taxes  on  the  improvements  it makes  to  these  lands.   Money  saved will  be reinvested in the growth of the company.  Mök expects to pay normal sales and income taxes on 

Confidential Material    Sugico Mök    

Page 25 of 159

Page 26: Sugico Mok Plan 3

Page 26 of 30 

its sales and profits.  Mök also expects to pay fees and taxes on improvements and land once it grows beyond its initial 20,000 square mile plan. 

Mök  Industries LLC has developed a BREAKTHROUGH TECHNOLOGY  that produces solar electricity for as little as 1/5th cent ($0.002) per kWh.  Energy experts have described this advance as a “revolutionary breakthrough” in energy technology.     

Mök’s  energy  technology  is dramatically  less  expensive  than  any  other  conventional  energy source.  

ENERGY COST COMPARISON 

Mök Energy $0.002/kWh

CONVENTIONAL ENERGYCoal $0.020/kWh 10xElectricity $0.060/kWh 30xPV Panel $0.040/kWh 200x  

OPPORTUNITIES 

Mök’s ability to generate electricity from sunlight at less cost than fuel costs alone permits Mök to compete in ALL ENERGY MARKETS.  This includes; 

1. Electricity – generated at a central solar station at a cost of $0.002 per kWh. 2. Renewable Hydrogen – generated from electricity and water 

a. Synthetic Methane – generated from renewable hydrogen and carbon dioxide via the SABATIER PROCESS at a cost of $1.30 per mcf. 

b. Synthetic  Oil  –  generated  from  renewable  hydrogen  and  COAL  via  the BERGIUS PROCESS at a cost of $8.57 per barrel. 

 

STRATEGIC BENEFITS 

The United States currently depends on overseas  sources  for most of  its energy.   Using Mök solar collectors the United States will become the lowest‐cost energy producer in the world by generating conventional fuels from sunlight and domestic coal.   By making  its own oil at  low cost  the United  States will  become  the dominant  energy  supplier world wide,  changing  the nature of  international  relations and  re‐establishing  the geo‐political climate of  the 1920s and 1950s.   

 

Confidential Material    Sugico Mök    

Page 26 of 159

Page 27: Sugico Mok Plan 3

Page 27 of 30 

Support of Mök’s vision provides  immediate  strategic benefit.   OPEC  recently announced  its intention to raise the floor price of OPEC crude from $22 per barrel to $40 per barrel. The United States  presently  has  no  recourse  but  to  comply  with  this  announcement.    However,  by supporting  US  developed  synthetic  oil  production  capacity  at  $25  per  barrel  or  less  from domestic coal and sunlight, the US undermines OPEC’s ability to maintain this new price.  

Should the United States wish to take this action Mök would be willing to commit selling 250 million barrels of its synthetic crude to the US Strategic Petroleum Reserve for $25 per barrel.   

A commitment of this magnitude would allow Mök to raise the capital  it needs  in the private market and move aggressively  forward  to make  the US  independent of all  foreign sources of energy by 2015. 

SYNTHETIC OIL 

The United States consumed 6.76 billion barrels  of  oil  in  2003.    To  create  this much  oil  each  year  using Mök’s  new technology  requires  the  conversion  of 1.12 billion tons of coal to oil each year along with  the  creation  of  112 million tons  of  hydrogen  from  water.  To support  this  level  of  production requires  7,958  square  miles  of  Mök collectors.    This  area  of  collectors  is sufficient  to  supply  all  US  oil  needs from  domestic  US  coal  supplies.    Ten manufacturing plants of the type Mök plans to build in Pennsylvania are sufficient to build up this area of collectors in eight years or less. 

The US possesses 245 billion tons of easily recoverable coal.   Converted to oil using hydrogen produced from solar energy this coal makes 1,470 billion barrels of synthetic oil.  An amount of oil  64  times  larger  than America’s  current  proven  reserves  of  22.7  billion  barrels.    The US therefore may provide for all its oil needs for the next 200 years using Mök’s process.   

Since Mök’s  oil  relies  on  large  quantities  of  inexpensive  hydrogen  for  its production, Mök’s process  naturally  produces  conditions  favorable  to  the  evolution  of  a  hydrogen  energy economy.   The development of a hydrogen economy will occur as a natural outcome as Mök uses low‐cost hydrogen to make conventional hydrocarbon fuels. 

  

Confidential Material    Sugico Mök    

Page 27 of 159

Page 28: Sugico Mok Plan 3

Page 28 of 30 

ELECTRICITY  

In 2003, the United States generated 3,848 billion kilowatt‐hours (Kwh) of electricity.  Coal‐fired plants accounted for 53% of generation, nuclear 21%, natural gas 15%, hydroelectricity 7%, oil 3%, geothermal and ʺotherʺ 1%. 

5,438 square miles of Mök solar collectors are  required  to meet  this  demand  from sunlight alone.   Six additional Mök  solar plants  of  the  size  being  built  in Pennsylvania  will  be  capable  of producing 5,438 square miles of collectors in eight years.   

Using  solar  sources of  electricity  reduces and  eventually  eliminates  coal  as  an electrical  energy  fuel.    The  demand  for coal to generate electricity matches the demand for coal used to make synthetic fuel under this plan.  So, there need be no change in the overall demand for coal as Mök grows, provided the right mix of electricity and oil is generated from solar energy.   

Mök  solar  collectors  generate Direct  Current  (DC)  electricity.   High Voltage Direct  Current (HVDC)  transmission  is  possible  over  long  distances.   Mök  intends  to  create  a  network  of HVDC  transmission across  the US.   Mök will  then sell electricity  to utilities at a cost equal  to today’s fuel costs alone.  This will cover Mök’s cost of generation and transmission and produce profits for Mök.   Utilities will buy  inverters and controls  instead of generators at  less cost per watt than they pay for generators.  These controls will allow utilities to tap into the HVDC grid and produce electricity more cheaply and with fewer emissions than they can today.   

NATURAL GAS 

Hydrogen  produced  by Mök  solar  collectors when  combined with  carbon  dioxide  produce methane,  the  principal  component  of  natural  gas.    Significant  quantities  of  methane  are produced and significant quantities of carbon dioxide are absorbed using  the Sabatier process powered by Mök solar panels.  The US is self‐sufficient in Natural Gas so there is no significant strategic energy benefit in using solar energy to generate natural gas.   

 

Using  the Sabatier process  to produce methane does allow Mök  to make a profit.   Mök will absorb  carbon  dioxide  emissions  and  sequester  carbon  dioxide  already  in  the  atmosphere.  From this we will produce a saleable fuel. 

Confidential Material    Sugico Mök    

Page 28 of 159

Page 29: Sugico Mok Plan 3

Page 29 of 30 

 THE MÖK PLAN 

 

 

Mök  collects  solar  energy  on  reclaimed  surface mines  in Nevada  to  produce DC  electricity.  Mök then transmits HVDC electricity to Salt Lake, Utah.  There, we convert water to hydrogen and oxygen using that electricity.  We capture the hydrogen and send it by pipeline to Powder River  Basin, Wyoming.   Mök  combines  the  hydrogen with  coal  in  BERGIUS REACTORS  to create  a  high‐quality  synthetic  crude  oil.    We  then  send  the  oil  by  pipeline  to  Cushing Oklahoma  where  it  is  distributed  to  buyers  such  as  the  Strategic  Petroleum  Reserve  in Louisiana.   

Expansion of the initial 200 square mile array to over 6,000 square miles will eventually displace all US oil imports within 10 years. 

Additional  solar  capacity  in  Nevada  will  be  added  to  provide  electricity  for  Northern California.    Additional  solar  capacity  in  Arizona  will  be  added  to  provide  electricity  for Southern California and US South West.  

 

 

Confidential Material    Sugico Mök    

Page 29 of 159

Page 30: Sugico Mok Plan 3

Page 30 of 30 

 

 

 

VENDOR REPORTS 

 

 

Confidential Material    Sugico Mök    

Page 30 of 159

Page 31: Sugico Mok Plan 3

Accenture LLP 200 Public Square, Suite 1900 • Cleveland, OH 44114 Tel: (216) 535-5000 www.accenture.com

October 28, 2003 Mr. William H. Mook Mök Industries, LLC 4449 Easton Way Columbus, Ohio 43219 Dear Mr. Mook: Accenture LLP (“Accenture”) is pleased to provide this addendum (“Addendum”) to Mök Industries, LLC (“Mök Industries”) which amends the Arrangement Letter by and between the parites signed on July 31, 2003 (“Arrangement Letter”) to extend Accenture’s services. The services described in this Addendum (“Services”) shall be provided subject to the Assumptions and Standard Business Practices set forth in the Arrangement Letter. All terms and conditions of the Arrangement Letter not expressly modified herein shall remain in full force and effect. This Addendum shall supercede the Arrangement Letter when in conflict.

Background Accenture has supported Mök Industries over the last several months in planning and executing technical and economic validation, in conducting day-to-day operations, as well as in preparing Mök Industries business plan, financial models and logistics network strategy. In addition, Accenture has leveraged its network of executive contacts, subject matter experience, and its brand image in order to help facilitate external technical and economic validation, and to contribute to the credibility of Mök Industries. Mok Industries acknowledges that Accenture’s work has been satisfactorily performed. Mök Industries is now at the point where it desires to pursue capital funding, alliances and potential customers for its start-up operations. Mök Industries has asked Accenture to continue in its support role. Accenture agrees to continue supporting Mök Industries as described below for a period from October 28, 2003 through July 31, 2004 (“Project”).

Mök Industries’ Project Objectives Mök Industries’ key objective in this Project are: • to initiate efforts to raise capital for start-up operations, from various sources including

investor financing, government grants, strategic alliances, market making activities, etc. • to identify and establish agreements with a select number of potential alliance partners and/or

customers which may facilitate start-up efforts

Page 31 of 159

Page 32: Sugico Mok Plan 3

Mr. William H. Mook Mok Industries, LLC October 28, 2003 Page 2

Project Approach, Organization, and Staffing Accenture will support Mök Industries by providing continued day-to-day operations support, program management and planning, and subject matter experience in various industries (e.g., oil and gas, semiconductor, market making, government, coal, utilities, etc.) as determined to be required by Accenture and Mök Industries. Further, we will endeavour to facilitate interactions with potential investors, government agencies, potential customers and alliance organizations. It is expected that the work related to the Project will be performed at Mök Industries’ offices in Columbus, OH, as well as in various Accenture offices as appropriate and as determined by Accenture. It is expected that the Project will start October 28, 2003 and end by July 31, 2004. At that time, Accenture and Mök Industries will determine whether and how to proceed together. If additional services are agreed upon at that time, those services will be addressed under a separate addendum or arrangement letter. The Project organization will follow a similar structure as the previous project between Mök Industries and Accenture. The Project organization will consist of an Advisory Panel and the Project Team, as that term is defined below. The Advisory Panel will consist of up to six Accenture appointees and up to three appointees of Mök Industries. The Advisory Panel will serve as a resource of knowledge and subject matter experience to the Project Team. The Advisory Panel will convene a minimum of two times during the Project term, or as required by the Project Team. The work will be performed by a blended team comprised of personnel from Accenture and Mök Industries (the "Project Team"). The composition of the Project Team is described below:

• Bill Mook Mök Industries Project Manager • Dave Abood Accenture Lead • Mike Craig Accenture Project Manager • Matt Haley, Tom Kelly, others Accenture Subject Matter Experience • TBD Other Accenture Consultants

Mr. Mook will work with the Accenture team mainly through Dave Abood and the Accenture Project Manager, Mike Craig.

Assumptions Accenture recognizes that the nature of this type of business start-up Project is such that tasks, deliverables, timing and priorities may change throughout the Project. Accenture will work with Mök Industries in a collaborative manner to help manage this volatility and facilitate the effort to

Page 32 of 159

Page 33: Sugico Mok Plan 3

Mr. William H. Mook Mok Industries, LLC October 28, 2003 Page 3 achieve the Project objectives. If substantial changes occur to Project scope or effort required, Accenture and Mök Industries will work together to determine the appropriate course of action, which may result in amending this Arrangement Letter.

Project Compensation Accenture’s fees (“Project Fees”) for the Services hereunder will be made up a $25,000 consulting retainer payment due upon signing this Arrangement Letter, as well as several value-sharing components as described below plus out-of-pocket expenses and applicable taxes:

1. Relationship Leverage Fee For each introduction to a potential Mök Industries customer which Accenture facilitates by leveraging its relationships, and which results in an initial meeting with Mök Industries, Mök Industries will pay Accenture a $5,000 fee regardless of the outcome of the initial meeting. If an initial contact ultimately results in a signed agreement between Mök Industires and the customer, Mök Industries will pay Accenture $100,000 upon signing such agreement, but not to exceed the projected value of the 9% (for Accenture-facilitated revenues) value sharing component described in 3(b) below, nor to exceed the projected value of the 3% (for total revenues) value sharing component described in 3(a) below. This component of compensation will extend beyond the end date of this Arrangement Letter, as long as Accenture is engaged by Mök Industries.

2. Capital Value-Sharing For Services provided, Mök Industries agrees to pay Accenture an amount of 6% of all capital raised during the period Accenture is engaged by Mök Industries, to be paid monthly. This component of compensation will extend beyond the end date of this Arrangement Letter, as long as Accenture is engaged by Mök Industries. All sources of capital will be subject to this component of Accenture’s Project Fees, including capital from individual or institutional investors, market making activities, government grants, or other sources.

3. Revenue Value-Sharing a. Superceding the solar cell revenue sharing agreed by Mök Industries in the

Arrangement Letter dated July 8, 2003, Mök Industries will pay Accenture 3% of all revenues associated with sales and licensing of solar units, photovoltaic cells, electricity, hydrogen, methane or any other products or services from which Mök Industries derives revenue other than liquid fuel products, for a period of 15 years from the date of first revenue recognition as defined by FASB guidelines, to be paid monthly.

b. In cases where Mök Industries revenue is derived from a customer relationship facilitated by Accenture, the value-sharing payment in (a) above will be 9%, versus 3%.

Page 33 of 159

Page 34: Sugico Mok Plan 3

Mr. William H. Mook Mok Industries, LLC October 28, 2003 Page 4

c. If at some point during the above outlined time period (15 years from the date of first revenue recognition as defined by FASB guidelines), Mök Industries or any part of Mök Industries is acquired by another company, Mök Industries will pay Accenture (i) 10% of the acquisition price if Accenture is involved in facilitating the acquisition, or (ii) the present value of all projected value-sharing royalties associated with the entity being sold, not exceed 15% of the acquisition price.

d. At any time, Mök Industries may propose to pay Accenture a mutually agreeable amount in order to compensate Accenture for the future value of the above payments due. It will be at Accenture’s discretion as to whether to accept such payment in exchange for the future value of the above payments due, and all such agreements shall be documented in writing as an addendum to this Arrangement Letter.

4. Consulting Services Provided By Bill Mook

Mök Industries reconfirms the agreement in the Arrangement Letter dated July 8, 2003 related to the commitment to provide the consulting services of Bill Mook.

5. Right of First Refusal and Commitment of Subsequent Services

Mök Industries reconfirms the agreement in the Arrangement Letter dated July 8, 2003 related to providing Accenture with a Right of First Refusal as described therein.

6. Payment for Out-of-Pocket Expenses

Mök Industries will reimburse Accenture for all out-of-pocket expenses incurred by Accenture. Based on the Project scope, resources and schedule described herunder, Accenture will make every reasonable effort to limit out-of-pocket expenses to less than $50,000. This does not include apartment expenses which are to be paid by Mök Industries directly. If changes to scope, resources or schedule are deemed to have an impact on the expense estimate, Accenture will notify Mök Industries of such impacts before incurring any further expenses. Any travel and related expenses incurred by Accenture will be invoiced and paid by Mök Industries on a monthly basis as incurred and within 15 days of receipt of invoice. Applicable taxes will be invoiced to Mök Industries as well.

Accenture appreciates the opportunity to be of service to Mök Industries and looks forward to working with you on this engagement. I have provided you with two signed originals of this Addendum. If it is consistent with your understanding and acceptable to Mök Industries, please sign each of the two originals and return one to me while retaining one for your files. If you should have any questions or concerns, please do not hesitate to contact Dave Abood at (216) 535-5005.

Page 34 of 159

Page 35: Sugico Mok Plan 3

Mr. William H. Mook Mok Industries, LLC October 28, 2003 Page 5

***

Very truly yours, ACCENTURE LLP

Partner, Accenture Inc. Acknowledged and Accepted: Mök Industries, LLC By: Title: Date:

Page 35 of 159

Page 36: Sugico Mok Plan 3

Sent: Friday, March 19, 2004 9:23 AM Subject: RE: Valuations

Bill, First, I like the way you are thinking big picture. A scenario can be developed based on earnings projections for BP Solar selling Mök panels into a project or if they are the owner of the project (which I have not seen any examples of BP Solar owning a project, only supplying the panels for a project). We can also module this on a partnership approach as you suggest below. As you correctly point out, any analyst worth their salt does a valuation for a company looking at each division, then adding up the total. This means our valuation should only be on BP Solar, not BP as a whole using the $185 billion market capitalization number. The multiples on page 20 of the business plan are multiples of EBITDA, which multiples the EBITDA in 2008 as a proxy for what the future terminal value of the company could be. This is an alternative to taking the 2008 EBITDA and dividing by the discount rate to get a future value of the terminal value. Both are correct and can be used to compute a present value of a company… it just depends if future EBITDA is expected to increase (then you’d want to use the multiple) or if it is somewhat steady (then using the discount rate is alright) A Price-to-Earnings multiple (18.8 for BP as a whole) would be incorrect to use, as it is not a multiple of EBITDA, it’s a multiple of what the BP’s stock price is relative to their earnings. Also, it is for the whole company, not just BP Solar. We would use the P/E for BP Solar to estimate what our stock price could be based on our earnings, using BP Solar’s P/E as a proxy of what is possible. Alternatively, we can estimate what BP Solar could earn as a component of their EBITDA, which can then be used to calculate the effect on BP Solar’s contribution to BP’s overall stock price using a P/E from another solar company – one that just deals with solar as a proxy for what BP Solar’s P/E would be if they were a stand alone company. Then we would add this increase for the BP Solar division to the overall BP stock price. I think we should stick to only the effect of BP Solar. BP’s revenue for 200 was $236 billion with operating income of $14.1 billion. I suspect BP Solar’s revenue was less than $300 million (I was not able to find specific revenue or earnings information for BP Solar), which means even if we increased BP Solar’s earnings by 50%, the effect on BP’s earnings and subsequent share price is negligible as a percentage, when only dealing with electricity and panel sales. This can also be done for someone like Shell who has the Shell Hydrogen and Shell Solar divisions. It probably doesn’t make sense to do it for all the majors, as I haven’t seen the Exxon Mobil or Chevron Texaco have solar divisions, or even someone like Marathon or ConocoPhillips. Mike Michael P. Craig Accenture Global Natural Resources

Page 36 of 159

Page 37: Sugico Mok Plan 3

Page 37 of 159

Page 38: Sugico Mok Plan 3

Page 38 of 159

Page 39: Sugico Mok Plan 3

Page 39 of 159

Page 40: Sugico Mok Plan 3

Page 40 of 159

Page 41: Sugico Mok Plan 3

40111 i July 2, 2004

TABLE OF CONTENTS

Section Page

1 Executive Summary................................................................ 1-1

2 Project Goals and Scope of Work ........................................... 2-1

3 Product Description................................................................. 3-1

4 Assumptions and Design Considerations ................................ 4-1Capacity Requirements .................................................. 4-1Materials ......................................................................... 4-1Process Alternatives Considered.................................... 4-1Location of Manufacturing Facility............................... 4-2Potential Locations for Panel Arrays ............................. 4-2Cost Basis....................................................................... 4-2

5 Concept Design Review.......................................................... 5-1General........................................................................... 5-1Equipment Requirements ............................................... 5-1Typical Cell.................................................................... 5-2Area Requirements......................................................... 5-3Facility Block Layout ..................................................... 5-4Material Flow................................................................. 5-6Raw Materials Handling................................................. 5-6Finished Good Handling................................................. 5-6Receiving........................................................................ 5-7Shipping.......................................................................... 5-8Storage............................................................................ 5-8Utilities........................................................................... 5-9Building Shell................................................................ 5-17Office Area, Support Space, and Amenities ................. 5-17

6 Production Ramp Up, Organization, and Manpower.............. 6-1Proof of Concept ............................................................ 6-1Product Design............................................................... 6-1Process Design ............................................................... 6-1Production Rate.............................................................. 6-1Production Ramp Up...................................................... 6-2Organization Recommendations .................................... 6-3Staffing Ramp Up.......................................................... 6-11Training Recommendations .......................................... 6-13

7 Milestone Schedule ................................................................. 7-1

Page 41 of 159

Page 42: Sugico Mok Plan 3

40111 ii July 2, 2004

8 ROM Cost Estimate ................................................................ 8-1Facility............................................................................ 8-1Process Equipment ......................................................... 8-1Operating Costs.............................................................. 8-1Summary........................................................................ 8-2

9 Analysis and Preliminary Recommendations ......................... 9-1General........................................................................... 9-1Areas/Issues of Concern................................................. 9-1

APPENDIX

Appendix 1.0PV Circuit/Assembly ConceptBus Bar Screen PrintingPV Application

Appendix 2.0Production CapacityEquipmentUtilitiesOpen IssuesPlastics CostLabor Cost Estimate-Manufacturing Operations“Simple” Cost Summary

Appendix 3.0“Sheet” ModuleTypical CellBlock Layout – BaselineBlock Layout – Option

Appendix 4.0Master Plan – Building

Appendix 5.0Estimating Accuracy Curve

Appendix 6.0Materials Comparison

Appendix 7.0Planning for Success in Transitioning New Technologies into Economical Full-ScaleProduction

Page 42 of 159

Page 43: Sugico Mok Plan 3

40111 1 - 1 July 2, 2004

Section 1EXECUTIVE SUMMARY

Mök Industries, Inc. is proposing to construct solar power plants that produce cleanelectricity at a cost lower than any other power generation method, using a series ofproprietary technology and process innovations. The key element of Mök’s low energycosts is extreme concentration of sunlight onto photovoltaic generators designed to operateat extraordinary light intensities. The generator panel is comprised of an array ofconcentrating solar optics, each housing an advanced PV cell. To put its technology intolarge scale production, Mök desires to complete the design of the manufacturing process andestablish the production tool set needed to produce the generator panel.

Mök has commissioned IDC to assist in refining the conceptual product characteristics,determine manufacturing resources, and develop a facility concept to commercially producethe generator panels. To accomplish these objectives, IDC has teamed with its sistercompany, Lockwood Greene.

This report identifies preliminary conceptual designs for the following:

n Product and manufacturing process.

n Manufacturing facility.

n Site plan, based on the Millennium Technology Park in Lawrence County,Pennsylvania.

n Organizational and manpower requirements.

n Milestone project implementation schedule.

n Rough order of magnitude (ROM) opinion of probable construction andmanufacturing equipment costs.

The concept developed for the panel is a 4- by 8-foot module composed of three plasticsheets that when formed, are bonded together to form the optical concentrator containing thePV cell. The finished module will be self-supporting and stackable. Throughout thedevelopment of the module, multiple design considerations were evaluated and assumptionsmade. Decisions made are based on experience and engineering judgement with cost alwaysa primary influence.

In order to establish the manufacturability of the conceptual product design, a work cell wasdeveloped to meet the production output targets. The work cell, consisting of a typicalequipment set, can then be duplicated to achieve full-scale high volume production of97GW/year. The space and utility requirements for the manufacturing equipment were usedto determine the overall area and utilities required for the facility. The arrangement of thefacility accounts for support areas as typically necessary for general manufacturing. A site

Page 43 of 159

Page 44: Sugico Mok Plan 3

40111 1 - 2 July 2, 2004

plan and architectural rendering is included, as well as preliminary facility support systemschematics.

The report addresses organizational staff, manpower, workforce training, transportation,permitting, and ramp-up issues. A conceptual schedule and rough order of magnitudeopinion of cost is also included for the purpose of establishing a realistic timeline and budgetfor the project. From an economic development viewpoint, in addition to the new jobscreated by Mök, this project will have a significant multiplier effect on job creation,including the possibility that the PV cell manufacturer would build a fab adjacent to the Mökplant.

Key findings are summarized as follows:

n Product and manufacturing process: The conceptual process described in thisreport is feasible, yet challenges remain to prove the manufacturing processand achieve the ramp-up to meet the large production volumes targeted.

n Manufacturing facility: The building is relatively simple in comparison to theprocess challenges. A crucial and somewhat ironic discovery is very highpower consumption resulting from the quantity and characteristics of themanufacturing equipment.

n Organizational and manpower requirements: Staffing levels at fullproductions are projected to be 659. This includes a corporate staff of 105and manufacturing staff of 555 spread over three shifts. While the staff rampshould be achievable, establishing an effectual organizational structure,attracting a competent management team, and developing effective trainingprograms for manufacturing staff are critical to the success of the enterprise.

n Milestone project implementation schedule: The conceptual schedule showsthe first work cell, as a pilot line, going into full scale productionapproximately 2 years after project initiation. This could be accelerated byphasing the building construction to allow an earlier start for installation ofthe pilot line.

n (ROM) opinion of probable construction and manufacturing equipment costs:Total project capital costs are projected at $1.24 billion. For construction of afacility capable of supporting the full-scale production volumes, cost isprojected at $416 million, with manufacturing equipment comprising thebalance of $830 million.

Page 44 of 159

Page 45: Sugico Mok Plan 3

40111 2 - 1 July 2, 2004

Section 2PROJECT GOALS AND SCOPE OF WORK

Mök Industries LLC has developed solar energy conversion technology to cost effectivelyproduce electricity. Mök Industries has successfully tested this product concept and nowneeds to quickly refine product characteristics, determine manufacturing resources anddevelop a facility concept to commercially produce these products.

As a first step in this process, IDC has undertaken the effort of developing a preliminaryconcept design to refine the following issues:

n Product and Manufacturing Process

n Manufacturing Facility

n Site Plan

n Organizational and Manpower Requirements

n Milestone Project Implementation Schedule

n Rough-Order-of-Magnitude (ROM) Cost Estimate

In order to accomplish this, IDC has completed the following services:

n Analyzed product design for manufacturability.

n Developed a concept for the manufacturing process concept based onLockwood Greene’s recommended product concept and forecasted capacityrequirements.

n Determined site requirements – size, containment, road access, rail accessoptions, traffic management, and parking.

n Determined what support functions will be required, approximate laborrequirements, and developed a recommended organizational structure for thestartup operations.

n Developed a milestone implementation schedule, including production andmanpower ramp up.

n Developed a ROM cost estimate and capital spending schedule.

n Estimated up-front equipment costs, ongoing labor cost, and transportationcosts for manufacturing operations.

Page 45 of 159

Page 46: Sugico Mok Plan 3

40111 3 - 1 July 2, 2004

Section 3PRODUCT DESCRIPTION

Mök Industries LLC has developed an environmentally friendly product that will providelow cost electricity through the conversion of solar energy. This process is achieved byfocusing sunlight through an optical concentrator using a water-filled vessel and a clear lensarrangement that provides optimum internal reflection. This Compound ParabolicConcentrator (CPC) configuration captures incident solar radiation over a wide angle andconcentrates the light onto a photovoltaic cell (PV). The PV cells, designed to absorbvirtually the entire spectral distribution of solar energy, converts the solar energy intoelectrical energy. The water-filled vessels will be incorporated into a series of panels thatare arrayed over a tract of land and wired to strategically placed batteries that will store theelectrical energy. This innovative approach for the conversion of solar energy will enablethe Mök product to produce electricity with significantly higher efficiency than haspreviously been made commercially available.

The basic product concept is reflected in the following schematic (a larger illustration isincluded in Appendix):

“Sheet” Module Concept3 Piece Approach

TOP BOTTOMPVWiring

Sealer/weld

Anchor Tab

Legend

General Process Steps (1) Hot Press Mold the top (better precision for lenses).(2) Hot Press Mold middle (punch hole) and bottom (add dimple).(3) PV install/wiring on bottom (screen print, filament wiring).(4) Ultrasonic weld top to middle.(5) Fill CPC assembly (upside-down, submersion).(6) Insert and chemically seal CPC assembly to bottom.(7) Flash test.(8) Stack to bundles and load to trailer.

submersion fillGeneral Equipment Set(1) Hot Press Molders(2) Stringers (screen print? wiring?) (3) Ultrasonic Welders(4) Fillers (5) Chemcial Sealers(6) Flash Testers(7) Stackers(8) Conveyor and buffers(9) Fork Lifts (loading)

MIDDLE

COMPLETE

Each solar module assembly is 4 feet wide by 8 feet long by approximately 2 inches thickand is comprised of 4,697 water vessels that are 1 inch in diameter and 1.5 inches tall. Eachwater vessel contains a lens that is able to capture sunlight from angles exceeding 60 degreesfrom the vertical. This design eliminates the need to incorporate a mechanical tracking

Page 46 of 159

Page 47: Sugico Mok Plan 3

40111 3 - 2 July 2, 2004

device to follow the path of the sun for maximum energy production. The remainingcontour of the vessel is designed to direct and concentrate the light that enters the lens to thephotovoltaic cell positioned at the bottom of the vessel. The resulting concentration of solarradiation substantially reduces the required area of each PV cell. In this case, a PV cell of0.014-inch diameter produces 0.2 Wp. A typical terrestrial solar panel requires an area of 3to 4 in2 to provide this level of power. Each module assembly will hold a total of 3.99gallons or 33.3 pounds of water.

The module will be assembled from three plastic panels that are first produced in sheet formand then contoured through a thermal forming process to form the vessels and supportsystem. The top and middle panels will be produced from clear PET (PolyethyleneTerephthalate) and, when thermally bonded together, will form the lenses and water vessels.This assembly will then be passed through a submersion tank where the vessels will be filledwith water.

The bottom panel will be produced from an opaque plastic such as ABS or PVC. The wirecircuitry and photovoltaic cells will be applied to the bottom panel through a printingprocess. Once assembled, the bottom panel will be chemically bonded to the top/middlepanel assembly and provide the watertight seal for the vessels.

The contour of the finished assembly will enable each module to be self-supporting and willallow the modules to be stacked for shipping. The module will also incorporate lugs forsecuring the assembly to the ground. These lugs will double as shipping aids to facilitatepanel nesting.

Page 47 of 159

Page 48: Sugico Mok Plan 3

40111 4 - 1 July 2, 2004

Section 4ASSUMPTIONS AND DESIGN CONSIDERATIONS

CAPACITY REQUIREMENTS

A planning model was developed to capture product assumptions, including expected outputper module and production requirements to meet specific production targets. The appendixcontains the planning model in its entirety.

To minimize the amount of water needed for each module assembly, a concentrator size of1-inch diameter and 1.5-inches tall was selected. This results in a water volume for eachmodule of 3.99 gallons or 33.3 pounds. With the photovoltaic cell area per concentratorfixed at 0.00016 inch2 and 4,697 concentrators per module, this results in a power output of952 watts per module peak. Obtaining the target production of 97 GW per year requires aproduction rate of 11,893 modules per hour as shown below.

The following recaps the production rates required to meet the 3 output targets:

Output Target >>> 5 GW/yr 30 GW/yr 97 GW/yr

Production Rate (modules per hour)

613 3,678 11,893

MATERIALS

Clear, UV stabilized, PET (Polyethylene Terephthalate) was chosen for the top and middlepanel due to its clarity, formability, availability and relative low cost. The bottom panel willbe produced from PVC or ABS to add rigidity to the final module to support the weight ofthe water and enable stacking of the modules for shipping. Boeing will supply thephotovoltaic cells that are installed onto the lower panel of the module. At the final solarcollection site, the array of modules will be wired to batteries that will collect and store theelectrical energy. It is anticipated that these batteries will be shipped from the batterysupplier directly to the solar collection site.

PROCESS ALTERNATIVES CONSIDERED

Initial geometries for the light concentrator were in a range of 4 inches to 8 inches in height,resulting in a water weight of 70 pounds to 140 pounds per 4-foot by 8-foot module. Thisweight was deemed too great to allow economical shipment. The geometry of theconcentrator was reduced to a 1.5-inch height (and corresponding 1-inch diameter lens) toprovide a more reasonable water weight of 33 pounds per 4-foot by 8-foot module. Basedon the revised geometries, the following processes were considered:

Page 48 of 159

Page 49: Sugico Mok Plan 3

40111 4 - 2 July 2, 2004

Blow Molding:

The original product concept was based on blow molding PET bottles, utilizing a cap for thePV attachment and wiring, and another structure to support and contain the bottles. Bottleblow molding rates were calculated to meet the production target of 400,000 acres ofcoverage in 5 years. To meet this production rate, approximately 1.2 billion bottles(1.5-inch height, 1-inch diameter) are required per day. Based on initial feedback frompeople knowledgeable in mass production blow molding, this quantity of bottles is notrealistically achievable.

Sheet Concept:

Several sheet concepts were developed to meet the geometric requirements of the productand achieve a high throughput. The 3-piece approach outlined previously was selected asthe baseline approach for this study based on its adaptability to molding, ease of filling, andsurface on which to mount and wire the PV cells. Initially "traditional wiring" of the PVswas considered (such as used in the microelectronics industry for wire bonding die prior topackaging). An assessment of the sheer number of cells to be wired deemed this approachunpractical (4700 PV cells per module, or 56 million PV cells per hour to meet the 97GW/yr target output). A screen-printing and poly-soldering approach was assumed for thebaseline concept based on its potential to meet the required throughput. It is acknowledgedthat many technological hurdles need to be addressed in order to make the screen-printingapproach viable.

LOCATION OF MANUFACTURING FACILITY

The proposed location for the Mök Industries solar panel fabrication plant is on a site inNeshannock Township, Lawrence County, Pennsylvania. The site is called MillenniumTechnology Park and consists of about 530 acres that lies between US Route 60 and theShenango River. The development of this site is currently in the site design and permittingprocess. The Master Plan for this site showing the Mök Industries facility is included in theAppendix.

POTENTIAL LOCATIONS FOR PANEL ARRAYS

The product from this facility, solar panels, will be shipped initially to a few select locations.The first being some testing sites in Pennsylvania, and possible nearby areas. The purposeof this is to take advantage of the available water and coal to demonstrate the process ofusing solar power to fractionalize water to obtain hydrogen. The hydrogen would then becombined with coke (coal product) to produce synthetic oil. The other site these panels willbe shipped to is in northern Nevada and this will be the initial main site at which manysquare miles will be covered with these panels.

COST BASIS

The estimated costs presented in Section 8 have been broken down into two areas. The first,called “Facility”, is the building and site amenities (parking areas, etc.). The building

Page 49 of 159

Page 50: Sugico Mok Plan 3

40111 4 - 3 July 2, 2004

estimate includes the steel framed, high bay building as well as the associated mechanical,electrical, etc. equipment for the building. The second, called “Process”, is themanufacturing and material handling equipment associated with producing the solar panels.

Page 50 of 159

Page 51: Sugico Mok Plan 3

40111 5 - 1 July 2, 2004

Section 5CONCEPT DESIGN REVIEW

GENERAL

The concept design for the manufacturing facility is presented in the order in which it wasdeveloped, and is summarized as follows:

n Equipment set developed to support the product/process concept andproduction rates.

n Work cell developed based on equipment and flows.

n Facility block layout developed based on work cell arrangement and flows.

n Organizational structure, support functions, and site considerations to supportthe overall operation.

The following sections summarize the concepts developed regarding each of the areas ofconsideration.

EQUIPMENT REQUIREMENTS

The planning model in the Appendix contains the calculations used to determine thequantities of equipment required to meet the output targets. A summary of the equipmentrequired for 1 work cell (roughly 10GW output) is as follows:

Equipment Name Quantity/Work Cell

Extrusion, Calendar and Cutter 3

Hot Press Molder - TOP & MIDDLE 1

Hot Press Molder - BOTTOM 1

Screen Print, PV Application, and Curing 30

Thermal Welder - TOP/MIDDLE 1

Chemical Sealer - BOTTOM 1

Flash Tester (sample only) 1

Material Handling- Water Fill- Vertical Buffer- Stacker- Stretch Wrap- Conveyor

1611

1 lot

Page 51 of 159

Page 52: Sugico Mok Plan 3

40111 5 - 2 July 2, 2004

TYPICAL CELL

Below is a typical Panel Fabrication & Test Cell (a larger illustration is included in theAppendix).

Flash Test

Test

Shipping

Submerged Water FillStation

Chemical Weld Bottom Panel

Feeders &Extruder

Feeders &Extruder

Die, GearPump,

ScreenChanger

Die, GearPump,Screen

Changer

Roll Form, 3-Roll Stand

withindividual

drives

Roll Form, 3-Roll Stand

withindividual

drives

Accumulator,Preheat, Hot

Press Mold, Cut,Discharge,

Thermal BondTop & Middle

Sheet

Vertical Buffer

215 Feet

220 F

eet

Feeder & ExtruderDie, Gear Pump,Screen Changer

Roll Form, 3-Roll Stand withindividual drives

Accumulator, Preheat,Hot Press Mold, Cut,

Discharge

Vertical Buffer

Screen Print, PV Assembly, Cure

Vertical Buffer

Top Panel Middle Panel

Bottom Panel

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

Screen Print, PV Assembly, Cure

RawMaterial

Input

Vertical Buffer

Vertical Buffer

Vertical Buffer

Page 52 of 159

Page 53: Sugico Mok Plan 3

40111 5 - 3 July 2, 2004

Raw plastic material enters the fabrication & test cell in bulk pellet form and is loaded intothe feeders for each sheet line. The bottom panel sheet enters an accumulator where it isheated, press formed, cut and discharged into a vertical buffer. The panels are then screenprinted with a wiring matrix, oven cured and the photovoltaic cells applied.

The top and middle panel sheet lines are located side by side. The formed sheets enter anaccumulator where they are then preheated, press formed, cut and thermal bonded to formthe concentrator vessels. The top and middle panel assembly is then submerged in a watertank to fill the vessels and the bottom panel assembly is then chemically bonded to theassembly to complete the module. The module is then flash tested and moved to shipping.

The size of each cell is 220 feet by 215 feet and is equipped to produce approximately 1200modules per hour.

AREA REQUIREMENTS

Area requirements are detailed in the planning model contained in the Appendix. A recap ofthe summary requirements is as follows:

000 SF # of Work Cells >> 1 4 10

Production Space 51.6 206.4 516

Receiving, Shipping 5.2 20.6 51.6

Stretch Wrap, Staging 5.2 20.6 51.6

Support (prep, labs, R&D) 15 30 60

Canteen/Break 2.3 4.5 10

Office 6 6 12

Central Utilities 17 57.6 140

SUBTOTAL 102 346 841

Contingency (15%) 15 52 126

TOTAL 117 398 967

Page 53 of 159

Page 54: Sugico Mok Plan 3

40111 5 - 4 July 2, 2004

FACILITY BLOCK LAYOUT

Site Specific - A block layout was developed for the current building outline programmedon the Lawrence County site. The building outline was developed for the northern portionof the Millennium Technology Park site, allowing the center portion of the site to remainavailable for a semiconductor manufacturing facility – or wafer fab. The shape of thebuilding is based on physical restriction of this part of the site such as wetlands, topography,and site vehicular circulation requirements.

Block Layout - Baseline

This layout arrangement provides for receiving at one end of the building and shipping at theother. Based on the output target, work cells would be installed starting at one end of thebuilding (say the northeast corner) and built-out away from the first work cell (a largerillustration is included in Appendix).

Page 54 of 159

Page 55: Sugico Mok Plan 3

40111 5 - 5 July 2, 2004

Optimized Block Layout - An alternative layout arrangement was develop to show a moreoptimum process centric arrangement, without regard to permissible building footprintconstraints dictated by the present site considerations.

Block Layout - Option

This arrangement allows the receiving functions to be located closer to the work cells. Italso allows the output from each work cell to be directed down a central aisle and routed tothe stacking/stretch wrap area (a larger illustration is included in Appendix). Consequently,if there is an opportunity to utilize an alternate site, there are several points to consider forthe Optional layout:

n Improved site and facility logistics by placement of receiving locations closerto process lines.

- Pneumatic conveying systems are shorter allowing more economicfirst cost and reduced operating cost due to smaller motor/blowersrequirements.

- Reduced truck traffic density for receiving once abandoning a centralreceiving operation.

n Reduced internal material handling distances minimize material handlingequipment and reduces non-value added material handling.

- Fewer lift trucks.

Page 55 of 159

Page 56: Sugico Mok Plan 3

40111 5 - 6 July 2, 2004

- Shorter lengths of pallet conveyor.

n Increased utility runs will require more expensive first cost for distribution.

MATERIAL FLOW

Due to the extremely high production rate requirement of this project, the facility concepthas been designed with a high degree of priority placed on the flow of material. Each PanelFabrication & Test Cell is designed for the entry of bulk plastic pellets at a single point andindividual sheets and panel assemblies moving in simple, continuous flow paths through thecell with no cross-over or switch-back paths. Final product exits the cell at the opposite endfrom the raw material entry point.

The cells are arranged in the facility so that raw material entry points are easily accessedalong the exterior walls and final product can flow out of the cells, down central aisles toshipping.

RAW MATERIALS HANDLING

Other than PET and PVC pellets, lift trucks are planned for the delivery of most materialfrom Receiving to the work cells. Five lift trucks, separate from those dedicated to Shippingand Receiving, will be needed once full production is achieved. They will deliver the itemslisted in the palletized materials paragraph of the Storage section. These materials includerolls of stretch wrap. A lift truck roll handling attachment is provided for in the costestimate.

FINISHED GOODS HANDLING

A conveyor system was selected for finished panel transport from the individual work cellsto Shipping. Three modes of transport were considered: conveyors, transfer cars, andautomatic guided vehicles (AGV). Two of these, conveyors and AGV Systems, canachieve the needed throughput. The conveyor needed to transport these unit loads with a 4-by 8-foot footprint is not particularly economical; however, the conveyor system will still bemore economical than an AGV System to accomplish the same transport volume. Transportcars were initially considered because of their relatively low cost; however, for thisapplication they are too slow to achieve the needed throughput.

The Conveyor system for the Baseline Layout is expected to have approximately 2,575 feetof conveyor. At an estimated $400 per foot installed, including all diverts, merges, and thecontrol system; the conveyor system will require a $1 million investment. In contrast, anAGV system will require approximately 24 single deck or 14 double deck vehicles toachieve the needed throughput. Based upon budgetary information obtained from Jervis B.Webb, an AGV System would require approximately a $1.8 million investment.

Page 56 of 159

Page 57: Sugico Mok Plan 3

40111 5 - 7 July 2, 2004

RECEIVING

Receiving will be required primarily for PET pellets; however, a comparatively smallamount of discrete raw materials will be received in palletized form. The receiving area willbe composed of docks, unloading stations for trucks of PET and PVC pellets, silos forbackup PET pellet storage, and a small amount of rack storage.

PET Pellets The large quantity of PET and PVC consumed dictates bulk quantity delivery.Bulk delivery will be via truck. There is no rail service available on the preferred site.However, if an alternate site were considered in the future, rail service would be provide formore economical PET delivery and should be considered.

Truck delivery for PET and PVC pellets will require unloading stations. A pneumaticsystem will be utilized to directly feed each extruder from the bulk truck. These stations arebest located as close to the extruder serviced as practical to minimize blower sizes andsystem expense. Motors and blowers for the PET pellet pneumatic delivery system will belocated adjacent to the unloading stations. A 6- by 6-foot pad should be adequate for ablower and motor; there will be three motor/ blowers per work cell. Motors and blowers forthe pellet pneumatic delivery systems will be located adjacent to the unloading stations. Anexternally located 6- by 6-foot pad, located adjacent to the unloading station, should beadequate for a blower and motor; there will be three motor/ blowers per work cell.

At peak production the weight of PET and PVC consumption will be somewhat in excess offour truckloads in an hour. However, since two types of resins (clear PET for the top twolayers and an opaque PVC resin for the base layer) additional unloading stations are needed.For planning purposes, two stations are priced for clear PET and four stations for the opaquematerial. This will allow one truck to be staging for both clear PET and the opaque resinwhile the other stations are in operation. Two suppliers, Eastman Chemical and M&Gindicated that the unloading stations would probably be provided without cost due to thehigh projected consumption rate of PET and PVC.

Palletized Materials Lift trucks will be used to unload palletized loads from trailers. Forthe most part, these materials will be delivered directly to the work cells. However, thesematerials will be stored as necessary to maintain a small safety stock. Storage will be inracks located adjacent to Receiving and is more thoroughly discussed in the Storage section.For the Baseline Layout it is felt that approximately 20 docks in a centralized Receiving willbe adequate for palletized materials.

The large number of docks is required to assure the smooth operation of a JIT deliveryphilosophy. This will allow for a trailer of each high volume raw material to remain parkedat the dock for the lift trucks to work out of, while simultaneously providing docks for theyard tractor to stage the next trailer of materials and to have the needed buffer to allow anempty trailer to sit at the docks for some time.

Page 57 of 159

Page 58: Sugico Mok Plan 3

40111 5 - 8 July 2, 2004

SHIPPING

Finished goods will be palletized in the work cells and subsequently stretch wrapped tofacilitate handling and security. Palletized panels will be delivered to Shipping where theywill be stretch wrapped. These unit loads will be automatically delivered to the stretchwrappers. Unit loads will be fed into the stretch wrapper on an automatic conveyor. Nocorner posts are required; the panel design will have strengthened corners that nest so as toprovide a robust package once stretch wrapped. The wrapped load will be discharged onto aconveyor to await pickup by a lift truck. Lift trucks will load trailers at the docks.Approximately 30 docks are provided.

STORAGE

As with the dock areas, a “just-in-time” philosophy affects the storage area design. Storagequantities are based upon JIT deliveries. As such, only the smallest of safety stock isconsidered.

Raw Materials The primary raw material will be PET and PVC pellets. While delivery isstraight from the trucks to the extruders, with the trucks parked in the unloading station forthe duration, silo storage is also recommended by resin suppliers as a backup to guardagainst delivery disruptions. The suppliers interviewed indicate that the cost of the silos willbe borne by them as a service due to the anticipated large volume of PET and PVCconsumption. To preclude mixing PET types, separate silos will be maintained for clearPET and opaque PVC. A 2-hour backup supply of PET and PVC is recommended. Atpeak production, this will be approximately 104,000 pounds of clear PET pellets and312,000 pounds of opaque resin. This can be accomplished with a relatively small silolocated adjacent to each of the bulk unloading stations. For the clear PET, 2 silos ofapproximately 8-foot diameter and for the opaque resin four silos of 10-foot diameter shouldbe adequate.

Palletized Materials As with PET and PVC pellet storage, the philosophy of design is thatJIT deliveries will keep stored palletized materials at a minimum. For the most part, storageis a 2-hour buffer. It has been calculated that 62 pallet rack positions and 12 drive-in rackpositions will hold the necessary materials. This amount of rack is small and will beinstalled adjacent to Receiving. The rack will provide three high pallet storage and willhave a footprint of 915 square feet (425 square feet for pallet rack and 490 square feet fordrive-in rack). The materials to be stored are:

n PVs – photovoltaic cells will be received in tubes for insertion, these will bein cartons and on pallets. Due to the extremely small size of the PVs, a lot ofstorage space will not be required. With just in time delivery, material flowwill be primarily from the dock to the production floor. Storage space for 12pallet loads of photovoltaic cells will be provided.

n Empty pallets – the finished panels will be placed on pallets for securehandling; therefore, an ample supply of pallets will be required. Emptypallets will require more storage space than any other material placed in

Page 58 of 159

Page 59: Sugico Mok Plan 3

40111 5 - 9 July 2, 2004

racks. These pallets will be a specialized 4- by 8-foot size. Where storage isnecessary pallets will be stored in drive-in racks. The equivalent of twohours of pallets will be stored; otherwise, pallets will go directly from trailersat Receiving to the work cell stackers where pallet loads are formed. Spacefor storing 400 empty pallets will be provided; this will requireapproximately 12 drive-in storage slots.

n Stretch wrap – a considerable quantity of stretch wrap will be used topackage the completed panels for shipping. The wrap will be received inrolls, the rolls are palletized, and the rolls weight no more than 1000 pounds.A roll handling attachment will be provided on one of the lift trucks thatoperate in Receiving. Twenty pallet loads of stretch wrap will be stored forbackup.

n Cement – the final assembly operation for the panels requires chemicalbonding of layers. The glue utilized will be in liquid form, received in 55gallon barrels, filled barrels will weigh approximately 450 pounds, the barrelswill be palletized, and potentially with have hazardous storage requirements.Space for the storage of 10 barrels of cement will be provided.

n Miscellaneous – numerous other unidentified materials in small quantitieswill be received that require storage. Twenty storage positions will beprovided for miscellaneous items.

WIP The only work-in-process envisioned at this time will be due to exception conditions.Primarily this is thought to be units that need repair. Otherwise, there is no intermediatehandling or accumulation planned for panels or panel components beyond that suppliedinternally by the process equipment and its interconnection conveyor system.

Finished Goods (surge only) Completed product is shipped as soon as possible.Therefore, Shipping will only have a staging area for product. This will primarily be in theform of a conveyor queue of several unit loads at the output of each stretch wrapper.

Research and Development The facility will have a Research and Design Laboratoryequipped with essential prototyping equipment such as a drill press, mill, lathe, hydraulicand electrical test benches, microscopes and various hand tools. Basic shop lighting andutilities will be provided to this area.

UTILITIES

The following paragraphs describe the key utilities that will be required for themanufacturing facility and describe projected facilities equipment requirements.

Electrical Each 51,000 square-foot manufacturing cell is projected to have an electricaldemand of 13.4 MVA, which includes manufacturing equipment and associated facilitiessupport equipment. See the attached Tool Utility Matrix – Estimates for Typical Work Cellfor demand and connected load numbers. This demand load represents a high density

Page 59 of 159

Page 60: Sugico Mok Plan 3

40111 5 - 10 July 2, 2004

electrical load of 260 watts per square foot of manufacturing space. At ten manufacturingcells, the corresponding projected electrical load is 134 MVA, a significant number whichrequires multiple dedicated high voltage substations and transmission planning at theelectrical utility level.

A large portion of the electrical load is made up of electrical furnaces and heating equipmentwhich are part of the manufacturing process. IDC has contacted equipment manufacturersto discuss the possibility of changing these furnaces to natural gas. The manufacturersresponded indicating that some of the equipment components are not available in natural gasat this time and that some processes are better served with electrical heating components.

First Energy has received connected and demand load forecasts along with a projected loadtimeline. First Energy’s previous study an alternate use for this site, which wascommissioned in 2003, indicated that the 138 kV line can support 80 MW of additional load.60 MW of this capacity was to be allocated for the Millennium Park industrial site and 20MW was to be allocated to supporting regional businesses and residential uses. Becausedemand figures for a ten module factory presently indicate a demand of 130 MVA, FirstEnergy has indicated that utilizing the existing 345 kV transmission line, located four milesfrom the proposed site, may be preferable. First Energy has an existing easement for the138 kV line extension to Millennium Park, but does not have a similar easement for the 345kV line. Utilizing the 345 kV transmission would require land to be purchased – verypreliminary estimates indicate purchasing the land and constructing the four-mile 345 kVextension would cost $3-$5 million. First Energy has indicated that it would need to becommissioned to execute a three to four month duration electrical study to confirm the useof the 345 kV transmission line. One possible solution is to utilize the 138 kV transmissionto provide power for the first five modules of the factory and, if necessary, utilize the 345kV transmission line for the remaining five factory modules.

Load projections are based upon demand figures gathered by IDC and Lockwood Greeneacross several different industrial plant types. Demand factors for industrial facilities ofdifferent types vary widely. As this facility is the first of kind, the actual loads seen after thefirst module is operational will be valuable in assessing the actual demand for the followingmodules. The actual demand factor for the first production module will be criticaldetermining the size and cost of electrical substations and distribution equipment necessaryfor the following nine modules.

See the Electrical Concept Drawing included in this report for a single line diagramindicating possible utility substation quantity/configuration and plant 15kV, 5kV, and 480Vdistribution. Electrical system design and cost is based upon N+1 redundancy.

Page 60 of 159

Page 61: Sugico Mok Plan 3

40111 5 - 11 July 2, 2004

DI Water IDC believes that DI water would be required for filling the PV lenses. Thisrequirement is based upon no bacteria or algae growth within the lenses for a period ofseven years where the lenses are installed in an outside ambient condition. Calculationsindicate that the flow for one production module is 95 gpm, with a corresponding flow ratefor the ten module factory at 950 gpm.

This flow would require a DI water production facility within the manufacturing facilitywith prefiltration, RO, continuous DI (CDI), filtration, UV sterilization, and degas. Watersource will be municipal potable water - assume groundwater at 10 grams of hardness,100 ppm calcium. Water quality will be low TOC (>50 ppb), 17 Megohm resistivity, gascontent (all N2 and o2) less than 50 ppb. Membrane degas preferred in pilot system.Production level could use vacuum tower degas. Both w/o N2 purge.

HVAC, Mechanical, & Exhaust HVAC, mechanical, and exhaust systems are required forremoval of heat from production cells and space conditioning for operator comfort. Each51,000 square foot cell has a heat load of 4,198 kW. That is a demand load of 80 watts persquare foot of manufacturing space. The mechanical systems are designed to keeptemperature at the plant floor between 75 and 80 degrees Fahrenheit. This requires a greatamount of airflow to be induced and removed from the space. Mechanical system designand cost is based upon N+1 redundancy. See attached “Mechanical Equipment Summary”document for a list of projected mechanical components and their corresponding ratings.See attached “Mechanical Equipment Sizing” document for calculations performed todetermine equipment quantities and ratings.

Mechanical Equipment Summary

FOR 1 CELL ONLY

# of Units Capacity HP- kW / each

AHU 14 50000 cfm 60 hp

Chillers 3 1280 tons 535.4 kW

Boilers 2 15876 MBTU 500 hp

Cooling Tower 2 143500 cfm 40 hp

CHW Pumps 2 1590 gpm 60 hp

HW Pumps 2 815 gpm 30 hp

CW Pumps 2 1990 gpm 40 hp

Solvent EF 3 36000 cfm 40 hp

Page 61 of 159

Page 62: Sugico Mok Plan 3

40111 5 - 12 July 2, 2004

# of Units Capacity HP- kW / each

General EF 3 72000 cfm 50 hp

Assumptions

n AHUs

- AHUs will maintain the work space between 75 F and 80 F.

- Sensible cooling only at the cooling coils.

- AHUs configured to operate in full economizer.

- 13 units are required, one extra for shutdown purposes.

n Chillers

- There is 1300 tons of cooling for each cell. One chiller will operate.

- One redundant chiller for shutdown purposes.

- The chillers will operate at 55 F leaving water temperature.

n Boilers

- During the winter months the space will go to minimum OSA and recirculateairflow back through the unit.

- The boilers will only operate during the winter months.

- One redundant boiler for shutdown purposes.

n Solvent Exhaust

- Two Exhaust fans will operate at 18,000 cfm.

- One redundant fan for shutdown purpose.

- Assume high static for VOC abatement.

n General Exhaust

- The two fans are operating at 36,000 cfm.

- One redundant fan for shutdown purposes.

- Assuming the general exhaust is not connected to any tools or static removal

Page 62 of 159

Page 63: Sugico Mok Plan 3

40111 5 - 13 July 2, 2004

MECHANICAL EQUIPMENT SIZING

Cooling Load calculations for Airflow & Chillers

Givens:

Room Temperature 75 F - 80 F

OSA Summer Temp 85 F DB / 70 F WB

OSA Winter Temp 11 DB

1 Cell Heat Load 14,336, 170 BTU

Air Handler Calculations

CFM = 14,336,170 / 4.5 (34-29) = 637,163 CFM

Q = 50,000 * 1.08 (85 - 64) =1,134,000 BTU/H

GPM = 1,134,000 / 500 (75-55) = 114 GPM

14 Air Handling Unit @ 50,000 CFM

Total GPM = 1590 GPM

Chiller Calculations

1 Cell Requires 1304 Tons ( cell calculations attached)

For Sensible cooling the operating Temperatures:

Entering Water Temp 75F

Leaving Water Temp 55 F

1 - 1280 Tons Chiller @ 535.4 kW / 1 Chiller for redundant

2 - Primary Pumps 1590 gpm @ 110 ft w/ 60 HP

2 - Condensing Pumps 1990 gpm @ 60 ft w/ 40 HP

2 - Cooling Towers

Heating load calculations for Airflow & Boilers

OSA = 20% @ 11 F

Page 63 of 159

Page 64: Sugico Mok Plan 3

40111 5 - 14 July 2, 2004

RA = 80% @ 75 F

MA = 100% @ 62 F

Q = 1.08*50,000 ( 83 - 62) = 1,134,000 BTU

GPM = 1,134,000 / 500 (160-120) = 57 GPM

Total GPM = 800 GPM

Total BTU/hr = 15,876,000 BTU

Operating Temperatures:

Entreating Water Temp = 120 F

Leaving Water Temp = 160 F

1- 500 HP Boilers Required Plus One redundant Boiler

2 Primary Pumps 800 gpm @ 80 ft w/ 25 HP

Solvent Exhaust Fan Sizing

4.5 inches of static consider for scrubber

2.5 inches of static consider for operation

2 fans operate at 18,000 cfm @ 7 inches of static plus 1 for redundancy

General Exhaust Fan Sizing

Assuming no tool connection.

2 fans operate at 36,000 cfm @ 3.5 inches of static plus 1 for redundancy

Cooling Load Calcs for 1- Cell

1 - Cell kW BTU Tons

Load 4193 14306516 1192

Support Bldg

Area People BTU Assumption

People 15000 20 5000 250 Btu / Person

Space 15000 20 450000 30 Btu / Sq Ft

Page 64 of 159

Page 65: Sugico Mok Plan 3

40111 5 - 15 July 2, 2004

Lighting 15000 20 4396.248535 1 Watt / Sq Ft

Office Bldg

Area People BTU Assumption

Office Space 6000 40 10000 250 Btu / Person

Break Rm 2250 25 6250 250 Btu / Person

Office Bldg 8250 65 247500 30 Btu / Sq Ft

Lighting 8250 65 2417.936694 1 Watt / Sq Ft

CUB

Area People BTU Assumption

Space 20440 2 613200 30 Btu / Sq Ft

Lighting 20440 2 5990.621336 1 Watt / Sq Ft

Total Tons 1304

Cooling Load Calcs for 4- Cells

4 - Cells kW BTU Tons

Load 16793 57297716 4775

Support Bldg

Area People BTU Assumption

People 30000 40 10000 250 Btu / Person

Space 30000 40 900000 30 Btu / Sq Ft

Lighting 30000 40 8792.497069 1 Watt / Sq Ft

Office Bldg

Area People BTU Assumption

Office Space 6000 40 10000 250 Btu / Person

Break Rm 4500 80 20000 250 Btu / Person

Office Bldg 10500 120 315000 30 Btu / Sq Ft

Lighting 10500 120 3077.373974 1 Watt / Sq Ft

Page 65 of 159

Page 66: Sugico Mok Plan 3

40111 5 - 16 July 2, 2004

CUB

Area People BTU Assumption

Space 69165 2 2074950 30 Btu / Sq Ft

Lighting 69165 2 20271.10199 1 Watt / Sq Ft

Total Tons 5055

Cooling Load Calcs for 10- Cells

10 - Cells kW BTU Tons

Load 41984 143249408 11937

Support Bldg

Area People BTU Assumption

People 60000 60 15000 250 Btu / Person

Space 60000 60 1800000 30 Btu / Sq Ft

Lighting 60000 60 17584.99414 1 Watt / Sq Ft

Office Bldg

Area People BTU Assumption

Office Space 11900 70 17500 250 Btu / Person

Break Rm 10125 200 50000 250 Btu / Person

Office Bldg 22025 270 660750 30 Btu / Sq Ft

Lighting 22025 270 6455.158265 1 Watt / Sq Ft

CUB

Area People BTU Assumption

Space 168295 2 5048850 30 Btu / Sq Ft

Lighting 168295 2 49324.44314 1 Watt / Sq Ft

Site Specific -Total Tons

12576

Page 66 of 159

Page 67: Sugico Mok Plan 3

40111 5 - 17 July 2, 2004

Clean Dry Air (CDA) CDA, sometimes referred to as “oil-free air”, is required bymanufacturing equipment. Each cell has a significant usage of 3505 scfm at 60 psig.Corresponding air flow requirements for the ten cell facility is 35,052 scfm. The flow forone cell will be provided by three centrifugal air compressors and associated air dryers percell. A fourth, redundant air compressor will be provided for N+1 redundancy.

Natural Gas Natural gas is required to service the furnaces associated with theExtrusion/Calendar/Cutter manufacturing equipment. Natural gas is utilized for thesefurnaces for several reasons: gas furnaces are suitable for the process requirement, gasfurnaces are commercially available, and electrical requirements are reduced.

It is estimated that each production cell will require 10,000 cubic feet per hour (CFH) ofnatural gas. At full production, this equates to 100,000 CFH plus an additional 5,000 CFHfor other building uses. Dominion/People’s Gas has been contacted and this information hasbeen passed on to them. Dominion/People’s Gas was aware of a 105,000 CFH demand forone semiconductor facility and other smaller site buildings (office and flex space), and madea commitment to supply these needs. Dominion/People’s Gas has verbally stated they couldmeet the required additional 100,000 CFH.

BUILDING SHELL

The facility is planned to maximize the efficiency of the fabrication and assembly process,which results in a large (800- by 1000-foot) footprint. The large roof takes a saw toothconfiguration which allows solar panels to be arrayed facing south at the optimum angle tomaximize solar exposure. The north face of each saw tooth is used for air intake to theelevated air handlers and to bring high quality daylight onto the floor of the plant, improvingenergy efficiency and work place quality.

OFFICE AREA, SUPPORT SPACE, AND AMENITIES

The proposed facility has 80,000 square feet of area dedicated for office space, conferencerooms, research and development, training areas, a lunchroom/cafeteria, locker rooms,restrooms, and areas for support activities such as security, building maintenance, andsafety. The breakdown is as follows:

Office 19,300 sq. ft.

Conference Rooms 7,200 sq. ft.

Research & Development 7,500 sq. ft.

Training Space 2,000 sq. ft.

Cafeteria/Lunchroom 8,000 sq. ft.

Locker Rooms 5,300 sq. ft.

Restrooms 5,000 sq. ft.

Security 1,500 sq. ft.

Page 67 of 159

Page 68: Sugico Mok Plan 3

40111 5 - 18 July 2, 2004

Maintenance 2,200 sq. ft.

Safety/Medical Supplies 1,300 sq. ft.

Office Mechanical 3,200 sq. ft.

Circulation/Egress 17,500 sq. ft.

TOTAL 80,000 sq. ft.

Page 68 of 159

Page 69: Sugico Mok Plan 3

40111 6 - 1 July 2, 2004

Section 6PRODUCTION RAMP UP, ORGANIZATION AND MANPOWER

PROOF OF CONCEPT

Proving that the design of the product and the manufacturing process used to produce thepanel is the first critical step to gain confidence that the panel functions as desired and canbe manufactured as designed. This is the time to tweak design elements and manufacturingsteps so that pilot production can be focused on fine tuning the units of operation inpreparation of full scale production ramp-up. Appendix 7.0 contains a technical paper, co-authored by David Causey, who participated in the production of this report. This paperoutlines the challenges in transitioning from R&D (Proof of Concept) to pilot production,then to full-scale production.

PRODUCT DESIGN

To prove the design concept, it is recommended to complete detail design drawings of theCPC module components and assemblies and to produce prototypes on temporary tooling.All three panels of the module assembly could be produced on vacuum-forming equipment.This will enable the resolution of design issues such as the interface of the bottom panelwith the top/middle panel assembly to completing the vessel seal without incurring the costof hot press forming equipment and dies. Screen-printing and PV placement sensitivityshould also be verified.

PROCESS DESIGN

Once the product design concept has been tested and proven, the processing equipment andtooling can be designed and the first prototype cell installed. It is recommended that thisfirst cell contain the minimum equipment necessary to prove the manufacturing process.The prototype cell should contain one line of sheet forming equipment and the necessarydies to produce all three panels of the completed module. Again, vacuum-formingequipment would be suitable and, in fact, could be outsourced to save the cost of theequipment at this stage in product development. The screen print, PV, and cure processequipment should also be limited to one line in the prototype cell. The prototype cell willalso need to include all equipment necessary for water submersion, thermal, and chemicalbonding, as well as material handling of the panels and finished modules. The estimatedprice of this prototype cell could be up to $15,000,000 if all the process equipment ispurchased. This value includes approximately $10,400,000 for “one of” each primary unitprocess equipment, plus an allowance for material handling equipment, storage racks, leasedspace, and other miscellaneous costs. For prototyping, a leased space of 10,000 to 15,000square feet should be adequate.

PRODUCTION RATE

Once the process design has been verified, it is recommended to install one completemanufacturing cell to verify the production rate of the facility.

Page 69 of 159

Page 70: Sugico Mok Plan 3

40111 6 - 2 July 2, 2004

PRODUCTION RAMP UP

Building ready will be achieved in Project Month 21. Equipment procurement, productionstart up. Ramp up to Production Capacity Target #1 (5 GW per year) will takeapproximately six months from the start of pilot line installation and will be achieved inProject Month Number 27, and will proceed in the following Phases:

n Product Line Install

n Pilot Line Startup & Test

n Manpower Training & Ramp Up

n Production Ramp to Target #1 – 5 GW per year rate (5,252,649, 4- by 8-footpanels per year)

After successful Pilot Line testing and commissioning, it is feasible to install approximately1 additional cell per month. This will allow capacity increases to meet Target #2 and Target#3, as follows:

n Production Ramp to Target # 2 – 30 GW per year rate (31,515,892, 4- by8-foot panels per year) – projected to be achieved Month 31.

n Production Ramp to Target #3 – 97 GW per year rate (101,901,384, 4- by8-foot panels per year) – projected to be achieved Month 47.

Ramp up from Production Capacity Target #1 to Production Capacity Target #2 will take anadditional four months and will be achieved in project week number 31. Interim ProductionTarget #2 will be achieved in approximately 22 months. This is the optimal ramp up periodthat can be reasonably anticipated due to equipment procurement lead times, installation andtesting, manpower hiring, and training requirements.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Units per Year

(Millions)

25 26 27 28 29 30 31 32 33 34 35 36

Product Life Cycle Month

Production Ramp Up

Page 70 of 159

Page 71: Sugico Mok Plan 3

40111 6 - 3 July 2, 2004

These production capacity projections assume the following:

n 3 shift per day operations, 52 week per year.

n Installation of 1 cell per month.

n Availability of trained labor.

n Availability of production equipment.

ORGANIZATION RECOMMENDATIONS

The challenge for the Mök organization will be to meet changing needs as the businessrapidly evolves from the present stage of the business, the Initiation Stage, through theDevelopmental, Organizational and Expansion stages of the business. This will create a needfor an organization that can quickly make decisions in response to a changing companyenvironment as illustrated in the chart below.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

Panels per

Year (Millions)

37 38 39 40 41 42 43 44 45 46 47

Project Life Cycle Month

Production Ramp Up

Page 71 of 159

Page 72: Sugico Mok Plan 3

40111 6 - 4 July 2, 2004

Early Stages of a Business

Stage Activity Characteristics Culture

Initiation

Great ideas

Selling it

Gaining commitment

Hands on leadership

Forming

Dependent

Gathering

New Venture

Entrepreneur (visionary)

Performer (task oriented)

Administrator (TOS, OAS)

Person-to-person contact

Product development &market development

Developmental Making it work

Testing it

Pressure to produce results

Moving from task to task

Produce & distribute

Short term orientation

Every opportunity a priority

Highly centralized

Informal

Leadership involved ineverything

Storming

Counter-dependent

Repeating

Expansion

Growing pains

Must develop infrastructure

Turmoil creates counter-dependence among withinthe organization

Start & stop of objectives

Operational systems

Page 72 of 159

Page 73: Sugico Mok Plan 3

40111 6 - 5 July 2, 2004

Early Stages of a Business

Stage Activity Characteristics Culture

Organizational Organization takes onidentity

Time previously spentdoing & selling now spentplanning & coordinating

Administration rises inimportance

Functional structuredevelops

Policies and procedures areestablished

Salary systems

Accounting systems

Tension betweenentrepreneurs andadministrators

Management essential

Norming

Independence

Sharing

Professionalization

More formal planning

Develop a strategicplanning & managementsystem

Defined roles &responsibilities

Sensitivity and orientationto people

Management systems

Expansion Moving into prime

More focus on “out there”

Growing reputation

Need to determine level ofaspiration

Restructuring(decentralizing)

Mgt. Information Systemsfor expanded &decentralized structure

Manager/strategist(innovator)

Performing

Interdependent

Transforming

Consolidation

Maintain growth &development

Organizational culture

Acknowledgeorganization’s Missionimplementation strategies

Culture system

Page 73 of 159

Page 74: Sugico Mok Plan 3

40111 6 - 6 July 2, 2004

Our proposed organization creates an important group of Corporate level managers withinoperations, consisting of a Corporate Supply Chain Manager, Corporate ManufacturingManager and Corporate Engineering Manager to assist the Director of Operations in thedevelopment and implementation of an integrated Strategic Plan and make timely decisionsto support the growth of the business.

Major functions in the recommended organization are as follows:

n Operations

n Administration and Finance

n Sales

n Marketing

n Human Resources

n Information Systems

Overall, the purpose of IDC’s recommendations is to help Mök Industries to initiate a lean,simple, efficient organization in alignment with the Lean Enterprise philosophy. Mostcompanies tend to concentrate their efforts to become lean on the process at the plant floorlevel. Lean is a human system driven by and focused on the customer. Therefore, theorganization and the culture must focus upon serving internal and external customers with aminimum of waste. When this is done successfully, it creates a pull system throughout theorganization. For these reasons, implementing as flat an organization as possible with theminimum number of sub-layers is recommended.

We also recommend organizing along functional lines. Combined with standardizedprocesses and organizations, a functionally aligned organization also promotes theconcentration of appropriate resources on the execution of strategic and tactical initiatives.The Mök organization should have the following general responsibilities at the Corporateand Plant levels:

Page 74 of 159

Page 75: Sugico Mok Plan 3

40111 6 - 7 July 2, 2004

Corporate PlantManufacturing Strategy RegulationAsset Utilization Production EngineeringSupply Management 1st Line MaintenancePlanning/Estimating Liaison & Quality AssuranceManagement Accounts Cell SchedulingFleet Management WarehousingScheduling Reconciliation DistributionCapacity Planning/Forward PlanningFacilities & Specialized MaintenanceQuality AssuranceInventory ControlCost Control

In order to cope with the complexities of establishing and rapidly growing the business, thecorporate organization plan proposed is based on the following five specific objectives:

n Focus the entire organization towards an internal and external client serviceapproach.

n Clearly define the roles and interaction procedures between corporatemanagement and operations.

n Standardize systems, methods, procedures, objectives, and strategies for thewhole group.

n Minimize the levels of hierarchy within the organization.

n Minimize the number of personnel.

IDC’s recommendations are intended to divide responsibilities among managementfunctions to maximize coordination and control of the operational network, humanresources, and capital assets as described below:

n Corporate Administration and Finance Director

n Corporate Marketing Director

n Corporate Sales

n Corporate Human Resource Director

n Corporate Systems Management Director

n Corporate Operations Director

The resources required to undertake a supply chain optimization for Mök Industries includestrategic planning analysis, engineering analysis, material flow analysis, cost justification,

Page 75 of 159

Page 76: Sugico Mok Plan 3

40111 6 - 8 July 2, 2004

project management, and system implementation. In the recommended organization, theseresources are controlled by Operations. Further, day-to-day operations of a distributioncenter are also the responsibility of operations. The Operations Director assumes direct lineresponsibility for Operations and the largest portion of the supply chain. Specifically, thisapplies to the entire supply chain, except the portion of the supply chain from the plant anddistribution center (DC) out to the panel array site(s). The purpose for centralizing allactivities related to Operations is to standardize systems and procedures across theorganization and optimize the entire supply chain network.

For the Director of Operations to assume the added responsibilities described above,resources with specialized skill sets will have to be included in the corporate organization.Care has been taken in development of the proposed Operations organization to assure thatthe number of direct reports to any individual is in line with responsibilities and the verticalfunctionality required of the new organization. Direct reports to the Director of Operationsin the proposed organization include:

n Corporate Supply Chain Manager

n Plant Manager

n Corporate Engineering Manager

A brief description of the responsibilities each of the corporate operations managers follows.Each of these managers will have a vertical functional responsibility down through the plant.

n Corporate Supply Chain Manager will be responsible for fleet management andcorporate purchasing support functions. At the corporate level, the Corporate SupplyChain Manager will have under him, a Corporate Purchasing Manager and aCorporate Fleet Manager. Fleet Management (transportation management) will beespecially important given the projected number of truck shipments.

n Plant Manager will be responsible for day-to-day manufacturing and distributioncenter operations. System standardization, utilization of assets, and meetingproduction requirements will be the critical drivers for this manager. Theseresponsibilities will be overseen through a functional vertical organization. Thisincludes day-to-day panel manufacturing operations.

n Corporate Engineering Manager. We recommended that a corporate sheet formingtechnical services group be reorganized under the Corporate Engineering Manager.This group will still be responsible for technical services support plant. TheCorporate Engineering Manager will have two ways of supplying technical servicessupport to the plant. First is a corporate engineering bench comprised of engineerswith specialized skill sets. The second method is through outsource engineeringresources brought in on an as-needed basis.

Page 76 of 159

Page 77: Sugico Mok Plan 3

40111 6 - 9 July 2, 2004

To support the Director of Operations in both annual operations plans and strategic plans,IDC recommends that a strategic planning team will be formed at the corporate level. Fromthe operations side, the team will be comprised of Corporate Supply Chain Manager,Corporate Manufacturing and DC Manager, and Corporate Engineering Manager. Thiswould be a most effective group for planning purposes since from an operational perspectivethey are the ones ultimately responsible for system wide operations.

The organization at the plant level must be aligned to properly execute its tactical functionsand take advantage of the corporate and regional support structures. This alignment requiresa degree of standardization throughout the Mök manufacturing plant(s).

The IDC team has developed a “4-Dimensional” approach to cellular manufacturing thataddresses the integration of four major elements:

n Logistics & Control

n Organization & People

n Production Flow

n Performance Metrics

IDC’s recommended Plant Level organization is aligned to take advantage of the matrix ofsupport to value-adding operations.

The Manufacturing Support Manager will be responsible for making sure processes are setup to enable workers within the plant to do their jobs, motivating plant personnel,coordinating production support, and coaching.

ChairmanWilliam Mook

Vice Chairman

Sales DirectorMarketingDirector

Operations DirectorHuman

ResourcesDirector

Info. SystemsManagement

Director

Corp. SupplyChain Mgr.

Corp. Engr.Manager

Corp.TrainingManager

Admin & FinanceDirector

Corp. FleetManager

Corp. PurchasingManager

Engineering BenchOutsource

Engineering

Plant Level

Page 77 of 159

Page 78: Sugico Mok Plan 3

40111 6 - 10 July 2, 2004

The organizational practices of lean operations, which include the transition to cellularteams at the plant level, are an essential element of IDC’s recommendations. To besuccessful, however, team-based processing will also need to include all four dimensions ofcellular processing.

IDC’s proposed organizations for cells are based on start-up requirements. Theserequirements will be reduced as improvements are made to the cell. For example, the CellLeader is a temporary position and will be phased out as the cell teams gain experience.

The use of cell teams for demand-pull processing will have a substantial effect upon theworking culture and the management organization. Traditional hierarchical chains ofcommand are replaced by task oriented teams working in a matrix style organization.Leadership within each cell must replace the current emphasis placed on extra-cell control.Tasks and skills including such functions as production engineering, production control andmanagement services will, be the responsibility of cell team members.

Cell support personnel will consist of a Process Engineer, Scheduler, Logistics Planner,Quality Engineer, and Maintenance Technician. Representatives from each of these will be

Shift Leader

Facilitator

Operators

Cell LeaderFab & Test Cell

HumanResourcesManager

AdministrationManager

ManufacturingSupportManager

Logistics/WarehouseFleet Supervisor

ProcurementSupervisor

Quality Control

Plant Manager

ProcessEngineering

Manager

Maintenance

Scheduler

Cell Support Team

Director ofOperations

Typical Cell(10 required)

Shift Leader

Facilitator

Operators

Cell Leader Fab & Test Cell

PLANT LEVELORGANIZATION CHART

Page 78 of 159

Page 79: Sugico Mok Plan 3

40111 6 - 11 July 2, 2004

allocated responsibility for specific cells and individual resources will be shared amongmultiple cells. These functions will play a more consultative or advisory role in the futurethan at startup, eventually becoming “centers of excellence” where cell teams can go toobtain skills and information that they will apply on their own initiative.

STAFFING RAMP UP

Corporate Staffing at full production, 3-shift operations will equal approximately 104people. It is advisable to begin assembling the corporate staff as soon as possible afterinitiation of facility design in order to ensure the ability to acquire manufacturingequipment, hire personnel, develop and administer training programs, handle financialmatters, install and test equipment, and complete other key activities required formanufacturing startup as soon as the facility is ready.

THE CELL CONCEPTSpecialist Support People

Centers ofExcellence

• Prod. Engineering• Quality• Maintenance• Information Services

The Cell Leader• Trained as a

leader• Has most skills• Understands

cell logistics

Multi - SkilledProduction Team

• Cell containedwithin well definedboundary

• All processesowned by the cell

• Cell teamaccountable for itsown performance

inputs :

Fit for purpose• materials• tools• information

Outputs:• products on time• rapid response• performance

data

Page 79 of 159

Page 80: Sugico Mok Plan 3

40111 6 - 12 July 2, 2004

The hiring and training of manufacturing personnel should begin approximately 3 monthsprior to initial pilot production and equipment commissioning. The followingmanufacturing manpower ramp up chart assumes that corporate staff is already on board.

Manufacturing staffing at full production, 3-shift operations will equal approximately 555people.

Recommended Corporate Staffing

Headcount 3-Shift OperationPre-Start Start Full Prod

Chairman 1 1 1Vice-Chairman 1 1 1Administration & Finance Director 1 1 1

Accounting Department Staff 3 5 10Administration Staff 16 18 20

Sales Director 1 1 1Staff 1 1 1

Marketing Director 1 1 1Staff 1 2 2

Operations Director 3 3 3Information Systems Director 1 1 1

Staff 2 5 8Human Resources Director 1 1 1

HR Asst. 2 3 5R&D Director 1 1 1

R&D Staff 3 3 3Corporate Supply Chain Manager 1 1 1

Purchasing Manager 1 1 1Staff 2 2 4

Fleet Manager 1 1 1Staff 2 3 6

Corporate Engineering Manager 1 1 1Outsource Engineering Manager 1 2 2Engineering Bench Staff 7 14 21

Corporate Training Manager 1 1 1Staff 2 3 6

Total Corporate Staff 58 77 104

Page 80 of 159

Page 81: Sugico Mok Plan 3

40111 6 - 13 July 2, 2004

TRAINING RECOMMENDATIONS

At a minimum, training programs must be established for start up operations as follows:

n Indoctrination, company policy – internal training

n Safety Training – internal training

n Machine operator training for cell team members – vendor supplied

n Lean Manufacturing training for all employees – outside supplier short term,internal training long term

n Work team dynamics training for all cell team and cell support teampersonnel - internal

n Routine maintenance training for cell team members – vendor supplied shortterm, internal long term

n Equipment Maintenance training for maintenance personnel – vendorsupplied

n Information systems training for administrative and support personnel –systems supplier short term, internal long term

These training programs must be developed prior to the hiring of plant staff andimplemented/expanded in alignment with manpower and operations ramp up. Werecommend that the development and implementation of internal training programs shouldbe the responsibility of the Human Resources manager and developed with the assistance ofoutside resources as needed.

Manufacturing Manpower Ramp Up

0

100

200

300

400

500

600

21 23 25 27 29 31 33 35 37 39 41 43 45

Project Life Cycle Month

Hea

dcou

nt

Page 81 of 159

Page 82: Sugico Mok Plan 3

40111 7 - 1 July 2, 2004

Section 7MILESTONE SCHEDULE

The following schedule is conceptual in nature and incorporates progress already maderegarding the development of the Millennium Park site.

Page 82 of 159

Page 83: Sugico Mok Plan 3

40111 8 - 1 July 2, 2004

Section 8ROM COST ESTIMATE

FACILITY

The estimate for the facility and site infrastructure is budgetary in nature based on theconceptual information developed for this report. The ROM cost estimate accuracy can beexpected to be plus 50 percent or minus 30 percent of the actual cost. A high level breakoutof the estimate is included in the Appendix as well as an Estimating Accuracy Curve asdefined by the Association for the Advancement of Cost Engineers (AACE).

Any resulting conclusions on project financial, economic feasibility, or fundingrequirements should be made with this in mind. The final costs of the project and resultingfeasibility will depend on actual labor and material costs, competitive market conditions,actual site conditions, final project scope, implementation schedule, continuity of personneland engineering and other variable factors. The recent increases in material pricing mayalso have a significant impact that is not predictable. Careful review or consideration mustbe used in evaluation of material prices.

Total cost of Work includes general conditions, overhead, and profit. Not included areescalation and contingency. The following table presents the cost for the facility.

PROCESS EQUIPMENT

The estimate detail for manufacturing equipment is also included in the Appendix. Valuesassigned are based on conversations with vendors. For example, CDL Technology providedinput for the panel sheet and forming equipment. All values include installation. Theprocess equipment cost is presented in Appendix 2.0.

OPERATING COSTS

While not specifically part of the scope of this report, it is important to consider operatingcosts to help determine overall project economic feasibility. Therefore, IDC identifiedmajor variable operating costs, including raw material, labor, utility, and transportation.Appendix 2.0 includes a simple summary of these costs as well as fixed costs of the facilityand process equipment. The pie chart below graphically shows the proportional costs on aper module basis assuming the plant operates for 7 years at peak production. For a shorterperiod, the fixed cost proportion increases.

Page 83 of 159

Page 84: Sugico Mok Plan 3

40111 8 - 2 July 2, 2004

It is worthy to note, based on the peak production rate and the process that this report hasdefined, the electrical demand is huge, and the natural gas demand is very high as well. Theenergy demand is being driven primarily by the heat needed to form the plastic layers of thepanel using hot press molders. At full production, this plant would be one of the highestpower consumers in the country. And while the utility costs account for only 3% of the costper module in the pie chart above, it may be worthwhile to research other plastic materialcomposites with properties suitable for forming the panels at lower temperatures and therebyrequiring less energy. Appendix 6.0 gives a material comparison of the three materialsunder consideration for the bottom panel: ABS, PET UV, and CPVC. The pie chart belowshows the proportional utility costs for electricity, natural gas, and water. Telecom andsewage costs should be relatively minor in comparison.

Cost Breakdown per Module

Facility Cost

Equipment Cost

PV Cost

Resin Cost

Circuitry Cost

Labor Cost

Utilities

Transportation Cost

Page 84 of 159

Page 85: Sugico Mok Plan 3

40111 8 - 3 July 2, 2004

SUMMARY

The final project costs will vary from the opinions of cost presented herein. Because ofthese factors, project feasibility, benefit/cost ratios, risks, and funding needs must becarefully reviewed prior to making specific financial decisions or establishing projectbudgets to help ensure proper project evaluation and adequate funding.

The projected facility cost is $416.7 million. The projected cost for manufacturingequipment is $827.3 million. The total project cost for a 97 GW plant is $1.244 billion.

Projected Utility Cost Breakdown

Electricity

Natural Gas

Water

Page 85 of 159

Page 86: Sugico Mok Plan 3

40111 9 - 1 July 2, 2004

Section 9ANALYSIS AND PRELIMINARY RECOMMENDATIONS

GENERAL

During the course of the project, an Open Issues list was compiled to capture those itemsthat pose risk or uncertainty to the successful implementation of the concepts developed.The complete list is included in the Appendix. Several of the issues from that list areaddressed in the following section to ensure the nature of the issue is fully identified.

AREAS/ISSUES OF CONCERN

Cost per Watt- Typical costs of commercially available, terrestrial (stationary non-concentrating) PV systems are $3.00-$3.50/W, not including Balance of Systems. This costhas dropped steadily, but linearly, over the past 10 years for non-concentrator systems.Historically, decreases in the price per watt have been evolutionary, resulting fromincremental improvements in manufacturing techniques, and in some cases, lowered rawmaterial costs. The CPC product proposed here targets a cost/watt that is 1/100th ofconventional systems. This target may, in fact, be achievable. It would be unprecedented inpower generation history, for either conventional or alternative energies.

Strength and Temperature Characteristics of Substrate- Selection of the material(s) ofconstruction for the substrate (bottom panel in the 3-piece concept) focuses on the followingcriteria:

n Low Cost

n Availability of Raw Material

n Dimensional Stability

n Service Temperature/Strength

n Chemical and Physical properties (including aging)

n Surface Characteristics (including welding and wetting by conductivematerial)

PET has been tentatively chosen for this material due to its reasonable conformity to all ofthese criteria, although others will be evaluated during the course of product design. Thematerial will need to perform consistently at several temperature cycles during processing,as well as thousands of temperature cycles during field service. Historically, performancedegradation due to material aging has proven to be a significant issue for PV technologies.It is unclear what fraction of the solar radiation will be dissipated as heat energy rather thanelectrical energy in actual application. In any case, the module components must prove tobe exceptionally stable over a wide range of temperatures for several years.

Page 86 of 159

Page 87: Sugico Mok Plan 3

40111 9 - 2 July 2, 2004

Screen Print Size/Indexing

n The product design presents several challenges for printing the conductive grid forthe module. The low service temperature of the PET substrate obviates the use ofconventional silver-based frits or conductive pastes. The costs of low temperaturesolders are prohibitively high, as the Lead-Tin mixture requires significant additionsof Antimony or Bismuth for use at low temperatures. Additionally, it is critical thatthe electrical connectors be made of the lowest resistivity material possible. At anoutput of nearly 1 kW/module, the current density is unusually high for most thickfilm systems and the possibility of arcing at 300V must be addressed. Also, forconcentrated PV systems, series resistance losses become more important at highcurrent densities.

n Commercially available screen printers (and offset printers) are typically repeatableover a number of cycles at 25-100 µm (0.001-0.004 in). The ability to achieve 5 µmis available, but requires extensive calibration and maintenance. This error inrepeatability will be compounded by normal variations in the leading edge (orcorner) of the substrate. Due to the small area required in each PV cell, the normaldeviation of the print operation is 10 percent of the cell diameter.

Vertical Alignment Tolerance of CPC- The vertical alignment sensitivity of the CPC hasnot been characterized. It is known that a degree of precision is required, but the processmust be designed to accommodate a specific variability. Ideally, power output of each cellis a function of the verticality of the CPC. Normal variation of operations such as hotpressing, punching, and ultrasonic welding will result in some degree of deviation. Laseralignment is a possible solution, as is precision mechanical orientation. Both of these in-lineprocedures are time-consuming and tedious, but may be required, particularly in the earlystages of process development.

Horizontal Alignment of PV cells- The 3-piece module concept provides the capability forexcellent repeatability in manufacturing steps. The assembly of the three sheets, however,introduces the possibility of compounding product variability. Reducing this variability toan acceptable level is a manageable problem, as the Flat Panel, Printed Wire Board (PWB)and Photovoltaic industries have utilized “sandwich”-type assembly extensively, and haveaddressed most of the manufacturing issues. Horizontal alignment of the three sheets is themost immediate issue. Prior to welding and chemical sealing, each sheet has been processedseparately. The finished product will require precise and repetitive horizontal alignmentbetween all three sheets. The relationship between CPC position, PV cell position, andinterconnect wiring is critical. The slightest degree of horizontal misalignment between thetop and middle sheets will result in vertical alignment of the CPC, which is addressed above.Additionally, the PV cell itself must be fixed relative to the CPC to ensure optimalconcentration. Once the product variability has been characterized, the horizontal alignmentissue can likely be addressed by a type of registration, such as a laser mark or mechanicalscribe. Registration will probably be required in several locations on all three sheets, all ofwhich must be properly indexed for product quality. Optical alignment before screen-printing is a common technique, and should be readily adaptable to the proposed process.

Page 87 of 159

Page 88: Sugico Mok Plan 3

40111 9 - 3 July 2, 2004

DI Water Usage/Substrate Cleaning- In addition to its use in filling the CPC, DI/RO waterwill be required for several rinsing operations. Welding, forming, chemical sealing, andscreen print are processes that will contaminate the sheets with particulate and organicimpurities. As discussed in Sec 3, particulate or other impurities will degrade the opticalproperties of the CPC, lowering the efficiency of the module. IDC’s intent is to minimizewater consumption, and achieve optimum sheet cleaning. This may be addressed by acascading counterflow wet bench. This equipment is commonly used in semiconductor andPV manufacturing, and may provide a workable solution.

Transportation Costs- A cursory analysis was performed to assess the cost impact fromtransportation. The basis of the analysis is contained in the Production Capacity planningmodel located in the Appendix. Based on this analysis, the transportation cost per module isapproximately $3.40. Based on a target finished product cost of $25 per module, thistransportation cost represents almost 14 percent. Many factors will need to be considered insite selecting, including raw materials supplier locations, labor availability and cost, waterand other utilities availability and cost, as well as others.

An alternative to minimize the impact of transportation cost would be to locate the pilot lineand initial production at the Pennsylvania site, and subsequently locate the mass-productionline adjacent to the installation site.

Equipment Lead Times- In general, the equipment lead time issue will be driven by (1)extrusion and press equipment, and (2) screen print/PV assembly equipment. Discussionswith vendors indicate the following:

Design(assuming provenconcepts)

InitialLead Time

Follow-onLead Times

Extrusion and PressEquipment

6 ~ 8 weeks 8 ~ 10 months 1 year forbalance

Screen Print and PVAssembly Equipment

10 ~12 weeks 8 ~ 12 months 4 ~ 6 monthsper work cell

Much of the equipment set will be standard and require minimal, if any, modification by themanufacturer. In other cases, most notably screen print and some items of test andmeasurement, the tools will likely be custom fabricated to some extent. The most cost-effective methodology here is a close coordination between Mök and the respective vendorsto adapt standard equipment in an attempt to minimize the cost of modifications required tomeet the Mök specifications. The equipment set will come from a variety of industries suchas Flat Panel Display, Silicon PV, Printed Circuits, and Optical Electronics. Fortunately,equipment manufacturers in these areas are generally flexible and are accustomed to a rangeof needs. This approach generally results in significant cost savings to the user, but willextend the procurement phase of the schedule.

Page 88 of 159

Page 89: Sugico Mok Plan 3

40111 9 - 4 July 2, 2004

Typically, a pre-qualified equipment vendor will be given a Performance Specification bythe user, Mök Industries, and asked to provide submittals, with exceptions noted, within areasonable date. Mök reviews the submittals, and exceptions are taken into consideration.In most cases, a test run can be made at the vendor site, with any needed modificationsagreed upon at that time. Mök Industries and the vendor(s) will agree upon the generalrequirements and Mök will follow-up with an Equipment Specification and a Data Sheetsent to the vendor. The equipment can be competitively bid or awarded on the basis of bestqualified. In any case, final acceptance of the equipment should be conducted at the vendorsite, when possible, with acceptance criteria having been stipulated in the specification.

The follow-on lead times assume firm orders issued to fabricators for equipment that isidentical. In the case of the Screen Print/PV Assembly equipment, a group of fabricatorsmay need to be contracted in order to meet the projected delivery schedule.

Critical Path Items- Startup, process verification - In order for the process startup toproceed as smoothly as possible, several prerequisites are in order. First of all, a productspecification must be developed with some level of detail. This specification will naturallyaddress module power output and lifetime performance, but will also require some level ofprecision required for the physical characteristics of the module itself, e.g., dimensionalstability, dimensional tolerances, Voc and Isc, and temperature limits. The productinformation can then be deconstructed to develop the requirements for the parameters ateach individual process step. For instance, the optimum power output is achieved when thePV cells are within +/- 5 µm placement. These parameters may be specified initially basedon theoretical data, but empirical results are necessary to validate the initial assumptions.This step is normally a part of a “pilot” phase, but may be accomplished in a researchenvironment if the tool set is appropriately similar to that used in the final process.Achievement of this phase is measured by statistical analysis to some level of certainty.Historically, validation of the process steps to comply with product specification is timeconsuming and requires many iterations, usually with slight adjustments of the processparameters. Interaction between the individual process steps, if present, is also detected atthis time. Controlled experiments are often required to quantify and address the interactiveeffects. Consequently, the time required in the overall schedule is often underestimated.Open Issues in Appendix 2.0 addresses the challenges normally seen in this stage, and howthey may best be surmounted. In the ideal case, process verification is accomplished with aone-off tool set that closely replicates the planned tool set.

Permitting Issues- All of the permits associated with site development will have beenobtained prior to site construction activities. Applicable permits associated with the buildingsuch as air quality, discharges, material storage, etc. will have to be obtained. These,however, would require more detailed process information than that currently available.This information would be available after preliminary design.

Page 89 of 159

Page 90: Sugico Mok Plan 3

1.0 - Process Concept Sketches

- PV Circuit/Assembly Concept

- Bus Bar Screen Printing

- PV Application

Page 90 of 159

Page 91: Sugico Mok Plan 3

PV Circuit/Assembly Concept

PV Circuit/Assembly Concept

Dry and Fire FurnaceBusBar ScreenPrint PV Application PigtailConnect

16 ‘ 60’ 4’

X

Rolled ScreenPrint

PV Feeder andApplicator

Pigtail Applicatorand SolderDry and Fire Furnace

PLAN VIEW

ELEVATION

Y

Page 91 of 159

Page 92: Sugico Mok Plan 3

Bus Bar Screen Printing

BusBar Screen Print

CrossBus Bar

Length-wiseBus Bar

Page 92 of 159

Page 93: Sugico Mok Plan 3

PV Application

PV Application

Initial Row PV Applicator

Off-set Row PV Applicator

PVFeed

PVFeed

PVFeed

PVFeed

Page 93 of 159

Page 94: Sugico Mok Plan 3

2.0 - Planning Data

- Production Capacity

- Equipment

- Utilities

- Open Issues

- Plastics Cost

- Labor Cost Estimate – Manufacturing Operations

- “Simple” Cost Summary

Page 94 of 159

Page 95: Sugico Mok Plan 3

Mok Industires insert values in these cells

Production Planning - 4' X 8' MODULE

Item Value NotesConcentrator H/D Ratio 1.5Module Area Add Factor 1.27 Square and support (lense area times factor for module area)Distance Add Factor 1.01 Assumption of 1/100Panel Size width 48 Inches

length 96 InchesSun Power 0.1 W/cm2 (full sun)Sun Power 0.6452 W/in2 (full sun)Water Estimate 0.17 1/6th times cylinder volumeCircle "Nesting" Factor 0.93 Factor times 2 diameters for length of 2 rows of cirlces nestedProduction Rate #1 5 GW per year 0.0078125 <<< sq. mi.Production Rate #2 30 GW per yearProduction Rate #3 97 GW per yearWork Weeks per Year 51 WeeksWeight of Water 8.34 lbs./gal

Cost Goal 30.00 $ per 4' x 8' module (per original 1100 W per module)Cost Goal 0.03 $ per peak W output $25.96 <<< Allowable cost per module - 4' X 8' MODULE

*** Based on Wattage per Module

Item Unit Meas 1 2 3 4 5 6 7 8 9 10Height - Concentrator inches 0.1377949 1 1.5 2 3 4.1 8.9 11.8 35.6 71.2Diameter - Concentrator inches 0.09 0.67 1.00 1.33 2.00 2.73 5.93 7.87 23.73 47.47Area of Lense in2 0.01 0.35 0.79 1.4 3.1 5.9 27.6 48.6 442.4 1769.6"Long" Number Cells/Width # 517 71 47 35 23 17 8 6 2 1"Short" Number of Cell/Width # 516 70 46 34 22 16 7 5 1 0Number Cells/Length # 1108 152 101 76 50 37 17 12 4 2Number Cells/Module # 572,282 10,716 4,697 2,622 1,125 610.5 127.5 72 8 2PV Diameter inches 0.0013 0.010 0.014 0.02 0.03 0.04 0.08 0.11 0.34 0.68PV Area in2 0.0000014 0.00007 0.00016 0.00028 0.00064 0.0012 0.006 0.010 0.090 0.361Power/PV (peak) W 0.0017 0.09 0.20 0.36 0.81 1.5 7.1 12.5 114.2 456.7Power/Module (peak) W 979 965 952 945 912 924 910 903 913 913Volume of Water / Concentrator in3 0.000152 0.058 0.196 0.465 1.6 4.0 41.0 95.6 2624.9 20998.9Volume of Water / Concentrator gallons 0.0000007 0.0003 0.0008 0.0020 0.0068 0.0 0.2 0.4 11.4 90.9Volume of Water / Module gallons 0.38 2.70 3.99 5.28 7.65 10.60 22.64 29.79 90.90 181.81Weight of Water / Module lbs. 3.1 22.5 33.3 44.1 63.8 88.4 188.8 248.5 758.1 1516.3

Cross Check Power/PV >>> W 0.0 0.1 0.2 0.4 0.8 1.5 7.1 12.5 114.2 456.7

BASELINE WHAT IF

Item Unit Meas 5 30 97 5 30 97

Production RateModulesper Year 5,252,649 31,515,892 101,901,384 5,108,093 30,648,560 99,097,010

Modulesper Week 102,993 617,959 1,998,066 100,159 600,952 1,943,079

Modulesper Day 14,713 88,280 285,438 14,308 85,850 277,583

Modulesper Hour 613 3,678 11,893 596 3,577 11,566

Modulesper Minute 10 61 198 10 60 193

Modulesper Second 0.2 1.0 3.3 0.2 1.0 3.2

Water Consumption Gallonsper Day 58,736 352,414 1,139,473 5,396 32,374 104,676

Water Weightto be Transported Lbs / day 489,856 2,939,136 9,503,206 45,000 269,999 872,996

Panels per TrailerModulesper Trailer(per weight)

1,442 1,442 1,442 15,262 15,262 15,262

Modulesper Trailer(per volume)

768 768 768 8,360 8,360 8,360

Trailers # per Day(per volume) 19 115 372 2 10 33

# per Hour(per volume) 0.8 4.8 15.5 0.1 0.4 1.4

What-If CostTransport $per Module 3.4 3.4 3.4 0.3 0.3 0.3

Transport $per Year 18,055,980 108,335,878 350,286,006 1,613,034 9,678,202 31,292,852

SCENARIO

Scenario #3 Scenario #1

<<<<<<<<< Not Nested >>>>>>>>>

Baseline Scenario

Page 95 of 159

Page 96: Sugico Mok Plan 3

Mok Industries Production Target #1 >>> 613 Modules / Hour

Production Target #2 >>> 3,678 Modules / Hour

"Sheet Approach" Equipment Planning Production Target #3 >>> 11,893 Modules / Hour

Equipment

RawCapacity

(units/hour) Utilization

EffectiveCapacity

(units/hour)Qty

per CellCost

per UnitCost

per Cell# of

CellsExtend

Qty Extended Cost# of

CellsExtend

Qty Extended Cost# of

CellsExtend

Qty Extended Cost Notes

Extrusion, Calendar and Cutter 1350 89% 1201.5 3 $4,000,000 $12,000,000 1 3 $12,000,000 4 12 $48,000,000 10 30 $120,000,000 Qty per cell set to match Hot Press Molding

Hot Press Molder - TOP & MIDDLE 1350 89% 1201.5 1 $4,000,000 $4,000,000 1 1 $4,000,000 4 4 $16,000,000 10 10 $40,000,000

Hot Press Molder - BOTTOM 1350 89% 1201.5 1 $4,000,000 $4,000,000 1 1 $4,000,000 4 4 $16,000,000 10 10 $40,000,000 Qty per cell set to match Screen Print / Wiring

Screen Print, PV Application, and Curing 50 81% 40.5 30 $2,000,000 $60,000,000 1 30 $60,000,000 4 120 $240,000,000 10 300 $600,000,000

Thermal Welder - TOP/MIDDLE 1350 89% 1201.5 1 $150,000 $150,000 1 1 $150,000 4 4 $600,000 10 10 $1,500,000

Chemical Sealer - BOTTOM 1350 89% 1201.5 1 $250,000 $250,000 1 1 $250,000 4 4 $1,000,000 10 10 $2,500,000

Flash Tester 60 89% 53.4 1 $1,500,000 $1,500,000 1 2 $1,500,000 4 5 $7,500,000 10 11 $16,500,000Assume ~5% sampling, second tester added to first work cell for early debug

Material Handling- Work Cell Conveyor (incl interface to equipment) 150 $500 $75,000 1 150 $75,000 4 600 $300,000 10 1500 $750,000 Estimated LF per work cell- Water Fill 1 $75,000 $75,000 1 1 $75,000 4 4 $300,000 10 10 $750,000- Vertical Buffer (to 18' height) 6 $15,000 $90,000 1 6 $90,000 4 24 $360,000 10 60 $900,000

- Stacker (located at the output of the cell) 1350 90% 1215 1 $80,000 $80,000 1 1 $80,000 4 4 $320,000 10 10 $800,000 - Stretch wrapper (located in shipping area) 1800 90% 1620 1 $90,000 $90,000 1 1 $90,000 4 4 $360,000 10 10 $900,000 - Finished Goods Conveyor 13500 90% 12150 0.1 $950,000 $95,000 1 0.1 $95,000 4 0.4 $380,000 10 1 $950,000 - Conveoyor queue in Shipping Area 13500 90% 12150 0.1 $80,000 $8,000 1 0.1 $8,000 4 0.4 $32,000 10 1 $80,000 - Lift Trucks Shipping(charger & extra battery) 2700 90% 2430 0.5 $35,000 $17,500 1 1 $35,000 4 2 $70,000 10 5 $175,000 - Lift Trucks Receiving (charger & extra battery) 13500 90% 12150 0.1 $30,000 $3,000 1 1 $30,000 4 1 $30,000 10 1 $30,000 - Lift Truck roll attachment 13500 90% 12150 0.1 $7,000 $700 1 1 $7,000 4 1 $7,000 10 1 $7,000 - Lift Trucks for supplying work cells 13500 90% 12150 0.5 $30,000 $15,000 1 1 $30,000 4 2 $60,000 10 5 $150,000 - Drive-in racks 13500 85% 11475 0.1 $5,400 $540 1 0.1 $540 4 0.4 $2,160 10 1 $5,400 - Pallet racks in receiving/storage area 13500 85% 11475 0.1 $4,000 $400 1 0.1 $400 4 0.4 $1,600 10 1 $4,000 - Yard Tractor for Receiving 13500 90% 12150 0.1 $60,000 $6,000 1 0.1 $6,000 4 0.4 $24,000 10 1 $60,000 - Yard Tractor for Shipping 13500 90% 12150 0.1 $60,000 $6,000 1 0.1 $6,000 4 0.4 $24,000 10 1 $60,000 - Unloading / Silo storage for PET pellets 13500 90% 12150 0.6 $0 $0 1 2 $0 4 2.4 $0 10 6 $0 Provided by resin supplier

- Pneumatic conveying for PET pellets 13500 90% 12150 3 $40,000 $120,000 1 3 $120,000 4 12 $480,000 10 30 $1,200,000

TOTAL $82,582,140 $82,647,940 $331,850,760 $827,321,400

SPACE

Area per Cell

(SF)# of

cellsTotal Area

(SF)# of

cellsTotal Area

(SF)# of

cellsTotal Area

(SF)

Production Space 51,600 1 51,600 4 206,400 10 516,000

Receiving Space 2,580 2,580 10,320 25,800 - assumed 5% of production space- raw material straight from trailers to line

Shipping Space 2,580 2,580 10,320 25,800 - assumed 5% of production space- load direct to trailers

Stack/Stretch Wrap 5,160 5,160 20,640 51,600 - assumed 10% of production space

Support Space (prep, labs, R & D, etc.) 15,000 30,000 60,000 - estimates

Canteen/Break Area 2,250 4,500 10,125- estimate based on 200 person capacity- also doubles at meeting space- Space estimated as 10'x10' per 4 people times 1.5

Office 170 SF per person 6,000 6,000 11,900 - assumed 40 mngt/support at #1 and #2- assumed 70 mngt/support at #3

Central Utilities Assume 20% of above 17,034 57,636 140,245

SUBTOTAL 61,920 102,204 345,816 841,470

GROSS UP (circulation, misc.) 15% 15% 15%

TOTAL 117,535 397,688 967,691

DOCK ASSESSMENT

Truck Loads per Hour 0.8 4.8 15.5

Modules per Trailer 768 768 768

"Stacks" per Trailer 24 24 24

"Stacks" per Hour 19 115 372

Minutes per Stack 3.1 0.5 0.2

Shipping Dock Locations 27 27 27

Maximum Trailer Turn Time (Hours) 33.8 5.6 1.7

"SIMPLE" COST

Equipment Cost $82,647,940 $331,850,760 $827,321,400

Modules Produced in 7 years 37,077,520 222,465,119 719,303,885

Equipment Cost Per Module $2.23 $1.49 $1.15

Equipment Cost per "Peak Watt Capacity" $0.0023 $0.0016 $0.0012

20 people per line per shift

PRODUCTION TARGET #1 PRODUCTION TARGET #2 PRODUCTION TARGET #3

PRODUCTION TARGET #1 PRODUCTION TARGET #2 PRODUCTION TARGET #3

PRODUCTION TARGET #1 PRODUCTION TARGET #2 PRODUCTION TARGET #3

PRODUCTION TARGET #1 PRODUCTION TARGET #2 PRODUCTION TARGET #3

Page 96 of 159

Page 97: Sugico Mok Plan 3

Mok Industries

Tool Utility Matrix

ESTIMATES FOR TYPICAL WORK CELL

Equipment Qty Char

acte

ristic

s

Conn

ecte

d Lo

ad (K

VA)

Conn

ect (

kVA)

Oper

atin

g Di

vers

ityDe

man

d Lo

ad (K

VA)

Dem

and

(kVA

)

Quan

tity

at P

EAK

Quan

tity

at D

EMAN

D

Peak

(kV

A)

Powe

r Fac

tor

Dem

and

in k

W%

to H

eat i

n Ro

omHe

at L

oad

(kW

)SO

LVEN

T EX

H Lo

ad (C

FM)

SOLV

ENT

EXH

Exte

nded

(CFM

)

GENE

RAL

EXH

Load

(CFM

)

GENE

RAL

EXH

Exte

nded

(CF

M)

Char

acte

ristic

sLo

ad (

SCFM

)Di

vers

ity

Exte

nded

(SC

FM)

Char

acte

ristic

sLo

ad (

gpm

)Di

vers

ity

Exte

nded

(gp

m)

Char

acte

ristic

sLo

ad (

gpm

)Ex

tend

ed (

gpm

)Ch

arac

teris

tics

Load

(CF

H)

Exte

nded

(CF

H)

CommentsExtrusion, Calendar and Cutter 3 480VAC, 3ph 1,000 3,000 58% 580 1,740 1 2 2,160 0.85 1,479 50% 740 3,333 9,999 Electrical load includes dedicated chilled water system (100 Ton per cell)

Hot Press Molder - TOP & MIDDLE 1 480VAC, 3ph 2,500 2,500 58% 1,450 1,450 1 2,500 0.85 1,233 50% 616 Electrical load includes dedicated chilled water system (100 Ton per cell)

Hot Press Molder - BOTTOM 1 480VAC, 3ph 2,500 2,500 58% 1,450 1,450 1 2,500 0.85 1,233 50% 616 Electrical load includes dedicated chilled water system (100 Ton per cell)

Screen Print, PV Application, and Curing 30 480VAC, 3ph 240 7,200 60% 144 4,320 10 20 5,280 0.85 3,672 5% 184 1,000 30,000 2,000 60,000 60 psig 130 70% 2,730

Thermal Welder - TOP/MIDDLE 1 Electrical load included in press figures

Chemical Sealer - BOTTOM 1 480VAC, 3ph 80 80 35% 28 28 10 20 1,360 0.85 24 70% 17 60 psig 15 60% 9

Flash Tester 1 480VAC, 3ph 100 100 25% 25 25 1 100 0.85 21 70% 15

Material Handling

- Work Cell Conveyor (incl interface to equipm150 480VAC, 3ph 0.1 15 60% 0 9 335 34 0.85 8 40% 3 60 psig 1 70% 105

- Conveyor (out of cell transport) 30 480VAC, 3ph 0.1 3 60% 0 2 335 34 0.85 2 40% 1

- Water Fill 1 79 100% 79

- Vertical Buffer (to 18' height) 6 480VAC, 3ph 1.0 6 60% 1 4 6 6 0.85 3 40% 1 60 psig 10 70% 42

- Stacker (located at the output of the cell) 1 480VAC, 3ph 15.0 15 60% 9 9 1 15 0.85 8 40% 3 90 psig 50 70% 35

- Pneumatic conveying blower motor 3 480VAC, 3ph 15.0 45 60% 9 27 1 15 0.85 23 0% 0

- Battery Chargers 2 480VAC, 3ph 7.0 14 60% 4 8 1 7 0.85 7 40% 3

HVAC / CDA / UPW / Ltg & Misc Equip. 1 480VAC, 3ph 3,500 4,500 60% 2,100 2,100 1 2,100

SUBTOTAL 19,978 11,172 16,110 7,711 2,198 30,000 60,000 2,921 79 0 9,999

CONTINGENCY (20%) 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20%

TOTAL 23,974 13,406 19,332 9,253 2,638 36,000 72,000 3,505 95 0 11,999

GENERAL NOTES:[1] Connected load reflects expected peak, demand load reflects expected operating load. Heat Load kW / Connected kVA

Ratio = 0.11

Conncected Demand HeatkW Solvent General Demand Demand Demand Demand

19,654 10,814 7,050 2,527 18,000 36,000 1,867 0 11,999 Loads same as 10GW (per work cell) except half of PV tools (15 in lieu of 30).

95,894 53,625 37,013 10,550 144,000 288,000 14,021 0 47,995

239,736 134,062 92,532 26,375 360,000 720,000 35,052 0 119,988

Production Target #1 >>>>>>>>>

Production Target #2 >>>>>>>>>

Production Target #3 >>>>>>>>>

16,164

58,625

139,062

"Realistic"Peak

DemandkW

380

950

95

ELECTRICAL EXHAUST CLEAN DRY AIR PCWHEAT LOAD

HEAT LOAD DESIGN

DIW Natural Gas

ELECTRICAL EXHAUST CLEAN DRY AIR PCWHEAT LOAD DIW Natural Gas

"Realistic" Peak at Prod. Targets #2 and #3 calculated by Demand + 5000 KVA (assumes each work cell started individually)

Page 97 of 159

Page 98: Sugico Mok Plan 3

Mok Industries

OPEN ISSUES

Description Impact Mitigation Approach Comment

Water use per day (>1 million gallons) - Not unusual for industrial plants. Should not be issue.

Power use at site (> 100MVA) - Available at site? - Equipment install is phased … utility provider to plan for peak requirements 3 ~5 years out.

Volume of bottles / day (~1.2 billion)

- Estimate of 400+ blow molders.- Delivery schedule of blow molder quantity.- Capacity of blow molder suppliers.- Resin supply (limited # of suppliers).

- Multiple plants?- Higher thru-put design?- Use of "pre-forms"?- Alternate approach?

Material effectiveness of PET

- PET may not perform well to sunlight and heat.- Resistance to impact (hail, dust).- Swelling in water.- Surface getting dirty over time (loss in efficiency).

- Alternate materials (polycarbonate, other).- Further research required.

Number of connections to be made(function of concentrators)

- Reliability.- Efficiency loss of connectors.

- Reduce connection requirements (larger bottles)?- Further research required.

"Wiring" of PV's, insulation? - Conductivity of water … short connection wires?

Shipping (Penn -> NV) ~350 trucks per day at $340 million/year

- Cost of transport to site.- # of trucks/trailers (deadheading).

- Locate plant next to site ("batch plant" approach).- Install pilot line in Penn., other lines near site.

PV Cell supply - Limit output. - See comment.Per Bill Mook, SpectraLabs can ramp capacity (possibly on site) to meet demand.

Z-fold / hinge - Complexity to include hinge spriral. - If needed, use thin plastic connection.

CD measurements - Repeatability in process.- Efficiency reduction. - Further research required.

Dry and Fire temperatures for screen printed circuit? - Effect of 120 deg C to plastic back. - Further research required.

Page 98 of 159

Page 99: Sugico Mok Plan 3

Mok Industries

OPEN ISSUES

Description Impact Mitigation Approach Comment

Only bulk shipping of finished panels addressed

- Retail business could be a large part of the sales generated; however, an additional packaging operation and space dedicated to packaging is needed if individual panels are to be packaged for resale.

- Building addition to house additional packaging operation or utilize a 3rd party to package.

Pricing of PET and other resins - Very volatile recently due to oil price increases.

- Use more economical opaque resin, possibly not PET, for the base layer of the panel & minimize the use of all resins consistent with required panel strength.

Plastic resin availability - Regardless of type selected, volume may exceed what is readily available in the market.

- May need to work with supplier(s) to increase capacity.

Equipment lead times - Delay in output schedule and/or output capacity.

- Work with vendors to understanding limiting constraints.- Engage multiple vendors to minimize risk from 1 vendor not performing.

- The volume of equipment is significant in order to achieve the output targets (in particular #3, 97GW).

Permit approval and timing - Delay schedule to production. - Based on process emissions, utilize equipment to the treat the exhaust emissions.

Exhaust emissions from the circuit process could be significant.

Freezing/expansion of water in CPC - Deformation of CPC- Damage to CPC

- Use of additive to lower freezing point (glycerol, silica gel or silicic acid, and others).- Requires further research.

Heat in building from plastics and curing operations. - High residual heat in the building. - Separate these areas from others in the building

to allow "localized" resolution (exhaust).

Page 99 of 159

Page 100: Sugico Mok Plan 3

Plastics Cost for a 4'X8' Panel

100% PET, Variable Layer Thickness, Fixed Price

Density Kilos of Pounds of Cost of Total PanelPET $/Lbs Lens Layer Mid Layer Base Length (ft) Width (ft) in3 ml gm/ml Plastic Plastic Plastic PET Cost$0.60 0.06 0.06 0.06 8 4 829 13,592 1.3 17.67 38.96 $23.37 $23.37

$0.60 0.01 0.01 0.06 8 4 369 6,041 1.3 7.85 17.31 $10.39 $10.39

$0.60 0.005 0.005 0.06 8 4 323 5,286 1.3 6.87 15.15 $9.09 $9.09

$0.50 0.06 0.06 0.06 8 4 829 13,592 1.3 17.67 38.96 $19.48 $19.48

$0.50 0.01 0.01 0.06 8 4 369 6,041 1.3 7.85 17.31 $8.66 $8.66

$0.50 0.005 0.005 0.06 8 4 323 5,286 1.3 6.87 15.15 $7.57 $7.57

PET & PVC, Variable Layer Thickness

Density Kilos of Pounds of Cost of Total PanelPET $/Lbs PET Lens PET Mid PVC Base Length (ft) Width (ft) in3 ml gm/ml Plastic Plastic Plastic PET Cost$0.60 0.06 0.06 8 4 553 9,061 1.3 11.78 25.97 $15.58

$0.75 0.06 8 4 276 4,531 1.5 6.8 14.98 $11.24 $26.82

$0.60 0.01 0.01 8 4 92 1,510 1.3 1.96 4.33 $2.60

$0.75 0.06 8 4 276 4,531 1.5 6.8 14.98 $11.24 $13.83

$0.60 0.01 0.01 8 4 92 1,510 1.3 1.96 4.33 $2.60

$0.75 0.05 8 4 230 3,776 1.5 5.66 12.49 $9.36 $11.96

\

Layer Thickness (Inches)

Layer Thickness (Inches)

Volume

Volume

Page 100 of 159

Page 101: Sugico Mok Plan 3

Mok Industries

LABOR COST ESTIMATE - MANUFACTURING OPERATIONS

Employee CategoryRate

(burdened, per year)# per shift

per work cell #Extended

Cost #Extended

Cost #Extended

CostPlant Manager $100,000 - 1 $100,000 1 $100,000 1 $100,000

Op's Manager $70,000 1 1 $70,000 4 $280,000 10 $700,000

Maintenance Manager $70,000 1 1 $70,000 4 $280,000 10 $700,000

Lead Operator/Technician $60,000 1 4 $240,000 16 $960,000 40 $2,400,000

Operator/Technican $40,000 12 34 $1,344,000 192 $7,680,000 480 $19,200,000

Support $30,000 4 11 $336,000 64 $1,920,000 160 $4,800,000

Purchasing $50,000 2 2 $100,000 8 $400,000 20 $1,000,000

QC $40,000 1 1 $40,000 4 $160,000 10 $400,000

TOTAL 55 $2,300,000 293 $11,780,000 731 $29,300,000

# of Modules Produced per Year >>> 5,252,649 31,515,892 101,901,384

Labor Cost per Module >>> $0.44 $0.37 $0.29

Notes(1) Shift work via compressed work week (4 on, 3 off, 12 hr days), 4 shift schedules.(2) Operator/Tech and Support headcount for Production Target #1 at 70% of 1 work cell.

Production Target #1 Production Target #2 Production Target #3

Page 101 of 159

Page 102: Sugico Mok Plan 3

Mok Industries

"SIMPLE" COST SUMMARY Assumptions(1) 7 year duration at peak production (97GW/yr)(2) Does not include inflation, escalation, or "time value of money"

Cost Category $ / module % Comments

Facility Cost $0.58 1% Facility Cost divided by (7 years x 102 million modules per year)

Equipment Cost $1.16 3% Equipment Cost divided by (7 years x 102 million modules per year)

$1.74 4%

PV Cost $18.00 42% Estimate

Resin Cost $11.96 28% PET top and middle, PVC bottom

Circuitry Cost $6.00 14% Estimate for materials (bus bars, PV "connection", pigtail) … range of $4 ~ $8

Labor Cost $0.32 1% Corporate staff - 104 @$70,000/yearOperations staff - 555 people @ $45,000/year

Utilities Cost

- Electricity $0.71 2% Demand of 134,000 kVA x 0.9 PF divided by 11,893 modules/hour x $0.07/kWh- Natural Gas $0.30 1% Demand of 120,000 CFH divided by 11,893 modules/hour x $0.03/CFH- Water $0.08 0% 4 gallons per module x $0.02/gallon

Transportation Cost $3.44 8%

$40.81 96%

$42.55

$0.045 assumes 952W (peak output) per module

TOTAL >>>

Cost per Watt (Peak) >>>

per module

FIXED COST

VARIABLE COST

FIXED SUBTOTAL

VARIABLE SUBTOTAL

Confidential Page 102 of 159

Page 103: Sugico Mok Plan 3

3.0 – Larger Illustrations

- “Sheet” Module

- Typical Cell

- Block Layout - Baseline

- Block Layout - Option

Page 103 of 159

Page 104: Sugico Mok Plan 3

“Sheet” Module Concept3 Piece Approach

TOP BOTTOMPVWiringSealer/weldAnchor Tab

Legend

General Process Steps (1) Hot Press Mold the top (better precision for lenses).(2) Hot Press Mold middle (punch hole) and bottom (add dimple).(3) PV install/wiring on bottom (screen print, filament wiring).(4) Ultrasonic weld top to middle.(5) Fill CPC assembly (upside-down, submersion).(6) Insert and chemically seal CPC assembly to bottom.(7) Flash test.(8) Stack to bundles and load to trailer.

submersion fillGeneral Equipment Set(1) Hot Press Molders(2) Stringers (screen print? wiring?) (3) Ultrasonic Welders(4) Fillers (5) Chemcial Sealers(6) Flash Testers(7) Stackers(8) Conveyor and buffers(9) Fork Lifts (loading)

MIDDLE

COMPLETE

Page 104 of 159

Page 105: Sugico Mok Plan 3

F la s h Te s t

Te s t

S h ip p in g

S u b m e rg e d W a t e r F illS t a t io n

C h e m ic a l W e ld B o t t o m P a n e l

F e e d e rs &E x t ru d e r

F e e d e rs &E x t ru d e r

D ie , G e a rP u m p ,

S c re e nC h a n g e r

D ie , G e a rP u m p ,S c re e n

C h a n g e r

R o ll F o rm , 3 -R o ll S t a n d

w it hin d iv id u a l

d r iv e s

R o ll F o rm , 3 -R o ll S t a n d

w it hin d iv id u a l

d riv e s

A c c u m u la t o r,P re h e a t , H o t

P re s s M o ld , C u t ,D is c h a rg e ,

Th e rm a l B o n dTo p & M id d le

S h e e t

V e rt ic a l B u f f e r

2 1 5 F e e t

220 F

eet

F e e d e r & E x t ru d e rD ie , G e a r P u m p ,S c re e n C h a n g e r

R o ll F o rm , 3 -R o ll S t a n d w it hin d iv id u a l d riv e s

A c c u m u la t o r, P re h e a t ,H o t P re s s M o ld , C u t ,

D is c h a rg e

V e rt ic a l B u f f e r

S c re e n P rin t , P V A s s e m b ly , C u re

V e rt ic a l B u f f e r

To p P a n e l M id d le P a n e l

B o t t o m P a n e l

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

S c re e n P rin t , P V A s s e m b ly , C u re

R a wM a t e ria l

I n p u t

V e rt ic a l B u f f e r

V e rt ic a l B u f f e r

V e rt ic a l B u f f e r

Page 105 of 159

Page 106: Sugico Mok Plan 3

Block Layout - Baseline

Page 106 of 159

Page 107: Sugico Mok Plan 3

Block Layout - Option

Page 107 of 159

Page 108: Sugico Mok Plan 3

4.0 – Master Plan - Building

- Millennium Park Master Plan Showing Mök Industries

- Perspective and Section for Mök Industries, Lawrence County, PA, Solar PanelFabrications Plant

Page 108 of 159

Page 109: Sugico Mok Plan 3

Page 109 of 159

Page 110: Sugico Mok Plan 3

7/2/2004

IDC confidentialPage 1

MOK IndustriesSolar Panel Fabrication Plant - Lawrence County, PA

..

Perspective view

Section ElevationPage 110 of 159

Page 111: Sugico Mok Plan 3

5.0 – Estimating Accuracy Curve

Page 111 of 159

Page 112: Sugico Mok Plan 3

Estimating Accuracy Curve (Source: Derived from AACE Data; 18R-97)

50

45

40

35

30

25

20

15

10

5

0

-5

-10

-15

-20

10 20 30 40 50 60 70 80 90 100

Esti

mate Accuracy

Engineering Completion (%)

Construction DocumentsDesignDevelopment

SchematicDesign

ProgrammingDesign

Class 5 Class 4 Class 3 Class 2 Class 1

Control or Bid Tender

Page 112 of 159

Page 113: Sugico Mok Plan 3

6.0 – Material Comparison

- ABS

- PET UV

- CPVC

Page 113 of 159

Page 114: Sugico Mok Plan 3

Acrylonitrile Butadiene Styrene – ABSHigh Impact UV StabilizedPolymer TypeThermoplastic

AdvantagesCan be used in outdoor applications involving exposure to UV radiation (sunlight).

DisadvantagesShould not be processed above 220°C ( 430°F ) to prevent material degradation. Incorporation of UVstabilizer reduces notched izod impact strength ( ~ 0.3 KJ/m -5.6 ft lb/in ) compared with unmodified highimpact grades.

Typical PropertiesProperty ValueDensity (g/cm3) 1.06Surface Hardness RR103Tensile Strength (MPa) 35Flexural Modulus (GPa) 2.3Notched Izod (kJ/m) 0.3Linear Expansion (/°C x 10-5) 9Elongation at Break (%) 6Strain at Yield (%) 2Max. Operating Temp. (°C) 70Water Absorption (%) 0.3Oxygen Index (%) 19Flammability UL94 HBVolume Resistivity (log ohm.cm) 14Dielectric Strength (MV/m) 20Dissipation Factor 1kHz 0.007Dielectric Constant 1kHz 3HDT @ 0.45 MPa (°C) 98HDT @ 1.80 MPa (°C) 89Material. Drying hrs @ (°C) 2 @ 90Melting Temp. Range (°C) 230 - 270Mould Shrinkage (%) 0.6Mould Temp. Range (°C) 40 - 60

ApplicationsRecreational vehicle bodies and parts, agricultural parts, ski boots.

Page 114 of 159

Page 115: Sugico Mok Plan 3

Polyethylene Terephthalate – PET UVStabilizedPolymer TypeThermoplastic

AdvantagesGood resistance to sunlight / UV radiation with little yellowing compared with unmodified grades.

DisadvantagesThe processing problems associated with unmodified PET, i.e. very dry granules needed and high mouldingtemperature required for optimum properties.

Typical PropertiesProperty ValueDensity (g/cm3) 1.38Surface Hardness RR68Tensile Strength (MPa) 50Flexural Modulus (GPa) 2.3Notched Izod (kJ/m) 0.03Linear Expansion (/°C x 10-5) 8Elongation at Break (%) 200Strain at Yield (%) 4Max. Operating Temp. (°C) 115Water Absorption (%) 0.15Oxygen Index (%) 20Flammability UL94 HBVolume Resistivity (log ohm.cm) 13Dielectric Strength (MV/m) 20Dissipation Factor 1kHz 0.01Dielectric Constant 1kHz 3.7HDT @ 0.45 MPa (°C) 150HDT @ 1.80 MPa (°C) 70Material. Drying hrs @ (°C) 2 @130Melting Temp. Range (°C) 270 - 290Mould Shrinkage (%) 2Mould Temp. Range (°C) 90 - 110

ApplicationsOutdoor applications such as lawn mower housings, power tool casings, shades for outdoor lamps, pumpcasings, seat shells.

Page 115 of 159

Page 116: Sugico Mok Plan 3

Chlorinated Polyvinyl Chloride – CPVCChlorinated PVCPolymer TypeThermoplastic

AdvantagesService temperature of 90°C (190°F), accompanied by self-extinguishing properties. Reasonable weatheringperformance.

DisadvantagesMore difficult to process than UPVC or Plasticised PVC.

Typical PropertiesProperty ValueDensity (g/cm3) 1.52Surface Hardness RR120Tensile Strength (MPa) 58Flexural Modulus (GPa) 3.1Notched Izod (kJ/m) 0.06Linear Expansion (/°C x 10-5) 7Elongation at Break (%) 30Strain at Yield (%) 5Max. Operating Temp. (°C) 90Water Absorption (%) 0.1Oxygen Index (%) 50Flammability UL94 V0Volume Resistivity (log ohm.cm) 14Dielectric Strength (MV/m) 14Dissipation Factor 1kHz 0.025Dielectric Constant 1kHz 3.1HDT @ 0.45 MPa (°C) 110HDT @ 1.80 MPa (°C) 105Material. Drying hrs @ (°C) 2 @ 75Melting Temp. Range (°C) 220 - 240Mould Shrinkage (%) 0.5Mould Temp. Range (°C) 40 - 70

ApplicationsHot water piping.

Page 116 of 159

Page 117: Sugico Mok Plan 3

7.0 – Planning for Success in Transitioning New Technologies intoEconomical Full-Scale Production

Page 117 of 159

Page 118: Sugico Mok Plan 3

PLANNING FOR SUCCESS IN TRANSITIONINGNEW TECHNOLOGIES INTO ECONOMICAL FULL-SCALE

PRODUCTION

David Causey, IDC and William Westmoreland

A number of technology-driven industries, including semiconductor manufacturing in itsearly development as well as other related industries more recently, have been characterizedby the failure of many R&D initiatives to reach the goal of affordable products that can bemanufactured on a large scale. There is hardly a shortage of brilliant concepts which havebeen readily proven on a laboratory scale. Likewise, there is not a lack of market researchinto the potential commercial application of many of these concepts, and at what price rangea given product can make a successful entry into an available market. What is absent is alife-cycle template to serve as a methodology for smooth transition from R&D to volumemanufacturing. In many of these cases, the failure is due in large measure to the inability ofcorporate management, using a specific set of attributes, to technically assess the economicsof transition from the laboratory to large-scale production.

For the purpose of this discussion, the focus will be a rather broad range of process-basedtechnologies with most, if not all, of the following characteristics:

Multi-step processing in which various layers or films are applied onto a substrate A requirement for cleanroom manufacturing conditions for all steps or certain criticalsteps One or more patterning steps by photolithography and/or laser ablation Fabrication of an optical or optoelectronic device or component The requirement to ramp from development to production on substrates which aremuch larger (4X or more) than the “proof” size and or require a volume increase ofgreater than 100X from product prototyping to full production.

Virtually all technology-driven process, product, and factory maturation will progressthrough a natural life cycle from R&D to pilot operations to full-scale manufacturing, asindicated by Figure 1.

Figure 1 - Typical phases of industrial R&D process

Staff

Equipment/Facilities

Process,Product,

Procedures

Materials

R & D Phase

Pilot Phase

Production Phase

Staff

Equipment/Facilities

Process,Product,

Procedures

Materials

Staff

Equipment/Facilities

Process,Product,

Procedures

Materials

Page 118 of 159

Page 119: Sugico Mok Plan 3

These different phases may be thought of as a series of “gates,” each of which has it owndistinct set of characteristics. These phases can be characterized with respect to thefollowing:

Staff Equipment and Facilities Process, Product, and Procedures Materials

It must be emphasized that although life cycle phase duration, transition management, andcharacteristic specifics must be modified and optimally managed on a technology totechnology basis to allow for competitive success, failing to follow the basic naturalsequence will almost always insure failure characterized by extended production schedules,inflated operation costs, and a sub-optimal final product feature set.

Life Cycle Template

Research and Development

Figure 2 represents the typical support components and tasks associated with the R&DPhase of an industrial research and development process. These characteristics are by nomeans comprehensive, and will naturally vary depending upon the structure, philosophy,and collective experience of each organization. It is intended as a template, or guideline, bywhich technology managers can assess progress and plan accordingly. Although there areoften different objectives for both research and development, they are combined here toreflect the actual organization usually found in most technology-driven companies. Thisenvironment ideally focuses on individual achievement by a technical staff driven bydiscrete events. Demonstration of concepts is far more important that repetition of resultsduring this phase.

Figure 2 - Composition of the R&D Phase

R & D R & D PhasePhase

Pilot Phase

Production Phase

•Define and demonstrate theoretical concepts in a lab-scale industrial environment.•Technical staff hard science- and research-oriented (80% technologists, 20% engineers).•High degree of individual contribution.•Primary compensation based 90% individual, 10% team. •Focused on discrete events and intradiscipline interactions.

•Provide a basic set of materials specifications including initial sensitivity analysis with respect tointramaterial variation.•Initial experiments done with lab purity materials to obtain highest theoretical properties.•Material alternatives and substitutions freely examined with “decision to use” based on first-orderimpacts.

•Define individual process steps and confirm initial sequence of operations.•Process variables understood through modeling/simulation and individual step sensitivity studies.•Chemical reactions and scaling parameters understood.•Produce a fully featured and functional prototype.•Initial prototype produced and characterized with respect to key performance variables.•Provide a flexible framework for the coordination of diverse development activities.

•Provide a lab-scale industrial environment for development and prototyping activities.•Uncharacterized tools utilized with non-optimized equipment recipes.•Tool set flexible, portable, and multifunctional.•Work areas decentralized with layout optimized for intradiscipline research and development.

Staff

Materials

Process,Product,

Procedures

Equipment/Facilities

Page 119 of 159

Page 120: Sugico Mok Plan 3

In the R&D Phase, scientists typically have work and laboratory spaces that foster creativity,and they are unencumbered by the demands of daily production. In many cases, the R&DPhase is unfortunately marked by a lack of documentation, possibly attributable to the factthat the necessary support systems and infrastructure are not in place. There is also a naturaltendency to disregard “failures,” although the experiential knowledge gained from thesefailures is vital to future developments. Thus, our experience has shown that meticulousdocumentation is most important during this phase, preventing expensive and time-consuming redundant engineering, although documentation's importance cannot beoverstated at any point in the life-cycle.

Pilot

Figure 3 shows the organizational elements needed for a typical transition into a product'sPilot Phase. (The term pilot is often misleading, and has no universal standard. In thisusage, "pilot" is equivalent to "prototype," and refers to an environment providing full-scalemanufacturing, although a “one-of” tool set is common.) One aspect of this phase that isoften overlooked is the makeup of the technical staff. The key during piloting operations isthe staff transition from hard scientists to inter-functional teams, composed primarily ofmanufacturing engineering disciplines. The technical staff during piloting is ideallybalanced evenly between hard science and engineering disciplines, with the scientistsnaturally predominating early in this phase. Early in the initial transition from R&D, it isimportant to supplement the predominantly research-oriented staff with engineers who willbecome the core engineering staff for the future full-scale operations.

Figure 3 - Composition of the Pilot Phase

R & D Phase

Production Phase

•Integration of developed concepts in a prototype manufacturing environment.•Technical staff balanced (50% hard science- and research-oriented and 50% engineering).•High degree of intrafunctional teams.•Focused on system-level events with balance between intra- and interdiscipline interaction.

•Freeze production bill-of-materials and provide initial intermodule/intermaterial sensitivity analysis.•Define final material purity and compositional requirements.•Determine proper cost vs. performance material trade-offs with ‘decision to use’ based on first-order.•Develop qualification requirements for vendors and materials.•Involve vendors in partnership relationships.

•Integrate process steps and define manufacturing flow.•Process integration variables understood through sensitivity analysis.•Manufacturing process model defined and characterized.•Produce a fully featured and functional production-worthy product in limited volumes.•Final production product defined framework supporting manufacturing requirements.•Provide a flexible but defined framework supporting manufacturing requirements.•Production support infrastructure defined and implemented.

•Provide a manufacturing-scale environment for initial production equipment burn-in and pilot production.•One-of-each fully sized tools with optimized equipment recipes.•Tool set user-friendly, repeatable, and functionally optimized.•Layout optimized for efficient manufacturing flow and support area centralization.•Involve vendors in partnership relationships.

Staff

Materials

Process,Product,

Procedures

Equipment/Facilities

PPiilloottPPhhaassee

Page 120 of 159

Page 121: Sugico Mok Plan 3

Process transfer is a useful metric that occurs near the conclusion of the Pilot Phase. Processtransfer, usually implemented incrementally by process steps, is generally accompanied by adefinition of the process parameters by which a product of a certain quality (not alwaysoptimal) may be produced. It marks the end of formal development and provides a baselineagainst which other processes may be measured.

Production

The defining characteristics of the Production Phase are generally well understood andalmost universally accepted across a wide range of industries. As shown in Figure 4,staffing requirements, equipment and facilities, process, product and procedures markedlydiffer from the R&D Phase and the Pilot Phase. Typically in technology-driven companies,the overwhelming focus during this phase is on procedure, often at the expense of otherequally important life-cycle elements. Throughout the production phase, the operationshould be driven by statistical process control, and procedural issues such as rigorousdocumentation and process change control should be weighted heavily. At this point,process decisions are made on the basis of data, not the intuition of researchers.

Figure 4 - Composition of the Production Phase

If the process and product are to be frozen at this point in the life-cycle, it follows that thetechnical staff, including support functions such as information technology andprocurement, must be adjusted accordingly as well. This does not mean, of course, that theprocess engineers who have supplanted the research-oriented staff of earlier phases shouldlack creativity. On the contrary, their creativity should now be focused on troubleshootingand fixing the existing process, not changing the process. In a similar manner, the flexibilitydemanded of a purchasing manager during R&D is no longer an asset, and that person'sability to implement an active program to include raw material vendors as full partners nowbecomes critical.

R & D Phase

Pilot Phase

•Sustain and continually improve the ongoing production operations.•Technical staff 90% engineering and 10% hard science- and research-oriented.•High degree of interfunctional teams.•Primary compensation based 40% individual, 60% team.•Focused on system-level events and interdiscipline interaction.

•Bill-of-materials components optimized for cost reduction and supply consistency.•Low cost materials substitutes investigated and qualified.•Cost vs. performance trade-offs controlled tightly.•Vendors become full partners and part of the manufacturing flow.

•Running a frozen manufacturing process flow.•Process driven by statistical controls.•Manufacturing process model only changed through continued characterization in incremental steps andmarket-driven demand changes.•Fully characterized products running in high volumes.•Final production product specifications frozen.•Provide a stable, defined framework preventing variation.•Production support infrastructure optimized.

•Provide a fully operational manufacturing environment for high-volume production.•Multiplexed, fully characterized production tool set running stable, frozen equipment recipes.•Tool set fully instrumented, in-situ monitored, and optimally automated.•Layout optimized for maximum output, minimal cycle time, and lowest manufacturing cost.

Staff

Materials

Process,Product,

Procedures

Equipment/Facilities

PPrroodduuccttiioonnPPhhaassee

Page 121 of 159

Page 122: Sugico Mok Plan 3

Key Success Drivers

A careful analysis of those technologies, facilities, and products whose transition from R&Dto manufacturing has been successful reveals a number of remarkable similarities. It isuseful to review these similarities with respect to the underlying supporting factors whichdrive maturation and phase transition utilizing them to develop a “roadmap” for futuresuccesses. It is critical that corporate managers be given the tools and the insight to makeaccurate assessments as progress is made through the natural life-cycle so that optimalorchestration of the four areas listed above can then be shaped accordingly. This discussionoffers a detailed review of the key drivers, which enable promising new concepts destinedfor high-technology manufacturing, to economically evolve into large-scale production.

As a technology, facility, or product progresses through its maturation life-cycle, it isimportant to understand how the critical success factors constantly change. For example,during the R&D Phase, optimizing cycle-time on specific process experiments needed toverify the baseline process is the primary WIP (Work in Progress) movement goal. Duringthe Pilot Phase, however, this focus needs to shift toward manufacturing priorities enablingprocess integration, process flow qualification, and equipment certification. Finally, duringthe manufacturing ramp into the Production Phase, sheer product output, factory overallproduct cycle-time, and operating costs become the primary drivers. There is risk inmisreading the priority success factors that dominate at any given time in the life-cycle.

Manufacturing Drivers

A successful factory understands and balances critical “Manufacturing Success Drivers.”These include Product Output, Product Performance, Constraint Equipment Uptime(Reliability), Constraint Equipment Cycle-Time (Run-Rate), Constraint EquipmentUtilization (Effectiveness), and Production Yield. These drivers are in turn influenced byseveral factors, all of which evolve throughout the life-cycle.

Equipment Capabilities

Equipment capability requirements vary throughout a factory’s life-cycle. During the R&Dphase, flexibility and multi-functionality are at a premium, whereas during the Prototype(Ramp) Phase, user-friendliness and reliability become the critical considerations. Duringthe Production Phase, controls instrumentation, optimal automation, and in-situ processmonitoring become the key attributes.

Equipment Maintenance

Leveraging tool performance and enhancing operability and serviceable life are critical.This is necessary due to the complexity and cost for large scale, high-volume productionequipment such as 300mm production tools, which must be specified, constructed, andmaintained for successful operation. Today's manufacturers must be prepared to plan andfund for the staffing, training, and management of high-performance equipmentmaintenance teams.

Page 122 of 159

Page 123: Sugico Mok Plan 3

Equipment Characterization/Monitoring Methodologies

The most fail-safe method to insure equipment suitability for manufacturing is to establish athorough equipment specification for the tool vendor. In addition, setting a clear set ofacceptance criteria, which include both performance and equipment metrics, is vital. Onceequipment characterization/initial process parameters are established, a repeatable methodfor equipment and process monitoring must be determined. The instrumentation for theseprocess controls (equipment and process metrology) must be designed into the tools andsystems from the outset, and not added belatedly as an afterthought.

Constraining Tool Utilization Improvements

Identification and elimination of key production capacity bottlenecks is mandatory inmanaging an aggressive manufacturing ramp. Throughout a manufacturing ramp, theconstraining tools will shift and process/production simulation can be utilized to preview theconstraint sequencing. A balance between equipment characterization, equipmentupgrade/modification, engineering process development/optimization, and productionmaterial needed for baseline establishment must be actively directed.

Run-Rate Prototyping Strategies

We have found it most valuable to implement specific programs designed to “shake-out”portions of a manufacturing line prior to their required full-capacity utilization. Manyproblems which occur during a production ramp are not detected until the equipment andprocess are exercised at capacity level rates. Areas specifically vulnerable to thisphenomenon are mechanical repeatability during maximum cycling, process control, andoptimized preventative maintenance requirements.

Factory Ramp Up/Capacity Planning

A factory moving from the R&D Phase and initial start-up into the Prototype/Ramp Phase isat its most critical juncture. Many yet unseen hurdles pertaining to staffing, materials,equipment, and process emerge during this stage. Setbacks at this stage can mostimmediately manifest themselves as failures to attain the technical milestones required forcontinued project viability.

Simulation/Factory Layout

Full factory floor layout and production simulations are imperative to prevent unforeseenfactory floor design flaws. It is difficult to overstate the importance of these tools in theplanning phase. Without these tools there is a significant risk of improperly matchedoperating capabilities, poorly designed manufacturing flows, and restricted options forfuture expansions and process changes.

Page 123 of 159

Page 124: Sugico Mok Plan 3

Production/Operating Plan Generation and Risk Analysis

It is vital to understand the pertinent variables required to build a self-consistent, multi-yearoperating plan including the materials, labor, and equipment input components as well as theproduct output and associated costs. All of these factors must be incorporated into thedevelopment of an operating template. In addition, realistically understanding the associatedrisks and developing early contingency plans is critical to reducing the overall time-to-independence viability for the business.

Manufacturing Benchmarking

It is advantageous that a project management team has functional, practical experience withmanufacturing companies from a low-volume, custom product emphasis as well as a massproduction, lowest-cost focus. That enables a team to reliably compare performance actualswith realistic milestone goals, and to effectively judge a reasonable rate of progress leadingto successful full capacity manufacturing.

Business/Enterprise Success Drivers

There are three fundamental parameters that dictate the cost effectiveness model for manyemerging high-technology production operations:

Product performance

Manufacturing yield.

Product durability, i.e. reliability.

Any comprehensive program must focus on these parameters, and map out a plan to achieveeconomic viability milestones in each parameter. Underlying these parameters also exists aset of factors which must be closely managed throughout the life-cycle.

Technology Maturity

A technology survey early in a product development program is exceptionally important toexpeditiously scale up processes whose technologies and performance are already proven.As a result, the manufacturer gains insight into which processes have a high probability ofsuccess through direct scale-up, and which processes must be piloted so that more processknowledge can be gathered.

Processing Step Interaction

High-technology manufacturing involves multi-step processing in which each unit operationmay be quite dependent on the preceding step. Accordingly, process experiments must bedesigned to take into account both dependent and independent variables, and how thosevariables will interact during production scale-up. Failure to do this properly would threatenthe ultimate optimization of the process parameters.

Page 124 of 159

Page 125: Sugico Mok Plan 3

Process Characterization

In order to communicate effectively with potential equipment and materials vendors, aprocess specification for each process step must be developed. The only way to establish aneffective definition for both materials suitability and equipment performance is tocharacterize the process sensitivity ranges for individual process steps as well as for theintegrated process flow. By focusing early on process characterization, significant time andcosts can be saved during the subsequent production ramp, where both customerdissatisfaction and a growing expense base are significant negatives.

Process Monitoring

It is important to attend to instrumentation and monitoring considerations during the earlyPrototype Phase, since that is when many critical variables are identified. Many of thesuccessful products appear to be overly instrumented and controlled at the Pilot Phase, butthis is often necessary to adequately define the critical variables at each step as well asinterdependent variables between the process steps. This is also an appropriate time todevelop a strategy to properly monitor and eventually control the various process steps inthe Production Phase. The focus needs to be on reducing variability first, and thenoptimizing the parameter targets.

Task Force/Technical Program Management

In many cases, a “Tiger Team” approach to program management must be taken. One casehistory of this approach enabled a cross-functional team of engineers, scientists, processtechnicians, and maintenance technicians to successfully increase equipment uptime by 50%and increase the effective run-rate by 150%.

Related Technology Understanding

There is much technology and manufacturing methodology that is common to theproduction of such varied products as semiconductors, flat panel displays, fine chemicals,photovoltaics and architectural glass coating technologies. It is valuable to draw upon theknowledge and experience that “cross pollinates” among those industries. This broadawareness helps identify the "best of the best” technologies and strategies from thesedifferent industries related to manufacturing practices and methods, overall factoryproductivity optimization, instrumentation and controls, and familiarity with equipmentmanufacturers.

Expense, Capital, and Cost Management

The ability to construct a logical, realistic operating budget, with a clear understanding ofthe risk management which must be utilized to successfully guide the applications ofresources, is critical not only during the implementation portion of a manufacturing start-upbusiness but also during operating plan development. Without real knowledge of thepotential resource hurdles a production start-up will encounter, a realistic, executablebusiness strategy is extremely difficult to construct and implement.

Page 125 of 159

Page 126: Sugico Mok Plan 3

Materials Procurement/Vendor Sourcing/Partnering Strategies

In some cases, vendor sourcing may take the form of a partnership between a manufacturerand its suppliers. This is particularly important in developmental processes to which theequipment manufacturer brings a depth of process experience. Vendors, like the clients theyserve, want to be associated with success. The qualification procedure works in bothdirections, and equipment manufacturers and material suppliers generally want to be aninteractive part of the team. Also, much of the equipment required for high-technologymanufacturing is long lead and requires significant time for start-up and debugging. Theprocurement process must be integrated into the overall plan early in the process.

Organizational Alignment-Design/Institutional Skill Identification

The identification and management of the specific technical/operational talent required iscritical for factory success. Part of this process includes the ability to map the currentinstitutional skill-set with the strategic organizational goals and objectives identifying corecompetency gaps. This process requires an understanding of in-depth organizationaldynamics as well as practical, high-level operational management experience.

Change Management

The phase transitions experienced in a manufacturing ramp are dramatic and varied.Consequently, the methodology by which one manages, leads, and directs an organizationthrough these phases becomes imperative to success. The economics of capital costs andtime required to re-tool an organization throughout this maturation process would beprohibitive. For that reason, it is important to apply an optimal deployment of resources atthe outset. Achieving this requires transition of process control from research scientists toan emerging plant engineering organization; and the transfer of equipment sustaining andmaintenance responsibilities from the engineering organization to a focused equipmentmaintenance group.

Life Cycle Schedule

The attached Technology Product Industrial Life Cycle (Figure 6) provides a hypotheticaltime-line for the three discrete phases in the life cycle of a technology-driven product.While the durations shown are of course dependent upon the complexity of the technologyinvolved, the actual linkages among the individual phases provides a historically accuratemodel. In some cases, there have been specific products which have been acceleratedquickly through one or more of the phases. Even though it may appear that the phase hasbeen “skipped,” the transition in staff, materials, procedures, etc. is still necessary toestablish the groundwork for future success. These transition phases may be apparentlyshort in duration, but they are a necessary “stepping-stone” for future generations ofproduct(s) that will ensure successful continuity.

Page 126 of 159

Page 127: Sugico Mok Plan 3

Figure 6 - Technology Product Industrial Life Cycle

The Authors - Mr. Causey is a member of the Advanced Technology Group for IDC, aleading provider of design and construction services for industrial clients worldwide. Hisareas of expertise include microelectronics manufacturing, flat panel display technology,fiber optic manufacturing, specialty fibers and composites, photovoltaic processing, vacuumcoating operations, and continuous and batch high temperature processing. Mr. Causey hasbeen a central figure in the development of conceptual processes and equipment engineeringstrategies for new high-technology manufacturing enterprises. His involvement in suchefforts encompasses development of specifications, data sheets, functional requirements fora range of process and process support equipment, cleanroom layouts, process utilitymatrices, and overall process flow concepts.

Mr. Westmoreland is an expert in advanced technology manufacturing processes includingmicroelectronics, charge coupled devices and photovoltaics. He served as a technologist forIDC for three years and is currently an independent consultant in advanced technologyproduction strategies. Mr. Westmoreland specializes in the development of technology andmanagement approaches that enable the cost-effective transition of innovative technologiesinto high-volume production modes.

Ann

ual I

nves

tmen

t

20+ Years 1-2 Years 20+ YearsR&D Phase Pilot Phase Production Phase

Page 127 of 159

Page 128: Sugico Mok Plan 3

Spectrolab, Inc.

In reply refer to 04L00079b-99131-R2 May 19, 2004 Mr. William Mook Mök Industries, LLC 4449 Easton Way Columbus, OH 43219 Subject: Spectrolab Acknowledgement of Funds

of Your Order for Spectrolab Concentra Reference: (a) Initial Spectrolab Quotation Letter No.

(b) Revised Spectrolab Quotation Letter N(c) Spectrolab e-mail (R. Sherif) dated 05(d) Mayk Kalachian e-mail dated 05/17/04

Dear Mr. Mook: Spectrolab acknowledges receipt of your wire trpayment for Spectrolab Concentrator Systems, in sconcentration photovoltaic (HCPV) products using Mök Industries’ Terrestrial-Tuned Filters. We condorder based upon your acceptance of our encloseSale as they relate to Intellectual Property and Prevised delivery date; all else remains as stated in o With respect to the revised Terms and Conditionquotation’s Terms and Conditions of Sale (08/01 with IOA Terms and Conditions of Sale (08/01 with IP & Propversion, we have modified Paragraph 14 which pertainsreplaced previous Paragraph 19 with new Paragraph 19Information, and added new Paragraph 20 which addres With respect to the delivery date, our new estimated drather than eight (8) weeks, as previously stipulated. We look forward to your acceptance of these updates tothis project. For ease of acknowledgement and to suggested that you sign and date the signature blockattention of Linda M. Schwartz (facsimile 818-361-5102)

P.O. Box 9209, Sylmar, CA 91392-9209 USA12500 Gladstone Avenue, Sylmar, CA 91342-5373 USATelephone: 818-365-4611; Fax: 818-361-5102

and Conditional Acceptance tor Systems

ACD-4-131-L dated 02/13/04 o. ACD-4-131-L-R1 dated 04/19/04

/14/04

ansfer of $30,000.00 as a partial upport of the effort to develop high

Spectrolab’s multi-junction cells and itionally accept the funds and your d updated Terms and Conditions of roprietary Information, as well as a ur previous quotation.

s, we have replaced our previous P mod 04/04) with the attached version rietary Info mods 05/04). In this latest to Spectrolab Proprietary Information,

which pertains to Customer Proprietary ses Intellectual Property.

elivery date is on or before 08/31/04,

our quotation and working with you on expedite processing your order, it is below and fax this letter back to the as soon as possible.

Page 128 of 159

Page 129: Sugico Mok Plan 3

Page 2 – Letter 04L00079b-99132-R2 to Mok Industries, LLC/W. Mook dated 05/19/04 If you have any programmatic and technical questions, please contact Dr. Raed Sherif at 818-838-7479 or via E-mail at [email protected]. For contractual matters, please contact the undersigned at 818-898-2818 or via E-mail at [email protected] or via FAX 818-361-5102 with reference to Quotation ACD-4-131-L-R2. Sincerely, Acceptance by: SPECTROLAB, INC. ____________________ ___________ Linda Schwartz Signature Date Contract Manager ____________________ (printed name) Enclosure: 1. Spectrolab OA Terms and Conditions of Sale (08/01 with IP & Proprietary Info mods 05/04). cc: R. Sherif, M. Kalachian, N. Karam T. Grochow and File: ACD-4-131-L

Page 129 of 159

Page 130: Sugico Mok Plan 3

Page 130 of 159

Page 131: Sugico Mok Plan 3

Page 131 of 159

Page 132: Sugico Mok Plan 3

Page 132 of 159

Page 133: Sugico Mok Plan 3

Page 133 of 159

Page 134: Sugico Mok Plan 3

Page 134 of 159

Page 135: Sugico Mok Plan 3

Sugico Mök Page 134

 Sugico Graha Management Teaam 

2006  

 Sugico Major Equipment 

CONFIDENTIAL Sugico Mök Page 135 of 159

Page 136: Sugico Mok Plan 3

PT. SUGICO GRAHA Group of Mine in South Sumatera Province

NO 1 Head Office Address Jalan Imam Bonjol No. 68-70 Menteng Jakarta 10310,

Indonesia 2 Mine Address PT. Sriwijaya Bintangtiga Energy

District Muara Lakitan PT. Brayan Bintangtiga Energy

District Rawa Ilir PT. Brayan Bintangtiga Energy

District Muara Lakitan PT. Sugico Pendragon Energy

District Rawas Ilir PT. Lion Power Energy

District Gunung Megang PT. Tansri Madjid Energy

District Muara Enim PT. Sugico Graha

District Rambang Dangku 3 Estimate Reserves

(TOTAL) 5,36 Million ton ( = about 5 billion ton) which consist of :

PT. Sriwijaya Bintangtiga Energy = 122 Million ton PT. Brayan Bintangtiga Energy = 113 Million ton PT. Brayan Bintangtiga Energy = 119 Million ton PT. Sugico Pendragon Energy = 4,43 Million ton PT. Lion Power Energy = 210 Million ton PT. Tansri Madjid Energy = 366 Million ton PT. Sugico Graha = not yet estimate 4 Amount of reserves

available for conversion to liquid fuels using our process

Sugico is on exploration step right now so if we can start up with MoU they will provide the amount quantity needed. During last meeting, they can provide 60,000 MT / month. But if Sugico also share (own) the new liquefaction company they will supply quantity moreover we need (they confirmed for first agreement 100,000 MT / month is available).

5 Area already mined, Area to be mined and under development

Sugico’s concession is on exploration step and will be exploited and production once received contract from buyer. Mean, only small exploitation right now. They are currently negotiating with PLN (government electrical company) and private electrical companies. Now, they are very interesting with our liquefaction technology and starting to discuss with us.

6 Total Concession 90,192 Ha. (=222,868.4 acre). We can built outside or inside their concession if you require about 350 Ha (=864.87 acre) for sun collector.

7 Power needs, water needs, power and water availability

Mines are using generator for their need and using deep well or river for water need. We can use river for the production. There are many big river in Sumatera Island.

8 Rate of production USD 13 / MT excluding tax 9 Estimation of coal price USD 50 / MT (my personal estimation base on local price but

I think can be reduce /discount on the agreement in huge quantity).

10 Cost of labor The lowest is IDR 1 million / month excl. tax. Technician is vary from 3 to 4 million / moth excl. tax. Salaray paid 14 times

Page 136 of 159

Page 137: Sugico Mok Plan 3

a year since the balance 2 month are for muslim/christmas holiday allowance. Sugico can provide the labor with needed qualification.

11 Language Indonesian for labor and English for enggineer/technician. 12 Available property for solar

collector (total labor) No detail information but Sugico can arrange on the agreement base.

13 Issue No crucial issue. Local government is very cooperative and accommodate for new investment/investor.

14 Level of training required Usually, experience labor will primary choosen but Sugico usually tranied their labor like technical, OHSAS etc.

15 Method of access Road, air and water (river). Flight from abroad will be arrived in Jakarta airport and from Jakarta airport to Palembang airport (about 1.5 hour). Palembang to Muara Enim is 5 hours by road.

16 Transportation to Terminal Need for export or inter island activities. The concession located about 5 to 100 km from Musi River. Usually use railway or truck to Musi River (1 hour only) and from Musi River to Lampung port will take 9 hours (300 to 450 km). But for our condition which plan near the mine, there will only need truck or rail to our stockpile.

17 Cost of Transportation Depend of the distance (about IDR 100,000 / MT). The capacity of truck is 10 ton – 20 ton.

Page 137 of 159

Page 138: Sugico Mok Plan 3

Page 138 of 159

Page 139: Sugico Mok Plan 3

Page 139 of 159

Page 140: Sugico Mok Plan 3

Page 140 of 159

Page 141: Sugico Mok Plan 3

Page 141 of 159

Page 142: Sugico Mok Plan 3

Page 142 of 159

Page 143: Sugico Mok Plan 3

Page 143 of 159

Page 144: Sugico Mok Plan 3

Page 144 of 159

Page 145: Sugico Mok Plan 3

Page 145 of 159

Page 146: Sugico Mok Plan 3

Page 146 of 159

Page 147: Sugico Mok Plan 3

Page 147 of 159

Page 148: Sugico Mok Plan 3

Home > Country Analysis Briefs > Indonesia Country Analysis Brief PDF version | PDB version

July 2004

Background | Oil | Natural Gas | Coal | Electricity Generation | Environment | Profile | Links

Indonesia Indonesia is important to world energy markets because of its OPEC membership and substantial, but declining, oil production. Indonesia also is the world's largest liquefied natural gas (LNG) exporter.

The information contained in this report is the best available as of July 2004 and can change.

GENERAL BACKGROUND Indonesia's economic growth surpassed expectations in 2003, largely fueled by consumer spending. Indonesia's real gross domestic product (GDP) grew at a rate of 4.1% in 2003, up from 3.7% in 2002. Real GDP growth is forecast to be 4.7% for 2004, although imbalances in the macroeconomic picture, such as increasing budget deficits caused by

oil price subsidies on the local market, could lead to future problems.

Last year was the final year of the IMF assistance program designed to pull Indonesia's economy out of the emergency situation that had developed during the 1997/98 Asian financial crisis. In March 2003, the IMF disbursed the scheduled $469 million tranche of its bailout package after reporting that Indonesia had made good progress instituting reforms. The IMF review cited Indonesia's continued economic growth, decreasing inflation rates, and strengthened banking sector as examples of progress made, while mentioning that more reforms were still necessary. Conditions of the $43 billion bailout agreement included improving the transparency of government financing and especially the operation of government-owned enterprises such as the state-run PT Pertamina oil monopoly. The government of Megawati Sukarnoputri expressed a commitment to reforms when it took office in 2001, but progress has been limited since then, with the April 2004 ouster of reform-minded Pertamina head Baihaki Hakim renewing concerns – especially among urgently needed foreign investors – that Indonesia's efforts to improve transparency have faltered.

President Megawati has been in power since July 2001, assuming the presidency after her predecessor, President Abdurrahman Wahid, was removed from office by the national legislature. The regional challenges facing the Indonesian government remain the same: a separatist movement in Aceh, an oil and gas rich province in north Sumatra which abuts the strategically important Strait of Malacca; and a separatist movement in Irian Jaya, a gas-rich province at the eastern end of the country. The government is also managing threats posed by an Al Qa'ida-linked terrorist group, called Jemaah Islamiyah. Jemaah Islamiyah was responsible for the 2001 nightclub bombing in

Page 1 of 10Indonesia Country Analysis Brief

7/13/2004http://www.eia.doe.gov/emeu/cabs/indonesia.html

Page 148 of 159

Page 149: Sugico Mok Plan 3

Bali, a 2003 hotel bombing in Jakarta, and is now targeting Western business and political figures in Indonesia, according to recent reports. Jemaah Islamiyah is seeking to undermine foreign economic interests in the country, according to Western security officials.

Tension exists between the central government in Jakarta and leadership at the regional level. The distribution of oil and gas revenues between the central government in Jakarta and regional governments in areas which produce oil and gas has been regularly disputed. Since Indonesia's transition to democracy in 1999, the country's regional governments have been pressing for a greater share of oil and gas revenues. In particular, the separatist movement in Aceh continues to cause security problems for oil and gas companies in that region, despite the government's energetic offensive against the separatists this year.

OIL Indonesia currently holds proven oil reserves of 4.7 billion barrels, down 13% since 1994. Much of Indonesia's proven oil reserve base is located onshore. Central Sumatra is the country's largest oil producing province and the location of the large Duri and Minas oil fields. Other significant oil field development and production is located in accessible areas such as offshore northwestern Java, East Kalimantan, and the Natuna Sea. Indonesian crude oil varies widely in quality, with most streams having gravities in the 22o to 37 o API range. Indonesia's two main export crudes are Sumatra Light, or Minas, with a 35 o API gravity, and the heavier, 22o API Duri crude. A study released in August 2002 by Indonesia's Directorate General of Oil and Gas shows that oil reserves in the Cepu block alone, located in Central/East Java, are close to 600 million barrels, about half of which is considered recoverable.

In 2003, Indonesian crude oil production averaged 1.02 million barrels per day (bbl/d), down from the 2002 average of 1.10 million bbl/d and continuing the decline of the past several years. The decline is due mainly to the natural fall off of aging oil fields, a lack of new investment in exploration and regulatory hurdles unlikely to be addressed until after the 2004 elections. Besides crude oil, Indonesia also produces approximately 133,800 bbl/d of natural gas liquids and lease condensate, which are not part of its OPEC quota. Indonesia is the only Southeast Asian member of OPEC, and its current OPEC crude oil production quota is 1.22 million bbl/d.

The majority of Indonesia's producing oil fields are located in the central and western sections of the country. Therefore, the focus of new exploration has been on frontier regions, particularly in eastern Indonesia. Sizable, but as of yet unproven, reserves may lie in the numerous, geologically complex, pre-tertiary basins located in eastern Indonesia. These regions are much more remote and the terrain more difficult to explore than areas of western and central Indonesia.

China National Offshore Oil Corporation (CNOOC) became the largest offshore oil producer in Indonesia in January 2002, after purchasing nearly all of Repsol-YPF's assets in the country for $585 million. Pertamina is a CNOOC partner in each Production Sharing Contract (PSC). However, in 2003 CNOOC's production dropped 20,500 bbl/d, or 17.5%, from its 2002 level.

Page 2 of 10Indonesia Country Analysis Brief

7/13/2004http://www.eia.doe.gov/emeu/cabs/indonesia.html

Page 149 of 159

Page 150: Sugico Mok Plan 3

Companies producing from existing fields are attempting to increase recovery rates and to prolong the life of the fields. Caltex, which has the largest operation of any multinational oil company in Indonesia, undertook a steam injection project at the Duri field on Sumatra, but nonetheless experienced a drop of about 71,000 bbl/d in production in 2003 over 2002. Half of the drop is attributed to natural depletion.

The country's declining oil production could be turned around once the new Cepu field in Java comes online. The field, estimated to hold reserves of at least 600 million barrels of oil, is being developed by ExxonMobil in partnership with Pertamina. However, the two oil giants have been unable to reach an agreement over profit sharing, with Pertamina demanding half the field's output and ExxonMobil demanding that Pertamina cover half the field's production costs. Additionally, ExxonMobil wants Jakarta to extend its technical assistance contract, due to expire in 2010, for 20 years. ExxonMobil officials have indicated that the field could be operational in 2006 and could produce up to 180,000 bbl/d, according to recent reports.

Smaller fields could help boost production numbers if they become fully operational in 2004 and 2005. Unocal's West Seno field, under development offshore from East Kalimatan, is producing 40,000 bbl/d and is expected to produce up to 60,000 bbl/d when the second phase of development is completed in early 2005. ExxonMobil's Banyu Urip field, in Java, is expected to come onstream in 2006, according to the company, and reach its peak production capacity of 100,000 bbl/d soon after. Even with these new fields, though, Indonesia's oil production is not likely to rise markedly, due to the continuing decline of mature fields.

Oil Sector Reforms The liberalization of Indonesia's downstream oil and gas sector has been under discussion for several years. In October 2001, the Indonesian legislature passed the much-vaunted Oil and Gas Law 22/2001 which limited Pertamina's monopoly on upstream oil development (which requires it to be included in all PSCs) by the end of 2003. Also, Pertamina's regulatory and administrative functions were transfered to other entities, while its regulatory role was spun off to a new body, BP Migas. Reports from foreign firms are that BP Migas is proving to be even less efficient than the original Pertamina entity. Almost three years after the law was passed, several regulations have still not been finalized and are unlikely to be before a new government is elected in July.

Pertamina maintained its retail and distribution monopoly for petroleum products, until July 2004 when the first licenses for a foreign firm to retail petroleum products are due to be awarded to BP and Petronas of Malaysia. The government is still promising to open the sector to full competition by 2005, although progress has been very slow to date. Political interests with ties to Pertamina are likely reluctant to see the state-run firm lose its assured revenue streams. Pertamina itself was changed to a limited liability company by presidential decree in 2003, and is slated to be fully privatized by 2006.

Indonesia's Ministry of Mines and Energy has taken over the function, formerly carried out by Pertamina, of awarding and supervising PSCs with foreign oil companies. Foreign firms also are to be freed from some of the regulatory approval requirements which they argue hinder their efficiency. One concern foreign oil companies have with the new law is the granting of a limited authority to regional governments to tax oil companies' profits.

Refining Indonesia has seven refineries, with a combined capacity of 992,745 bbl/d. The largest refineries are the 348,000-bbl/d Cilacap in Central Java, the 240,920-bbl/d Balikpapan in Kalimantan, and the 125,000-bbl/d Balongan, in Java.

Page 3 of 10Indonesia Country Analysis Brief

7/13/2004http://www.eia.doe.gov/emeu/cabs/indonesia.html

Page 150 of 159

Page 151: Sugico Mok Plan 3

PT Kilang Minyak Intan Nusantara, a joint venture of Al-Banader International Group of Saudi Arabia (40%), China National Electrical Equipment Corporation (40%) and PT Intanjaya Agromegah Abadi (20%), are investing a total of $6 billion to build two Indonesian oil refineries -- one in Pare-Pare, South Sulawesi and the other in Batam Island, Riau. Both projects are expected to be operational in 2005, with crude refining capacities of 300,000 bbl/d. The refineries will be export-oriented, taking Saudi crude and refining it for sale primarily to the Chinese market.

In January 2004, the state-owned National Iranian Oil Co. and Pertamina announced that they will consider cooperating in a $1 billion venture to build and operate an oil refinery in East Java. The facility is expected to process up to150,000 bbl/d of crude oil mainly from the Cepu block, according to local press reports. As of June 2004, however, the feasibility study was still not finalized.

Pertamina has decided to resume construction of the partly built petrochemical facility in Tuban, East Java. The project has stalled since 1998. By the terms of the agreement, Pertamina will guarantee $400 million in loans from foreign banks and supply inputs to the plant. Domestic investors in the project include several men with close ties to former Indonesian leader Suharto. Pertamina's partnership with Saudi Arabia's Hi-Tech International Group collapsed in 2002 when the Saudi firm failed to raise enough money to finance its portion of the plant. Another attempt to restart the project failed when the World Bank and IMF informed the Indonesian government in 2003 that Pertamina's attempt to finance the project alone, using collateralized revenue from the Cilcap refinery, was forbidden under the terms of their respective lending programs. When complete, the plant is expected to produce 1 million tons of aeromatic, 1 million tons light naptha, and 1.6 million tons of kerosene and diesel annually.

NATURAL GAS Indonesia has proven natural gas reserves of 92.5 trillion cubic feet (Tcf). Most of the country's natural gas reserves are located near the Arun field in Aceh, around the Badak field in East Kalimantan, in smaller fields offshore Java, the Kangean Block offshore East Java, a number of blocks in Irian Jaya, and the Natuna D-Alpha field, the largest in Southeast Asia. Despite its significant natural gas reserves and its position as the world's largest exporter of liquefied natural gas (LNG), Indonesia still relies on oil to supply about half of its own energy needs. About 70% of Indonesia's LNG exports go to Japan, 20% to South Korea, and the remainder to Taiwan. As Indonesia's oil production has leveled off in recent years, the country has tried to shift towards using its natural gas resources for power generation. However, the domestic natural gas distribution infrastructure is inadequate.The main domestic customers for natural gas are fertilizer plants and petrochemical plants, followed by power generators.

Indonesia is facing a declining share of global LNG markets, despite its past status as the world's leading LNG and dry gas exporter. The decline can be attributed to questions over the reliability of Indonesian supply and lower investment in the Indonesian energy sector. Uncertainties over political support for the sanctity of contracts, regulatory transparency, and unfavorable PSC terms have undermined investment support. As a result, Indonesian LNG exports have been partially replaced by exports from Oman, Qatar, Russia, and Australia on world markets. The sector has also faced restructuring under the terms of Indonesia's World Bank and IMF lending agreements, with BP Migas taking over the supervisory and

Page 4 of 10Indonesia Country Analysis Brief

7/13/2004http://www.eia.doe.gov/emeu/cabs/indonesia.html

Page 151 of 159

Page 152: Sugico Mok Plan 3

management roles formerly filled by Pertamina.

Despite Pertamina's reduced authority, the company's key role in the gas sector was reinforced in early June when BP Migas announced that PT Pertamina has been appointed as the sole sales agent for LNG sales to South Korea and Taiwan. Pertamina will negotiate sales for Total, Unocal, Vico and BP Indonesia. Current contracts with South Korea and Taiwan are due to expire in 2007 and 2009, respectively.

One project that holds tremendous promise for Indonesia's future in worldwide LNG markets is BP's Tangguh project in Papua province (also known as Irian Jaya), based on over 14 Tcf of natural gas reserves found onshore and offshore the Wiriagar and Berau blocks. The project will involve two trains with a combined capacity of 7 million tons per annum (tpa), expandable to 14 million tpa. BP's current plans call for the project to be completed by 2007. Initial planning was stalled when BP lost the bids to supply Guandong Province and Taiwan in early 2003. However, in late 2003 and early 2004, BP secured supply agreements with Fujian, China for 2.6 million tpa, with leading Korean steel producer POSCO for 1.5 million tpa, and with Sempra Energy for 3.7 million tpa over 15 years to begin in 2007. These supply agreements made possible the $2.2 billion investment to develop the fields. Talks are underway for BP's Tangguh to supply 5 million tpa to Jiangsu, China beginning in 2007.

The 400-mile Natuna pipeline is one of the longest undersea gas pipelines in the world, bringing gas from blocks operated by Premier Oil, ConocoPhillips, and Star Energy to customers in Singapore. Singapore is a major consumer of Indonesian natural gas, which it uses for its growing electricity generation needs. New pipeline proposals that would link East Natuna with the Phillipines are under consideration, but the high financing costs and security concerns in regions to be traversed by the lines make the projects unlikely.

In another possible use for Indonesia's gas resources, Shell is examining the possibility of building a gas-to-liquids (GTL) plant in Indonesia. The plant, if the project goes forward, would produce 70,000 bbl/d of diesel and other middle distillates using the Fischer-Tropsch GTL process.

COAL Indonesia has 5.9 billion short tons of recoverable coal reserves, of which 58.6% is lignite, 26.6% is sub-bituminous, 14.4% is bituminous, and 0.4% anthracite. Sumatra contains roughly two-thirds of Indonesia's total coal reserves, with the balance located in Kalimantan, West Java, and Sulawesi. According to U.S. Embassy reports, Indonesia produced 114 million metric tons of coal in 2003, up 11% from 2002. The entire increased production was exported, primarily to Japan and Taiwan, but also South Korea, the Philippines and Hong Kong.

Indonesia plans to double coal production over the next five years, mostly for export to other countries in East Asia and India. The new capacity will come primarily from private mines. The Clough Group of Australia was awarded a $215 million contract for improvements at the Indonesian firm GBP's Kutai mine in East Kalimatan. Another foreign firm with major interests in Indonesian coal mining is Australia's Broken Hill Proprietary (BHP).

July, 2003 saw the divestment of Australian mining company Rio Tinto and BP from their joint venture in Kaltim Pima Coal (KPC).The shares were sold to Indonesian firm, PT Bumi Resources for $500 million. According to several reports, the divestment was prolonged and acrimonious as the government objected to Rio Tinto's divestment plan, and threatened to mobilize public action to block the mine's operations. Ultimately, Rio Tinto and partner BP sold their combined 100% stake

Page 5 of 10Indonesia Country Analysis Brief

7/13/2004http://www.eia.doe.gov/emeu/cabs/indonesia.html

Page 152 of 159

Page 153: Sugico Mok Plan 3

for about half of its assessed value.

ELECTRICITY GENERATION Indonesia has installed electrical generating capacity estimated at 21.4 gigawatts, with 87.0% coming from thermal (oil, gas, and coal) sources, 10.5% from hydropower, and 2.5% from geothermal. Prior to the Asian financial crisis, Indonesia had plans for a rapid expansion of power generation, based mainly on opening up Indonesia's power market to Independent Power Producers (IPPs). The crisis led to severe financial strains on state-utility Perusahaan Listrik Negara (PLN), which made it difficult to pay for all of the power for which it had signed contracts with IPPs. PLN has over $5 billion in debt, which has grown markedly in terms of local currency due to the decline in the value of the rupiah. The Indonesian government has been unwilling to take over the commercial debts of PLN.

Indonesia is facing an electricity supply crisis, with some observers predicting that PLN may be unable to take on any new customers by 2005. Intermittent blackouts are already an issue across Java. Demand for electrical power is expected to grow by approximately 10% per year for the next ten years. The majority of Indonesia's electricity generation is currently fueled by oil, but efforts are underway to shift generation to lower-cost coal and gas-powered facilities. Geothermal energy and hydropower are also being investigated.

In January 2003, the World Bank announced that it was planning to build three micro-hydropower plants in the Indonesian province of Papua (Irian Jaya). A feasibility study on all of the area's water sources has already been conducted by the Bank, and the results are being studied. By building these facilities, the World Bank hopes to improve services to the local population as well as to encourage development activities in the province.

In October 2003, the World Bank approved a $141 million loan to Indonesia for the purpose of improving the power sector on Java-Bali, which uses approximately 80% of Indonesia's power generation capacity. The project includes support for a corporate and financial restructuring plan for PLN and technical assistance for a restructuring program for state gas company, Perusahaan Gas Negara (PGN), that will provide for increased natural gas supplies for electricity generation. The restructuring plan requires that PLN must restructure two of its subsidiaries, PT Indonesia Power and PT Pembangkit Jawa Bali (PJB). The two together supply about 80% of the power supply for Java and Bali, according to reports.

Also in 2003, the government renegotiated 26 power plant projects with the IPPs. Of those, five projects will be assumed by the government, in cooperation with PLN and Pertamina. The government foresees inviting private investors to participate in some electricity generation development projects, according to the U.S. Embassy.

Competition for power generation will be open on the islands of Batam, Java, and Bali by 2007. In 2008, retail competition in the electricity market will begin under the terms of the nation's new electricity law, approved in September 2002. The law requires an end to PLN's monopoly on electricity distribution within five years, after which time private companies (both foreign and domestic) will be permitted to sell electricity directly to consumers. However, all companies will need to use PLN's existing transmission network.

ENVIRONMENT Indonesia's major environmental challenges involve supporting its large population. Air and water pollution have reached critical levels, especially on the most populated island of Java. Indonesia's

Page 6 of 10Indonesia Country Analysis Brief

7/13/2004http://www.eia.doe.gov/emeu/cabs/indonesia.html

Page 153 of 159

Page 154: Sugico Mok Plan 3

carbon emissions remain low, but there is concern that an increase in the use of indigenous coal will increase Indonesia's carbon emissions in the coming years. Indonesia is well endowed with renewable energy potential, especially geothermal energy. Indonesia's renewable resouces are not yet fully exploited.

In March 2003, the Asian Development Bank approved a $600,000 grant to help combat Jakarta's air pollution problem. The technical assistance grant will be used primarily to promote a clean vehicle fuel program, known as the "Blue Skies" project. Indonesia is also phasing out the use of leaded gasoline, with a complete ban set to come into force in 2005.

Sources for this report include: AFX Asia; Asia Times; APS Review Oil Market Trends; CIA World Factbook 2003; Dow Jones News Wire service; Economist Intelligence Unit ViewsWire; Energy Intelligence Group; Financial Times; Global Insight World Overview; The Jakarta Post; Mining Magazine; Oil & Gas Journal; Petroleum Economist; Petroleum Intelligence Weekly; Platt's International Coal Report; Platt's Oilgram News; Reuters News Wire; U.S. Energy Information Administration; U.S. Department of State; Wall Street Journal; World Bank Group; World Gas Intelligence; World Markets Analysis.

COUNTRY OVERVIEW President: Megawati Sukarnoputri (since July 2001) Independence: Proclaimed independence on August 17, 1945. On December 27, 1949, Indonesia became independent from the Netherlands. Population (2004E): 238.5 million Location/Size: Southeastern Asia/735,310 sq. mi., slightly less than three times the size of Texas Major Cities: Jakarta (capital), Surabaya, Bandung, Medan, Semarang, Palembang, Ujung Pandang Languages: Bahasa Indonesia (official), English, Dutch, local dialects including Javanese Ethnic Groups: Javanese (45%), Sundanese (14%), Madurese (7.5%), coastal Malays (7.5%), other (26%) Religions: Muslim (88%), Protestant (5%), Roman Catholic (3%), Hindu (2%), Buddhist 1%), other (1%)

ECONOMIC OVERVIEW Minister for Economic Affairs: Kuntjoro-Jakti Dorodjatun Currency: Rupiah Exchange Rate (06/30/04): US$1 = 9,399 rupiah Gross Domestic Product (2003E): $208.3 billion (2004F): $225.0 billion Real GDP Growth Rate (2003E): 4.1% (2004F): 4.7% Inflation Rate (Consumer Price Index) (2003E): 6.8% (2004F): 5.8% Merchandise Exports (2003E): $63.2 billion Merchandise Imports (2003E): $38.0 billion Merchandise Trade Balance (2003E): $25.2 billion Major Export Products: Manufactured goods, petroleum, natural gas and related products, foodstuffs, raw materials Major Import Products: Capital equipment, raw and intermediate materials, consumer goods, petroleum products Major Trading Partners: Japan, United States, Singapore, Hong Kong, Britain, Australia

ENERGY OVERVIEW Energy Minister: Purnomo Yusgiantoro Proven Oil Reserves (1/1/04E): 4.7 billion barrels Oil Production (2003E): 1.26 million barrels per day (bbl/d), of which 1.02 million bbl/d was

Page 7 of 10Indonesia Country Analysis Brief

7/13/2004http://www.eia.doe.gov/emeu/cabs/indonesia.html

Page 154 of 159

Page 155: Sugico Mok Plan 3

crude oil OPEC Production Quota (since 4/01/04): 1.218 million bbl/d (as of 7/01/04): 1.32 million bbl/d Oil Consumption (2003E): 1.13 million bbl/d Net Oil Exports (2003E): 130,000 bbl/d (2004F): 16,000 bbl/d Major Oil Customers: Japan, United States, South Korea, China, Australia, Taiwan, Singapore, Thailand Crude Oil Refining Capacity (1/1/04E): 992,745 bbl/d Natural Gas Reserves (1/1/04E): 90.3 trillion cubic feet (Tcf) Natural Gas Production (2002E): 2.48 Tcf Natural Gas Consumption (2002E): 1.20 Tcf Net Gas Exports (2002E): 1.28 Tcf Major LNG Customers (2003): Japan, South Korea, Taiwan Coal Reserves (2002E): 5.92 billion short tons of recoverable reserves of which 85% is lignite and 15% is anthracite Coal Production (2002E): 144 million short tons (Mmst) Coal Consumption (2002E): 31.1 Mmst Net Coal Exports (2002E): 112.8 Mmst Major Coal Customers (2002): Japan, Taiwan, South Korea, the Philippines Electric Generation Capacity (2002E): 25.6 gigawatts Electricity Production (2002E): 99.3 billion kilowatt hours Electricity Consumption (2002E): 92.4 billion kilowatt hours

ENVIRONMENTAL OVERVIEW Total Energy Consumption (2002E): 4.45 quadrillion Btu* (1.0% of world total energy consumption) Energy-Related Carbon Dioxide Emissions (2002E): 299.8 million metric tons (1.2% of world total carbon dioxide emissions) Per Capita Energy Consumption (2002E): 20.5 million Btu (vs U.S. value of 339.1 million Btu) Per Capita Carbon Dioxide Emissions (2002E): 0.38 metric tons (vs U.S. value of 5.45 metric tons) Energy Intensity (2002E): 5,870 Btu/ $ nominal-PPP (vs. U.S. value of 9,344 Btu/$ nominal-PPP) Carbon Dioxide Intensity (2002E): 0.40 metric tons/ $ nominal-PPP (vs. U.S. value of 0.17 metric tons/thousand $ nominal) Fuel Share of Energy Consumption (2002E): Oil (48.5%), Natural Gas (29.2%), Coal (16.1%) Fuel Share of Carbon Dioxide Emissions (2002E): Oil (52.8%), Natural Gas (25.8%), Coal (22.0%) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified August 23rd, 1994). Signatory to the Kyoto Protocol (signed July 13th, 1998 - not yet ratified). Major Environmental Issues: Deforestation; water pollution from industrial wastes, sewage; air pollution in urban areas. Major International Environmental Agreements: A party to Conventions on Biodiversity, Climate Change, Endangered Species, Hazardous Wastes, Law of the Sea, Nuclear Test Ban, Ozone Layer Protection, Ship Pollution, Tropical Timber 83, Tropical Timber 94 and Wetlands. Has signed, but not ratified, Desertification and Marine Life Conservation.

* The total energy consumption statistic includes petroleum, dry natural gas, coal, net hydro, nuclear, geothermal, solar, wind, wood and waste electric power. The renewable energy consumption statistic is based on International Energy Agency (IEA) data and includes hydropower, solar, wind, tide, geothermal, solid biomass and animal products, biomass gas and liquids, industrial and municipal wastes. Sectoral shares of energy consumption and carbon emissions are also based

Page 8 of 10Indonesia Country Analysis Brief

7/13/2004http://www.eia.doe.gov/emeu/cabs/indonesia.html

Page 155 of 159

Page 156: Sugico Mok Plan 3

on IEA data. **GDP based on CIA World Factbook estimates based on purchasing power parity (PPP) exchange rates.

OIL AND GAS INDUSTRIES Organizations: Perusahaan Pertambangan Minyak dan Gas Bumi Negara (Pertamina) - oil exploration, production, transportation, and marketing; Perum Gas Negara (PGN) -gas distributor and transmission company Major Producing Oil Fields: Duri, Minas, Belida, Ardjuna, Arun, KG/KRA, Widuri, Nilam, Attaka Oil Refineries (1/1/04): Cilacap, Central Java (348,000 bbl/d); Pertamina-Balikpapan, Kalimantan (240,920 bbl/d); Musi, South Sumatra (109,155 bbl/d); EXOR-1, Balongan, Java (125,000 bbl/d); Dumai, Central Sumatra (114,000 bbl/d); Sungai Pakning, Central Sumatra (47,500 bbl/d); Pangakalan Brandan, North Sumatra (4,750 bbl/d); Cepu, Central Java (3,420 bbl/d) Product Pipelines: Trans-Java (serving the Surabaya market) Oil Tanker Terminals: Java: Cilegon, Cilacap, Surabaya, Ardjuna B (offshore) Sumatra: Pangkalan Brandan, Belawan, Dumai, Musi, Perlak, Palembang, Tanjung Uban (offshore) Kalimantan: Balikpapan Sulawesi: Ujung Pandang Irian Jaya: Sorong, Jaya Seram: Bula Natuna Sea: Ikan Pari Major Gas Fields: Sumatra: Arun, Alur Siwah, Kuala Langsa, Musi, South Lho Sukon, Wampu East Kalimantan: Attaka, Badak, Bekapai, Handil, Mutiara, Nilam, Semberah, Tunu Natuna Sea: Natuna Java: Pagerungan, Terang/Sirasun Irian Jaya: Tangguh Major Gas Pipelines: Sumatra: Pangkalan Brandan-Dumai LNG Plants: Bontang, Arun

LINKS

For more information from EIA on Indonesia, please see: EIA - Country Information on Indonesia

Links to other U.S. government sites: CIA World Factbook - Indonesia U.S. Department of Energy - Office of Fossil Energy - Indonesia U.S. State Department Consular Information Sheet Library of Congress Country Study on Indonesia U.S. Embassy in Jakarta U.S. Commercial Service in Indonesia Country Commercial Guides and Market Research on Indonesia

The following links are provided solely as a service to our customers, and therefore should not be construed as advocating or reflecting any position of the Energy Information Administration (EIA) or the United States Government. In addition, EIA does not guarantee the content or accuracy of any information presented in linked sites. Indonesian Embassy in the United States Indonesian Consulate General of the United States in Houston Pertamina Indonesian Links PT Perusahaan Gas Negara (PGN)

Page 9 of 10Indonesia Country Analysis Brief

7/13/2004http://www.eia.doe.gov/emeu/cabs/indonesia.html

Page 156 of 159

Page 157: Sugico Mok Plan 3

If you liked this Country Analysis Brief or any of our many other Country Analysis Briefs, you can be automatically notified via e-mail of updates. You can also join any of our several mailing lists by selecting the listserv to which you would like to be subscribed. The main URL for listserv signup is http://www.eia.doe.gov/listserv_signup.html. Please follow the directions given. You will then be notified within an hour of any updates to Country Analysis Briefs in your area of interest.

Return to Country Analysis Briefs home page

File last modified: July 12, 2004

Contact:

Lowell Feld [email protected] Phone: (202)586-9502 Fax: (202)586-9753

EIA Home Contact Us

URL: http://www.eia.doe.gov/emeu/cabs/indonesia.html

Page 10 of 10Indonesia Country Analysis Brief

7/13/2004http://www.eia.doe.gov/emeu/cabs/indonesia.html

Page 157 of 159

Page 158: Sugico Mok Plan 3

Preliminary Estimates of Value

Hectares required for liquid fuels production

The hydrogen/coal ratio depends upon coal quality and the desired liquid fuel product and yield.

Solar Solar Solar Solar Efficiency Electrical Hydrogen Hydrogen Hydrogen HydrogenHours/da Hours/yr Watts/m2 kWh/m2/yr Solar/Elec. kWh/m2/yr HV MJ/kg Prod. Eff. kWh/kg kg/m2/yr

4.5 1643.6 850 1397.1 28.00% 391.2 142 70.00% 56.349 6.942H2/Coal Coal Coal MT/mosRatio kg/m2/mos 60,000 65,000 70,000 75,000 80,000 85,000 90,000 95,000 100,000

5.00% 11.570 518.57 561.79 605.00 648.22 691.43 734.65 777.86 821.08 864.29 6.25% 9.256 648.22 702.24 756.25 810.27 864.29 918.31 972.33 1,026.34 1,080.36 7.50% 7.713 777.86 842.68 907.50 972.33 1,037.15 1,101.97 1,166.79 1,231.61 1,296.43 8.75% 6.612 907.50 983.13 1,058.75 1,134.38 1,210.01 1,285.63 1,361.26 1,436.88 1,512.51

10.00% 5.785 1,037.15 1,123.58 1,210.01 1,296.43 1,382.86 1,469.29 1,555.72 1,642.15 1,728.58 11.25% 5.142 1,166.79 1,264.02 1,361.26 1,458.49 1,555.72 1,652.95 1,750.19 1,847.42 1,944.65 12.50% 4.628 1,296.43 1,404.47 1,512.51 1,620.54 1,728.58 1,836.62 1,944.65 2,052.69 2,160.72

Indonesian Insolation

This map shows worst case average solar hours per day for this region. This is a preliminary planning document. Detailed engineering analysis of terrain at the proposed installation determines the actual output and area required. Terrain orientation and cloud conditions for example, can impact areas required.

Liquid Fuels Production (Barrels per Day)

Oil/Coal Coal MT/mosbbls/tonne 60,000 65,000 70,000 75,000 80,000 85,000 90,000 95,000 100,000

5.8 11,433.26 12,386.04 13,338.81 14,291.58 15,244.35 16,197.13 17,149.90 18,102.67 19,055.44 5.9 11,630.39 12,599.59 13,568.79 14,537.99 15,507.19 16,476.39 17,445.59 18,414.78 19,383.98 6.0 11,827.52 12,813.14 13,798.77 14,784.39 15,770.02 16,755.65 17,741.27 18,726.90 19,712.53 6.1 12,024.64 13,026.69 14,028.75 15,030.80 16,032.85 17,034.91 18,036.96 19,039.01 20,041.07 6.2 12,221.77 13,240.25 14,258.73 15,277.21 16,295.69 17,314.17 18,332.65 19,351.13 20,369.61 6.3 12,418.89 13,453.80 14,488.71 15,523.61 16,558.52 17,593.43 18,628.34 19,663.24 20,698.15 6.4 12,616.02 13,667.35 14,718.69 15,770.02 16,821.36 17,872.69 18,924.02 19,975.36 21,026.69

The volume of liquid fuels produced by a tonne of coal varies according to coal quality and the nature of the liquid fuel produced.

Page 158 of 159

Page 159: Sugico Mok Plan 3

Facility Value Item LOW HIGH Units

Liquid Fuel 11,430 21,025 bbls/dayCoal 1,874 3,447 MT/dayFacility Cost 251.46$ 462.55$ millionsLabor 631 1,162 people

Sales/yr 292.24$ 537.56$ millionsLabor/yr 3.77$ 6.94$ millionsCoal/yr 30.80$ 56.65$ millionsMaintenance 12.57$ 23.13$ millionsCapital Cost 26.57$ 48.88$ millionsMargin 218.52$ 401.96$ millions

Value $1,229.79 $2,262.15 millions

This facility will produce between 11,000 and 21,000 barrels of liquid fuels per day. The cost of this facility will be approximately $250 million to $463 million depending upon the amount of coal handled, coal yield, and solar insolation. It will produce between $218 million to $402 million per year in pre-tax profits. This translates to an enterprise value of between $1.2 billion and $2.2 billion. The value of liquid fuels produced is valued at $70 per barrel. Labor estimates range from 630 to 1,200 people depending on facility size. Labor cost per person is assumed to be $5,970 per year (4,000,000 IDR/month x 14 pays /9,379 IDR/$). Coal is valued at $45 per MT at these volumes. Maintenance costs are typical for coal processing facilities. Capital cost assumes an 8.5% discount rate over 20 years. Present value assumes a 20 year period of operation and a 17.0% per year discount rate.

Investment Program Item LOW HIGH Units

Value 1,229.79$ 2,262.16$ millionsValue of 33% 405.83$ 746.51$ millionsCost of 33% 62.87$ 115.64$ millionsTime 5 5 yearsAnnual Return 45.2% 45.2%

Raising 25% of the facility cost by selling 33% of the enterprise provides a 45.2% annual rate of return, assuming that the facility takes 5 years to complete. The funds raised will be used to organize the needed land, supply contracts, government approvals, labor, pay non-recurring engineering costs, provide needed equity for project loans and provide for other early stage costs. Once the facility is operational, enterprise shares can be listed on a public exchange and sold for many times the value computed here, providing even higher returns for early investors.

Page 159 of 159