structure 3

Upload: razman-bijan

Post on 01-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Structure 3

    1/35

    1

    Chapter 3:

     The Structure of Crystalline Solids

    ISSUES TO ADDRESS...

    • How do atoms assemble into solid structures?

      (for now, focus on metals)

    • How does the density of a material depend on

      its structure?

    • When do material properties vary with the

      sample (i.e., part) orientation?

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    2/35

    !

    Materials and Packing

    • atoms pac& in periodic, ' arraysCrystalline materials...

    $metals

    $many ceramics

    $some polymers

    • atoms have no periodic pac&in%

    Noncrystalline materials...

    $comple structures$rapid coolin%

    crystalline *i+!

    noncrystalline *i+!Amorphous - oncrystalline

    Si   Oxygen

    • typical of/

    • occurs for/

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    3/35

    0hapter ' $

    Crystal Systems'

      crystal systems

    12 crystal lattices

    3nit cell/  smallest repetitive volume whichcontains the complete lattice pattern of a crystal.

    a, b, and c  are the lattice constants

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    4/35

    0hapter ' $

    Crystal Systems2

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    5/35

    "

    Metallic Crystal Structures

    • 4end to be densely pac&ed.• 5easons for dense pac&in%/

    $ 4ypically, only one element is present, so all atomic

      radii are the same.

    $ Metallic bondin% is not directional.$ earest nei%hbor distances tend to be small in

      order to lower bond ener%y.

    $ lectron cloud shields cores from each other.

    • Have the simplest crystal structures.

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    6/35

    6

    Simple Cubic Structure (SC)• 5are due to low pac&in% density (only 7o has this structure)

    • 0lose$pac&ed directions are cube ed%es.

    • 0oordination 8 - 6

      (8 nearest nei%hbors)

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    7/35

    Atomic Packing actor (AP)

    • 97: for a simple cubic structure - #."!

     97: -a'

    2

    'π (#."a) '1

    atoms

    unit cellatom

    volume

    unit cell

    volume

     97: -;olume of atoms in unit cell<

    ;olume of unit cell

  • 8/9/2019 Structure 3

    8/35

    =

    !ody Centered Cubic Structure (!CC)

    • 0oordination 8 - =

    • 9toms touch each other alon% cube dia%onals.$$ote/ 9ll atoms are identical the center atom is shaded

     

    e/ 0r, W, :e (α), 4antalum, Molybdenum

    ! atoms>unit cell/ 1 center @ = corners 1>=

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    9/35

    A

    Atomic Packing actor: !CC

    a

     97: -

    2

    'π ( 'a>2)'!

    atoms

    unit cell atom

    volume

    a'

    unit cell

    volume

    len%th - 2R  -

    0lose$pac&ed directions/

    ' a

    • 97: for a body$centered cubic structure - #.6=

    aR 

    a2

    a3

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    10/35

    1#

    ace Centered Cubic Structure (CC)

    • 0oordination 8 - 1!

    • 9toms touch each other alon% face dia%onals.$$ote/ 9ll atoms are identical the face$centered atoms are shaded

    e/ 9l, 0u, 9u, 7b, i, 7t, 9%

    2 atoms>unit cell/ 6 face 1>! @ = corners 1>=

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    11/35

    11

    Atomic Packing actor: CC• 97: for a face$centered cubic structure - #.2

    maimum achievable 97:

     97: -

    2

    'π ( !a>2)'2

    atoms

    unit cell atomvolume

    a'

    unit cell

    volume

    0lose$pac&ed directions/

    len%th - 2R  - ! a 

    3nit cell contains/  6  1>! @ =  1>=

    - 2 atoms>unit cella

    ! a

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    12/35

    0hapter ' $

    1!

     9 sites

    B B

    B

    BB

    B B

    0 sites

    0 0

    0 9

    B

    B sites

    • 9B09B0... *tac&in% *eCuence

    • ! 7roDection

    • :00 3nit 0ell

    :00 *tac&in% *eCuence

    B B

    B

    BB

    B B

    B sites

    0 0

    0 9

    0 0

    0 9

    A

    BC

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    13/35

    1'

    "e#agonal Close$Packed Structure ("CP)

    • 0oordination 8 - 1!

    • 9B9B... *tac&in% *eCuence

    • 97: - #.2

    • ' 7roDection • ! 7roDection

    6 atoms>unit cell

    e/ 0d, M%, 4i, En• c >a - 1.6''

    a

     9 sites

    B sites

     9 sites Bottom layer 

    Middle layer 

    4op layer 

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    14/35

    0hapter ' $

    Theoretical %ensity& ρ12

    where n - number of atoms>unit cell

       A - atomic wei%ht

    V C  - ;olume of unit cell - a' for cubic

      N  9 - 9vo%adroFs number  

    - 6.#!' 1#!' atoms>mol

    ensity - ρ  -

    V C  N  9

    n  Aρ  -

    0ell3nitof ;olume4otal

    0ell3nitin 9tomsof Mass

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    15/35

    0hapter ' $

    Theoretical %ensity& ρ1"

    '#: Cr (!CC) A  *+,, g-mol 

     R  ,+.* nm 

    n  *

    ρtheoretical

    a - 2R > ' - #.!== nm

    ρactual

    aR

    ρ -a'

    "!.##!

    atoms

    unit cell mol

    %

    unit cell

    volume atomsmol

    6.#!'  1#!'

    - .1= %>cm'

    - .1A %>cm'

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    16/35

    0hapter ' $

    %ensities of Material Classes16ρmetals

    Gρceramics

    Gρpolymers

    Why?

          ρ

       (  %   >  c  m 

       )   '

    raphite>0eramics>

    *emiconductor 

    Metals> 9lloys

    0omposites>fibers

    7olymers

    1

    !

    !#

    '#

  • 8/9/2019 Structure 3

    17/35

    1

    Crystals as !uilding !locks

    • Some en%ineerin% applications reCuire sin%le crystals/

    • 7roperties of crystalline materials

    often related to crystal structure.

    $$/ uartN fractures more easily

    alon% some crystal planes thanothers.

    $$diamond sin%le

      crystals for abrasives

     $$turbine blades

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    18/35

    1=

    Polycrystals• Most  en%ineerin% materials are polycrystals.

    • b$Hf$W plate with an electron beam weld.

    • ach %rain is a sin%le crystal.• Lf %rains are randomly oriented,  overall component properties are not directional.

    • rain siNes typically ran%e from 1 nm to ! cm

      (i.e., from a few to millions of atomic layers).

    1 mm

    Lsotropic

     9nisotropic

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    19/35

    1A

    Single /s Polycrystals• *in%le 0rystals

    $7roperties vary with  direction/ anisotropic.

    $ample/ the modulus

      of elasticity () in B00 iron/

    • 7olycrystals

    $7roperties may>may not

      vary with direction.

    $Lf %rains are randomly

      oriented/ isotropic.  (poly iron - !1# 7a)

    $Lf %rains are tetured,

      anisotropic.

    !## µm

    (dia%onal) - !' 7a

    (ed%e) - 1!" 7a

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    20/35

    0hapter ' $

    Polymorphism!#

    T0o or more distinct crystal structures for the samematerial (allotropy-polymorphism) 

    titanium

      α& β$Ti

      carbon

    diamond& graphite

    B00

    :00

    B00

    1"'=O0

    1'A2O0

     A1!O0

     -:e

    γ-:e

      -:e

    liCuid

    iron system

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    21/35

    0hapter ' $

    Point Coordinates!1

    Point coordinates for unit cellcenter are

    a-*& b-*& c-* 1 1 1

    Point coordinates for unit cellcorner are ...

    Translation: integer multiple oflattice constants  identicalposition in another unit cell

     x 

    a   b

    c

    ###

    111

    2c

    b

    b

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    22/35

    0hapter ' $

    Crystallographic %irections!!

    1. ;ector repositioned (if necessary) to pass

    throu%h ori%in.

    !. 5ead off proDections in terms of

    unit cell dimensions a, b, and c 

    '. 9dDust to smallest inte%er values

    2. nclose in sCuare brac&ets, no commas

    Puvw Q

    e/ 1, #, R -G !, #, 1 -G P !#1 Q

    $1, 1, 1

     x 

     9l%orithm

    where overbar represents a

    ne%ative inde

    P 111 Q-G

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    23/35

    0hapter ' $

    Crystallographic Planes!"

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    24/35

    0hapter ' $

    Crystallographic Planes!6

    Miller 2ndices: eciprocals of the (three) a#ialintercepts for a plane& cleared of fractions 4common multiples+ All parallel planes ha/esame Miller indices+

     Algorithm.+ ead off intercepts of plane 0ith a#es in

    terms of a& b& c

    *+ Take reciprocals of intercepts3+ educe to smallest integer /alues5+ 'nclose in parentheses& no

    commas i+e+& (hkl ) 

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    25/35

    0hapter ' $

    Crystallographic Planes!

     x 

    y a b

    2. Miller Lndices (11#)

    eample a  b  c z 

     x 

    y a b

    2. Miller Lndices (!##)

    1. Lntercepts 1 1 ∞!. 5eciprocals 1>1 1>1 1>∞

    1 1 #'. 5eduction 1 1 #

    1. Lntercepts 1>! ∞  ∞!. 5eciprocals 1>R 1>∞  1>∞

    ! # #'. 5eduction ! # #

    eample a  b  c 

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    26/35

    0hapter ' $

    Crystallographic Planes!=

     x 

    y a b

    c •

      •

    2. Miller Lndices (6'2)

    eample1. Lntercepts 1>! 1 '>2

    a b c 

    !. 5eciprocals 1>R 1>1 1>S

    ! 1 2>'

    '. 5eduction 6 ' 2

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    27/35

    0hapter ' $

    6inear %ensity '#

    6inear %ensity of Atoms≡

     6%

    e/ linear density of 9l in P11#Q

    direction

    a - #.2#" nm

    a

    P11#Q

    3nit len%th of direction vector 

    umber of atoms

    8 atoms

    len%th

    1'." nma!

    !K   −==

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    28/35

    0hapter ' $

    Crystallographic Planes'1

     7e 0ant to e#amine the atomic packing ofcrystallographic planes

    2ron foil can be used as a catalyst+ Theatomic packing of the e#posed planes is

    important+a) %ra0 (.,,) and (...) crystallographic planes

    for e+

     b) Calculate the planar density for each of theseplanes+

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    29/35

    0hapter ' $

    Planar %ensity of (.,,) 2ron'!Solution: At T 8 9.*°C iron has the !CC structure+

    (1##)

    5adius of iron R  - #.1!21 nm

    R '

    '2a =

     9dapted from :i%. '.!(c), Callister 7e.

    ! repeat unit

    -7lanar ensity - a!

    1

    atoms

    ! repeat unit

    -nm!

    atoms1!.1

    m!atoms

    - 1.! 1#1A 1

    !

    R '

    '2area

    ! repeat unit

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    30/35

    0hapter ' $

    Planar %ensity of (...) 2ron

    ''Solution (cont): (...) plane 1 atom in plane> unit surface cell

    '''

    !

    !

    R '

    16R 

    '

    2!a'ah!area   =÷÷

     

      

     ===

    atoms in plane

    atoms above plane

    atoms below plane

    ah23=

    a2

        !     (

         r   e    p   e   a    t     u    n     i    t

    1

    - -nm!

    atoms.#

    m!atoms

    #.# 1#1A

    ' !R '

    167lanar ensity - 

    atoms

    ! repeat unit

    area

    ! repeat unit

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    31/35

    0hapter ' $

    $ay %iffraction'2

    %iffraction gratings must ha/e spacings comparable tothe 0a/elength of diffracted radiation+

    Can;t resol/e spacings

  • 8/9/2019 Structure 3

    32/35

    0hapter ' $

    $ays to %etermine Crystal Structure'"

    T$rayintensity(fromdetector)

    θ

    θc

    d  =n λ

    ! sinθc

    Measurement ofcritical an%le, θc,allows computation of

    planar spacin%, d .

    • Lncomin% T$rays diffract from crystal planes.

     9dapted from :i%. '.1A,

    Callister 7e.

    reflections mustbe in phase fora detectable si%nal

    spacin%betweenplanes

    i   n  c  o  m  i   n   %  

     

    T   $ r  a   y  s  

      o  u  t  % 

      o   i  n  % 

        T $  r  a

      y  s

    d   e  t   e  c  t   o  r  

    θλ

    θetra

    distancetravelledby wave U!V

    U   1  V   U   !  V   

       U  1   V

       U  !   V

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    33/35

    0hapter ' $

    $ay %iffraction Pattern'6

    (11#)

    (!##)

    (!11)

     x 

    y a   b

    c

    iffraction an%le !θ

    iffraction pattern for polycrystalline α$iron (B00)

       L  n   t  e  n  s   i   t  y   (  r

      e   l  a   t   i  v  e   )

     x 

    y a   b

    c

     x 

    y a b

    MM !"#1 $ n%ineerin% Materials

  • 8/9/2019 Structure 3

    34/35

    '

    S

  • 8/9/2019 Structure 3

    35/35

    '=

    S