structural analysis and ultimate limit state

108
Institute of Structural Design Universität Stuttgart Prof. Dr.-Ing. U. Kuhlmann Prof. Dr.-Ing. Ulrike Kuhlmann Institute of Structural Design Universität Stuttgart Germany Design of composite beams according to Eurocode 4-1-1 Lecture: Ultimate Limit States

Upload: lythuy

Post on 10-Feb-2017

227 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Prof. Dr.-Ing. Ulrike Kuhlmann

Institute of Structural DesignUniversität Stuttgart

Germany

Design of composite beams

according to Eurocode 4-1-1

Lecture:

Ultimate Limit States

Page 2: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

A short introduction

Prof. Dr.-Ing. Ulrike Kuhlmann

Universität StuttgartInstitute of Structural DesignMain Fields: Steel, Timber and Composite StructuresPfaffenwaldring 770569 StuttgartGermany

Phone +49 711 685 66245fax +49 711 685 66236Email [email protected]

http://www.uni-stuttgart.de/ke/

Page 3: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Contents

1 - SCOPE

2 - SPECIFIC CHARACTERISTICS OF STRUCTURAL ANALYSIS

3 - METHODS OF GLOBAL ANALYSIS

4 - VERIFICATION FOR BENDING AND SHEAR FOR ULS

5 - SHEAR CONNECTION

Design of composite beams according to Eurocode 4-1-1

Page 4: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Part 1:

SCOPE

Car park, Messe Stuttgart

Page 5: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Definitions according EN 1994-1-1 [§1.5.2]

COMPOSITE MEMBERa structural member with components of concrete and of structural or cold-formed steel, interconnected by shear connection so as to limit the longitudinal slip between concrete and steel and the separation of one component from the other

SHEAR CONNECTIONan interconnection between the concrete and steel components of a composite member that has sufficient strength and stiffness to enable the two components to be designed as parts of a single structural member

COMPOSITE BEAMa composite member subjected mainly to bending

1 Scope

Page 6: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

composite behaviour no composite behaviour

acting as one section

composite beam steel beam with concrete slab

COMPOSITE BEHAVIOUR

acting as two individual sections

ε ε

1 Scope

Page 7: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

TYPICAL COMPOSITE BEAMS

Seite 4 von Hanswille einfügen

1 Scope

[Source: Hanswille]

Page 8: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Materials according EN 1994-1-1 [§ 3]

CONCRETE

REINFORCEMENT

STRUCTURAL STEEL

> C 20/25; LC 20/25

< C 60/75; LC 60/75

Acc. EN 1992-1-1 § 3.2

strength: 400 N/mm2 ≤ fy,k ≤ 600 N/mm2

ductility: 1,05 ≤ (ft/fy)k ≤ 1,35

fy ≤ 460 N/mm2

CONNECTING DEVICESHeaded stud shear connector acc. EN 13918

structural steel

connecting devices

reinforcement

concrete

1 Scope

Page 9: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Part 2:

SPECIFIC CHARACTERISTICS

OF STRUCTURAL ANALYSIS

source:[ESDEP]

Page 10: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

2 Specific characteristics of structural analysis

• Non-linear material behaviour

• Influence of erection and load history

• Influence of creep and shrinkage

• Influence of composite interaction

Characteristics

source:[ESDEP]

Page 11: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Non-linear material behaviour

q1

w1 w2 w3 w4

q2

q3

q4

q

w

w w

ϕ

M-pl,Rd

Cross-section

at supportin span

2 Specific characteristics of structural analysis

M+pl,Rd

Page 12: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Non-linear material behaviour

q1

w1 w2 w3 w4

q2

q3

q4

q

w

w w

ϕ

M-pl,Rd

Cross-section

at supportin span

2 Specific characteristics of structural analysis

q1 – first cracking (concrete slab) at support

M+pl,Rd

Page 13: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Non-linear material behaviour

q1

w1 w2 w3 w4

q2

q3

q4

q

w

w w

ϕ

M-pl,Rd

Cross-section

at supportin span

2 Specific characteristics of structural analysis

q2 – first yielding (steel section) at support

M+pl,Rd

Page 14: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Non-linear material behaviour

q1

w1 w2 w3 w4

q2

q3

q4

q

w

w w

ϕ

M-pl,Rd

Cross-section

at supportin span

2 Specific characteristics of structural analysis

q3 – first plastic hinge M-pl.Rd at support

M+pl,Rd

Page 15: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Non-linear material behaviour

q1

w1 w2 w3 w4

q2

q3

q4

q

w

w w

ϕ

Cross-section

at supportin span

M-pl,Rd

2 Specific characteristics of structural analysis

q4 – last plastic hinge M+pl.Rd in span

M+pl,Rd

Page 16: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

M+pl,Rd

M+pl,Rd

M-pl,Rd

M-pl,Rd

Cross-section in span

Cross-section at support

2 Specific characteristics of structural analysis

Non-linear material behaviour

+

-αcfcd

fyd

fyd

fyd

fsd

++

-

q1

q2

q3

q4

q MM

κ

Page 17: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

High efficiency of plastic hinge theory due to difference of plastic bending moment in span and at support - requires rotation capacity of section with first plastic hinge (at support)

2 Specific characteristics of structural analysis

0,2 0,4 0,6 0,8 1,0

2,0

4,0

6,0

8,0

10,0

12,0

q4 = qpl

q3

Δq

ql2q =

Mpl,span

Mpl,span

Mpl,supportηpl =

load level q3

load level q4= qpl

Mpl,support

Mpl,support

Mpl,span

l l

qNon-linear material behaviour

Page 18: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

2 Specific characteristics of structural analysis

Non-linear material behaviour

[Source: Hanswille]

Page 19: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

[Source: Hanswille]

Non-linear material behaviour

2 Specific characteristics of structural analysis

Page 20: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

[Source: Hanswille]

Classes 1 and 2

2 Specific characteristics of structural analysis

Non-linear material behaviour

Page 21: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

2 Specific characteristics of structural analysis

Non-linear material behaviour

[Source: Hanswille]

Class 3

Page 22: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

[Source: Hanswille]

Classification with partial concrete encasement

2 Specific characteristics of structural analysis

Non-linear material behaviour

Page 23: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Reinforcement in tension flanges

2 Specific characteristics of structural analysis

Non-linear material behaviour

[Source: Hanswille]

Page 24: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Influence of erection and load history

Example: Bridge Arminiusstraße in Dortmund

- erection steel structure

3 spansR = 900 m

2 Specific characteristics of structural analysis

Page 25: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Raising at inner supportsExample:Bridge Arminiusstraße in Dortmund

- raising at inner supports- scaffolding hanging at steel structure- concreting and hardening of concrete- lowering at inner supports- finalizing (pavement etc.)- traffic opening

Influence of erection and load history

2 Specific characteristics of structural analysis

Page 26: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

[Source: Hanswille]

2 Specific characteristics of structural analysis

Influence of erection and load history

Page 27: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

A

B

C

unpropped construction

propped construction

propped construction + jacking of props

2 Specific characteristics of structural analysis

[Source: Hanswille]

Influence of erection and load history

Page 28: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

The bending capacity Mpl,Rd is independent of the loading history in case of Class 1 or Class 2 cross sections

Using Class 3 or Class 4 cross sections the elastic behaviour of the loading history has to be taken into account in ULS

[Source: Hanswille]

2 Specific characteristics of structural analysis

Influence of erection and load history

Page 29: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Influence of creep and shrinkage

2 Specific characteristics of structural analysis

The effects of shrinkage and creep of concrete result in internal forces in cross sections, and curvatures and longitudinal strains in members

[Source: Hanswille]

Page 30: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

2 Specific characteristics of structural analysis

Due to creep and shrinkage:

For statically determinate structures: only external deformations

For Class 1 and 2 sections bending capacity independent of creep and shrinkage

For Class 3 and 4 sections creep and shrinkage has to be considered

[Source: Hanswille]

Influence of creep and shrinkage

Page 31: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

[Source: Hanswille]

2 Specific characteristics of structural analysis

In statically indeterminate structures the primary effects of shrinkage and creep are associated with additional action effects, such that the total effects are compatible;

These shall be classified as secondary effects and shall be considered as indirect actions in any case

Influence of creep and shrinkage

Page 32: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Influence of composite interaction

[Source: Hanswille]

2 Specific characteristics of structural analysis

MRd MEd

MR

Mpl,Rd

Mpl,a,Rd

ηi 1,0 Ncf

Ncη =

A

B

CA

B

C

Ncf normal force in the concrete slab

due to Mpl,Rd

ε σ

Nc=0

η...degree of shear connections

Page 33: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

2 Specific characteristics of structural analysis

MRd MEd

MR

Mpl,Rd

Mpl,a,Rd

ηi 1,0 Ncf

Ncη=

A

B

CA

B

C

Ncf normal force in the concrete slab

due to Mpl,Rd

e σ

Nc=0

η = 0

0 < η < 1

η = 1

no shear connection acting as 2 independent sections

full shear connection acting as one section without slip full plastic resistance Mpl,Rd

partial shear connection acting as one section with slip at interfacebending resistance depending on shear connection

Influence of composite interaction

Page 34: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Part 3:

METHODS OF GLOBAL ANALYSIS

Bridge crossing Mosel at Bernkastel-Kues

Page 35: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

• Structural stability

• Calculation of action effects

based on elastic theory

• Rigid plastic analysis

• Stresses based on elastic theory

3 Methods of global analysis

Bridge crossing Mosel at Bernkastel-Kues

Page 36: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

General case

• Portal frames w/ shallow roofslopes

• Beam-and-column type plane frames

undeformedgeometry

10≥=αEd

crcr F

F

deformed geometry

10≥⎟⎟⎠

⎞⎜⎜⎝

δ⎟⎟⎠

⎞⎜⎜⎝

⎛=α

Ed,HEd

Edcr

hVH

n

5.2.1(3)

y

n

3 alternatives of verification

5.2.1(4)B

y

Structural stability

3 Methods of global analysis

Page 37: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

3 alternatives of verification

Global second-order analysis + individual stability check of

membersEquivalent column method

EN 1994-1-1 5.2.2 (3)EN 1994-1-1 6.7.3.6 / 7

EN 1994-1-1 5.2.2 (6) b) and 5.2.2 (6) c)

Only for steel columns:EN 1993-1-1 5.2.2 (3) c)

5.2.2 (8)

Second-order analysisof whole system

3 Methods of global analysis

Structural stability

Page 38: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Second-order analysisof whole system

accounting forglobal and localimperfections

φ0

w0

w0

3 alternatives of verification

3 Methods of global analysis

Structural stability

Page 39: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

including global imperfections

Individual stability check of members acc. to EN 1994-1-1

6.7.3.4 or 6.7.3.5

Buckling length = system length

Global second-order analysis + individual stability check of

members

3 alternatives of verification

3 Methods of global analysis

Structural stability

Page 40: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Equivalent column method

neither global nor localimperfections

Equivalent columnmethod for member acc. EN 1993-1-1 6.3.1/2/3

Buckling length by global eigenvalue determination

3 alternatives of verification

3 Methods of global analysis

Structural stability

Page 41: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Second-order analysisof whole system

accounting forglobal and localimperfections

including global imperfections

Individual stability check of members acc. to EN1994-1-1

6.7.3.4 or 6.7.3.5

Buckling length = member length

Global second-order analysis + individual stability check of

membersEquivalent column method

neither global nor localimperfections

Buckling length by global eigenvalue determination

3 alternatives of verification

Equivalent columnmethod for member acc. EN 1993-1-1 6.3.1/2/3

3 Methods of global analysis

Structural stability

Page 42: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Calculation of action effects based on elastic theory

3 Methods of global analysis

[Source: Hanswille]

Page 43: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

3 Methods of global analysis

Calculation of action effects based on elastic theory - General method

[Source: Hanswille]

Page 44: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

[Source: Hanswille]

3 Methods of global analysis

Calculation of action effects based on elastic theory

Page 45: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

3 Methods of global analysis

Calculation of action effects based on elastic theory

[Source: Hanswille]

Page 46: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Relation Classification - method of global analysis - resistance

3 Methods of global analysis

[Source: Hanswille]

Page 47: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Rigid plastic analysis

[Source: Hanswille]

3 Methods of global analysis

Rigid plastic global analysis may be used for ultimate limit state verifications other than fatigue, where second-order effects do not have to be considered and provided that all the members and joints of the frame are steel or composite, the steel material satisfies ductility requirements EN 1993-1-1, the cross-sections of steel members have sufficient rotation capacity and the joints are able to sustain their plastic resistance moments for a sufficient rotation capacity.

Page 48: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

3 Methods of global analysis

Μpl,Rd

+

-zpl

h

L

Fd

qd

> 0,5zpl

h≤ 0,15 if

Fd

Fd + qd L

Le Li

Lmax Lmin

Limitation of span ratio:

exterior span: Le < 1,15 Li

interior span: Lmax/Lmin ≤ 1,50

Beam with single load and rotation requirements at span:

Rigid plastic analysis

Page 49: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Where rigid-plastic global analysis is used, at each plastic hinge location:

a) the cross-section of the structural steel section shall be symmetrical about a plane parallel to the plane of the web or webs,

b) the proportions and restraints of steel components shall be such that lateral-torsional buckling does not occur,

c) lateral restraint to the compression flange shall be provided a tall hinge locations at which plastic rotation may occur under any load case,

d) the rotation capacity shall be sufficient, when account is taken of any axial compression in the member or joint, to enable the required hinge rotation to develop and

e) where rotation requirements are not calculated, all members containing plastic hinges shall have effective cross-sections of Class 1 at plastic hinge locations.

3 Methods of global analysis

Rigid plastic analysis

Page 50: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

For composite beams in buildings, the rotation capacity may be assumed to be sufficient where:

a) the grade of structural steel does not exceed S355,

b) the contribution of any reinforced concrete encasement in compression is neglected when calculating the design resistance moment,

c) all effective cross-sections at plastic hinge locations are in Class1; and all other effective cross-sections are in Class1 or Class2,

d) each beam-to-column joint has been shown to have sufficient design rotation capacity, or to have a design resistance moment at least 1,2 times the design plastic resistance moment of the connected beam,

e) adjacent spans do not differ in length by more than 50% of the shorter span,

f) end spans do not exceed 115% of the length of the adjacent span,

g) in any span in which more than half of the total design load for that span is concentrated within a length of one-fifth of the span, then at any hinge location where the concrete slab is in compression, not more than 15% of the overall depth of the member should be in compression; this does not apply where it can be shown that the hinge will be the last to form in that span,

h) the steel compression flange at a plastic hinge location is laterally restrained.

3 Methods of global analysis

Rigid plastic analysis

Page 51: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Stresses based on elastic theory

3 Methods of global analysis

[Source: Hanswille]

Page 52: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Stresses based on elastic theory

Modular ratios taking into account effects of creep

3 Methods of global analysis

[Source: Hanswille]

Page 53: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Part 4:

VERIFICATION FOR BENDING AND SHEAR

FOR ULTIMATE LIMITE STATE

Page 54: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

4 Verification for bending and shear for ULS

• General

• Resistance of class 1 and 2 sections

• Resistance of class 3 and 4 sections

• Lateral torsional buckling

Page 55: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

General - Basis of design

4 Verification for bending and shear for ULS

Rd=Mpl,Rd

Ed ≤ Rd

Ultimate limitstate:

Ed ≤ Cd

Serviceabilitliylimit state:

[Source: Hanswille]

Page 56: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

4 Verification for bending and shear for ULS

Partial safety factor for concrete γC according to EN 1992-1-1 e.g. γC = 1.5

Partial safety factor for reinforcement steelγS according to EN 1992-1-1 e.g. γS= 1.15

Partial safety factor for structural steelγΜa according to EN 1993-1-1 e.g. γM0 = 1.0

General - Basis of design

[Source: Hanswille]

Page 57: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

4 Verification for bending and shear for ULS

General - Required verifications for composite beams

[Source: Hanswille]

Page 58: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

4 Verification for bending and shear for ULS

General - Required verifications for composite beams

[Source: Hanswille]

Page 59: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

4 Verification for bending and shear for ULS

General – Critical cross section

[Source: Hanswille]

Page 60: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

4 Verification for bending and shear for ULS

General – Non-linear bending resistance

[Source: Hanswille]

Page 61: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

4 Verification for bending and shear for ULS

Classification girders

[Source: Hanswille]

Page 62: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Resistance of class 1 and 2 sections - classification

4 Verification for bending and shear for ULS

[Source: Hanswille]

Page 63: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Reduction of plastic bending resistance

4 Verification for bending and shear for ULS

[Source: Hanswille]

Page 64: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

4 Verification for bending and shear for ULS

Resistance of class 1 and 2 sections

[Source: Hanswille]

0,5 1,0

Page 65: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Resistance of class 1 and 2 sections - Full and partial shear connection

4 Verification for bending and shear for ULS

[Source: Hanswille]

Page 66: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Resistance of class 1 and 2 sections - Partial shear connection - general

4 Verification for bending and shear for ULS

[Source: Hanswille]

design resistance of studs

Page 67: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Resistance of class 1 and 2 sections Partial shear connection – determination of moment resistance

4 Verification for bending and shear for ULS

[Source: Hanswille]

Page 68: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Resistance of class 3 and 4 sections - class 3

4 Verification for bending and shear for ULS

[Source: Hanswille]

Page 69: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

4 Verification for bending and shear for ULS

Resistance of class 3 and 4 sections - class 4

[Source: Hanswille]

Page 70: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Resistance of class 3 and 4 sections Resistance to vertical shear

4 Verification for bending and shear for ULS

[Source: Hanswille]

Page 71: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

4 Verification for bending and shear for ULS

Resistance of class 3 and 4 sections Resistance to vertical shear

[Source: Hanswille]

Page 72: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Lateral torsional buckling

4 Verification for bending and shear for ULS

[Source: Hanswille]

Page 73: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Lateral torsional buckling – elastic critical bending moment

4 Verification for bending and shear for ULS

[Source: Hanswille]

Page 74: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Lateral torsional buckling – without direct calculation

4 Verification for bending and shear for ULS

[Source: Hanswille]

Page 75: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Part 5:

SHEAR CONNECTION

Page 76: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

• Longitudinal shear forces• Determination of longitudinal shear forces• Full and partial shear connection• Requirements for shear connectors

• Headed studs• Head studs as shear connector• Horizontally lying studs• Headed studs used with profiled steel sheeting

• Longitudinal shear forces in concrete slab Part 5:

SHEAR CONNECTION

5 Shear connection

Page 77: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Part 5:

SHEAR CONNECTION

• Longitudinal shear forces• Determination of longitudinal shear forces• Full and partial shear connection• Requirements for shear connectors

• Headed studs• Head studs as shear connector• Horizontally lying studs• Headed studs used with profiled steel sheeting

• Longitudinal shear forces in concrete slab

5 Shear connection

Page 78: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Longitudinal shear forces

5 Shear connection

[Source: Hanswille]

Page 79: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Determination of longitudinal shear forces - by simplified method for Nc

5 Shear connection

[Source: Hanswille]

Page 80: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Determination of longitudinal shear forces - general

5 Shear connection

[Source: Hanswille]

Page 81: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Partial shear connection – determination of longitudinal shear forces

5 Shear connection

[Source: Hanswille]

Page 82: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

M

Requirements for shear connection – uniformly distribution

qd

5 Shear connection

[Source: Hanswille]

Page 83: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Requirements for shear connection – minimum degree

5 Shear connection

[Source: Hanswille]

Page 84: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Requirements for shear connection – ductility

5 Shear connection

[Source: Hanswille]

Page 85: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Part 5:

SHEAR CONNECTION

• Longitudinal shear forces• Determination of longitudinal shear forces• Full and partial shear connection• Requirements for shear connectors

• Headed studs• Head studs as shear connector• Horizontally lying studs• Headed studs used with profiled steel sheeting

• Longitudinal shear forces in concrete slab

5 Shear connection

Page 86: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Headed studs

5 Shear connection

[Source: Hanswille]

Page 87: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Headed studs – typical load-slip behaviour

Pw … flashPZ … stud inclinationPB … stud bendingPR … frictionflash

5 Shear connection

Page 88: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Headed studs – design shear resistance

[Source: EC4-1

& Hanswille]

d diameter of stud shank 16 ≤ d ≤ 25mmfu specified ultimate tensile strength of the stud

material fu ≤ 500 N/mm²fck cylinder strength of concreteEcm secant modulus of elasticity of concretea =0.2 [(h/d)+1] for 3 ≤ h/d ≤ 4

=1.0 for h/d > 4γV =1.5 partial safety factor concrete failure

=1.25 partial safety factor steel failure

.

.

5 Shear connection

Page 89: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Headed studs – detailing

.

.

.

5 Shear connection

[Source: Hanswille]

Page 90: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Headed studs – uplift forces

5 Shear connection

[Source: Hanswille]

Page 91: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Horizontally lying studs – examples

cast-in-place concrete

prefabricatedconcrete slab

5 Shear connection

Page 92: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Horizontally lying studs – examples

5 Shear connection

[Source: Hanswille]

Page 93: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Longitudinal sheardue to beam bending

Vertical sheardue to vertical beam support

Edge position Middle position

Horizontally lying studs – failure modes and position

Concrete edgefailure

Splittingfailure

Vertical shear

Longitudinal shear

5 Shear connection

Page 94: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

[Source: EN1994-2]

Horizontally lying studs – load resistance for longitudinal shear

middle position edge positionsection A-A

( ) ( )v

..'rckv

L,Rds/aadfk.P

γ

304041

=

a‘r effective edge distancea‘r = ar – cv - ∅s/2 ≥ 50 mm

kv factor for position of shear connectionkv = 1 edge positionkv = 1.4 middle position

γv partial factor 1.25

d … diameter of the stud shank 19 ≤ d ≤ 25 mmh … overall height of the stud h/d ≥ 4s … spacing of stirrups a/2 ≤ s ≤ a

s/a‘r ≤ 3∅s… diameter of stirrups ∅s ≥ 8 mm∅l… diameter of longitudinal reinforment ∅l ≥ 10 mm

L,Rdd P.T 30=stirrups

5 Shear connection

Page 95: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

[Source: EN1994-2]

Horizontally lying studs – load resistance for vertical shear

middle position edge positionsection A-A

( ) ( ) ( ) ( )v

v.'

o,r...

ckV,Rd

kas/adf.P

γ

703040500120=

a … spacing of studs110 ≤ a ≤ 440 mm

h … overall height of the studh ≥ 100 mm

∅s… diameter of stirrups∅s ≥ 12 mm

∅l… diameter of longitudinal reinforment∅l ≥ 16 mm

∅l ∅s

12121

≤⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟

⎟⎠

⎞⎜⎜⎝

⎛.

V,Rd

V,d.

L,Rd

L,d

PF

PF

Interaction:

5 Shear connection

Page 96: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Headed studs used with profiled steel sheeting

5 Shear connection

[Source: Hanswille]

Page 97: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Headed studs used with profiled steel sheeting – load-slip behaviour

5 Shear connection

[Source: Hanswille]

Page 98: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Headed studs used with profiled steel sheeting – load resistance

.

.

.

.

.

.

.

.

.

5 Shear connection

[Source: Hanswille]

Page 99: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Part 5:

SHEAR CONNECTION

• Longitudinal shear forces• Determination of longitudinal shear forces• Full and partial shear connection• Requirements for shear connectors

• Headed studs• Head studs as shear connector• Horizontally lying studs• Headed studs used with profiled steel sheeting

• Longitudinal shear forces in concrete slab

5 Shear connection

Page 100: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Longitudinal shear forces in concrete slab - determination

Slab in compression

Slab in tension

5 Shear connection

[Source: Hanswille]

Page 101: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Longitudinal shear forces in concrete slab – strut-and-tie model

5 Shear connection

[Source: Hanswille]

Page 102: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Longitudinal shear forces in concrete slab – shear plane

section a-a: Acv= hc av

section b-b, c-c, d-d: Acv = Lv av

with Lv = Lb-b, Lc-c, Ld-d

section

5 Shear connection

[Source: Hanswille]

Page 103: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Innovative composite bridge structures

6 Conclusion

Bridge Nesenbachtal, Stuttgart

Page 104: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Nesenbachtal − Result of a design competition

6 Conclusion

Page 105: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Acknowledgement

and many thanks to

My co-workersDipl.-Ing. Gunter HaufDipl.-Ing. Matthias KonradDipl.-Ing. Ana OžboltDipl.-Ing. Lars RölleDipl.-Ing. Markus Rybinskifor their support

Prof. Dr.-Ing. Gerhard Hanswille

for allowanceto base on his ppt - presentationprepared for lectures in Riga in 2006

6 Conclusion

Page 106: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Thank you very much

for your kind attention !

6 Conclusion

Page 107: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Literature

Bode, H.: Euro-Verbundbau, Konstruktion und Berechnung, publisher Werner Verlag, Düsseldorf, 1998

Deutsches Institut für Bautechnik: Slim-Floor Träger mit UPE-Profilen, Allgemeine bauaufsichtliche ZulassungNr. Z-26.2-48, Technical Approval, 2005.

DIN 18800-5: Steel structures – Part 5: Composite structures of steel and concrete – Design and Construction, German Standard, 2006.

DIN EN 1994-1-1: Design of composite steel and concrete structures: General rules and rules for buildings, European Standard, 2002

Hanswille, G., Schäfer, M., Verbundtragwerke aus Stahl und Beton, Bemessung und Konstruktion - Kommentar zu DIN V 188000 Teil 5 Ausgabe November 2004, Stahlbaukalender 2005, editor Ulrike Kuhlmann, publisher Verlag Ernst & Sohn, Berlin

Hanswille G.: The new German design code for composite bridges,Engineering Foundation Conferences Composite Construction V, South Africa, Juli 2004

Hanswille G., Bergmann R.: New design methods for composite columns including high strength steel,Engineering Foundation Conferences Composite Construction V, South Africa, Juli 2004

Hanswille G., Piel W.: Composite shear head systems for improved punshing shear resistance of flat slabs,Engineering Foundation Conferences Composite Construction V, South Africa, Juli 2004

Hanswille G., Porsch M.: Load introduction in composite columns with concrete filled hollow sections,Engineering Foundation Conferences Composite Construction V, South Africa, Juli 2004

Roik, K., Bergmann, R., Haensel, J., Hanswille, G. Verbundkonstruktionen: Bemessung auf der Grundlage des Eurocode 4 Teil 1, Betonkalender 1993, publisher Verlag Ernst & Sohn, Berlin

Page 108: Structural analysis and ultimate limit state

Institute of Structural DesignUniversität Stuttgart Prof. Dr.-Ing. U. Kuhlmann

Literature

Breuninger, U.; Kuhlmann, U.: Tragverhalten und Tragfähigkeit liegender Kopfbolzendübel unterLängsschubbeanspruchung, Stahlbau 70, p. 835-845, 2001.

Breuninger, U.: Zum Tragverhalten liegender Kopfbolzendübel unter Längsschubbeanspruchung, PhD-Thesis, Universität Stuttgart, Mitteilung Nr. 2000-1, 2000.

Kuhlmann, U.; Breuninger, U.: Behaviour of horizontally lying studs with longitudinal shear force, In: Hajjar, J.F., Hosain, M., Easterling, W.S. and Shahrooz, B.M. (eds), Composite Construction in Steel and Concrete IV, American Society of Civil Engineers, p.438-449, 2002.

Kuhlmann, U.; Kürschner, K.: Structural behaviour of horizontally lying shear studs, In: Leon, R.T. and Lange, J. (eds), Composite Construction in Steel and Concrete V, American Society of Civil Engineers, p.534-543, 2006.

Kuhlmann, U.; Rieg, A.; Hauf, G.; Effective Width Of Composite Girders With Reduced Height, Prof. Aribert - Symposium, July2006, Institut National des Sciences Appliquées (Rennes), France, 2006.

Kürschner, K.; Kuhlmann, U.: Trag- und Ermüdungsverhalten liegender Kopfbolzendübel unter Quer- und Längsschub, Stahlbau 73, p.505-516, 2004.

Kürschner, K.: Trag- und Ermüdungsverhalten liegender Kopfbolzendübel im Verbundbau, PhD-Thesis, Universität Stuttgart, Mitteilung Nr. 2003-4, 2003.

Raichle, J.: Fatigue behaviour and application of horizontally lying shear studs, In: 6th International PhD Symposium in Civil Engineering, Zurich, Switzerland, 2006.

Rybinski, M.: Structural behaviour of steel to concrete joints on basis of the component method, In: 6th International PhD Symposium in Civil Engineering, Zurich, Switzerland, 2006.