static and dynamic characteristics of signal -...

34
Static and Dynamic Characteristics of Signal 2141-375 Measurement and Instrumentation

Upload: duongliem

Post on 02-Jul-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Static and Dynamic Characteristics of Signal

2141-375 Measurement and Instrumentation

Page 2: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Input-Output Signal Concepts

Engineering tasks in the measurement of physical vari ables(1) Selection of a measurement system(2) Interpreting the output from a measurement system.

Static signal: rangeTime-varying signal: magnitude and the rate of chang e of a variable

Selection of Measurement system based on input sign al range

Page 3: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Signal Classification• Signal : the physical information about a measured variabl e

Sig

nal

Time

Sig

nal

Time

Continuous time, continuous valueDefine for each instant of time and its amplitude may vary continuously with time and assume any value

• Analog signal

Discrete time, continuous valueDefine at discrete instants of time and its amplitude may vary continuously with time and assume any value

• Discrete time signal

Page 4: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Signal Classification

Discrete time, discrete valueDefine at discrete instants of time and its amplitude may assume discrete value

• Digital signal

Time

Sig

nal

Page 5: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Signal Classification: waveform

•Static signal: does not vary in time (or change very slowly).

•Dynamic signal: is defined as a time-dependent signal

•Deterministic signal: varies in time in a predictable manner.

•Periodic signal: the variation of magnitude of the signal repeats at regular intervals

•Non-Periodic signal: does not repeat at regular interval.

•Non-Deterministic signal: cannot be prescribed before it occurs.

Page 6: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

signal

Static Dynamic

Determinitic Non-Determinitic

Periodic Non-Periodic

Signal Classification: waveform

Page 7: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Periodic Signal

Mathematic of periodic signal 3,2,1for ),()( =+= nnTtxtx

Where T is the period of the signal x(t)

t (sec)

0

1

2

-1

-20 0.2 0.4 0.6 0.8 1.0 1.2 1.4

x(t)

t (sec)

0.5

1.0

1.5

0

-0.50 0.2 0.4 0.6 0.8 1.0 1.2 1.4

x(t)

t (sec)

0.5

1.0

1.5

0

-0.50 0.2 0.4 0.6 0.8 1.0 1.2 1.4

x(t)

t (sec)

0

1

2

-1

-20 0.2 0.4 0.6 0.8 1.0 1.2 1.4

x(t)

Page 8: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

)sin()( φω += tAtx

0

1

2

-1

-20 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t (sec)

Generic sinusoidal signal:

Where A is the amplitude, ω ω ω ω is the radian frequency and φφφφ is the phase

φφφφ = 0

φφφφ = ππππ/3

Sinusoidal Signal

Page 9: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Signal Analysis

• Average or mean value during t 2 – t1

∫≡

2

1

2

1

)(t

t

t

t

dt

dttyy

0t1 t2

t

y

Mean value

0t1 t2

t

y

Average value(dc offset)

Amplitude of theac component

• root-mean-square value during t 2 – t1

∫−≡

2

1

2

12

)(1 t

trms dttytt

y

∑=

=N

iiy

Ny

1

1

∑=

=N

iirms y

Ny

1

21

Analog

Analog

Discrete or digital

Discrete or digital

Page 10: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

RMS: Root-Mean-Square

RMS is a measure of a signal’s average power. Insta ntaneous power delivered to a resistor is P= [v(t)]2/R.

[ ] ( )R

Vdttv

TRP rms

Tt

tavg

220

0

)(11

=

= ∫+

[ ]∫+

=Tt

trms dttvT

V0

0

2)(1

An AC voltage with a given RMS value has the same h eating (power) effect as an DC voltage with the same value.

All the following voltage waveforms have the same R MS value, and should indicate 1 V ac on an rms meter

Waveform Sine Triangle Square DCVpeak 1.414 1.733 1 1Vrms 1 1 1 1

Page 11: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

0 0.01 0.02 0.03 0.04t HsecL

0

0.5

1

1.5

2

2.5

3

xHtLH

tloV

LSignal Analysis

Ex Given a voltage signal as follows, the ac component has the frequency of 50 Hz, determine the average and rms values of signa l that will be indicated by the meter when (a) S1 is open and (b) S1 is closed

Known signal characteristics

Find average and rms values

T=20 ms

Averageor True

rmsmeter

C

S1

x(t)

Page 12: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

System

Signal are always associated with one or more syste ms. A system transforms the input into an output of the system.

SystemInput Output

x(t) y(t)ℑℑℑℑ

Input Output

x(t) y(t)

Block diagram of a system

ℑℑℑℑ is an mathematical operator

Linear, time invariant (LTI) system

LTISystem

Input Output

x(t) y(t)

A linear system is one which is both homogeneous (s cale) and additive

Page 13: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

System

SystemInput Output

mx(t) my(t)

Homogeneous system

A homogeneous system is one which a scaled input pr oduces an equally scaled output.

An additive system is one for which

SystemInput Output

x1(t) y1(t)

SystemInput Output

x2(t) y2(t)System

Input Output

x1(t) + x2(t) y1(t) + y2(t)

Page 14: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

System

A time invariant system is one for which a delay in the application of the input signal results in the same delay in the output.

SystemInput Output

x1(t) y1(t)

SystemInput Output

x1(t-ττττ) y1(t-ττττ)

Page 15: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Time and Frequency Domain

A signal in frequency domain shows “How much” of a s ignal is associated with a certain frequency.

0 500 1000 1500 2000FrequencyHHzL

0

0.5

1

1.5

2

edutilpm

A

0 0.001 0.002 0.003 0.004tHsecL

-2

-1

0

1

2

xHtL

Time and frequency domain representation of the sig nal.

)2000sin(2)( ttx π=

Page 16: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

0 200 400 600 800 1000FrequencyHHzL

0

0.5

1

1.5

2

edutilpm

A

Comparing signals in the time and frequency domain

)1000cos()600sin(21)( tttx ππ ++=

0 0.005 0.01 0.015 0.02tHsecL

-2

-1

0

1

2

3

4

xHtL

Time and Frequency Domain

Page 17: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Fourier Series of Complex Periodic Signal

Where the fundamental frequency

( )∑∞

=

++=1

000 sincos)(n

nn tnBtnAAty ωω

T

πω

20 =

Fourier series for y(t):

A0, An, Bn are constants that depend on y(t) and n

∫−

=2/

2/

0 )(1 T

T

dttyT

A

,...3,2,1 ;cos)(2 2/

2/

0 == ∫−

ntdtntyT

AT

T

n ω ,...3,2,1 ;sin)(2 2/

2/

0 == ∫−

ntdtntyT

BT

T

n ω

y(t)

t

T

Page 18: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Useful Trigonometric Relations

( ) ( )

( ) ( )

( ) ( )

( ) ( )ABBABA

BABABA

BABABA

BABABA

−+=−

−+=+

−+=−

−+=+

2

1sin

2

1sin2coscos

2

1cos

2

1cos2coscos

2

1sin

2

1cos2sinsin

2

1cos

2

1sin2sinsin

( ) ( )[ ]

( ) ( )[ ]

( ) ( )[ ]BABABA

BABABA

BABABA

++−=

++−=

+−−=

sinsin2

1cossin

coscos2

1coscos

coscos2

1sinsin

( )( ) BABABA

BABABA

sinsincoscoscos

sincoscossinsin

m=±

±=±

Page 19: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Useful Trigonometric Relations

Orthogonal principles

02cos2sin1

01

2/1

0

2cos2cos1

00

2/1

0

2sin2sin1

0

0

0

=

==

=

=

==

=

=

dtT

tn

T

tm

T

nm

nm

nm

dtT

tn

T

tm

T

nm

nm

nm

dtT

tn

T

tm

T

T

T

T

ππ

ππ

ππ

Page 20: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Fourier Series of Periodic Signal

A function f(t) is even if it is symmetric about the vertical axis

)()( tftf −=

A function f(t) is odd if it is symmetric about the origin

)()( tftf −−=

Cosine is even function and Sine is odd function

Fourier Cosine Series ( )∑∞

=

+=1

00 cos)(n

n tnAAty ω

Fourier Sine Series ( )∑∞

=

+=1

00 sin)(n

n tnBAty ω

Page 21: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Fourier Series of Periodic Signal

Ex Determine the Fourier series that represents the fu nction as shown below

... 10

10sin

5

4

10

6sin

3

4

10

2sin

4)( +++= tttty

ππ

ππ

ππ

Known T = 10 and A 0 = 0 (Symmetrical)

Find Fourier coefficient An and Bn

∑∞

=

=1

2sin)(

nn T

tnBty

π

Solution Since the function is odd, the Fourier series will contain only sine terms

The resulting Fourier Series is then

-6 -4 -2 0 2 4 6tHsecL

-1

-0.5

0

0.5

1

yHtL

number odd ;4

== nn

Bn π

Page 22: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Fourier Series of Periodic Signal

-6 -4 -2 0 2 4 6tHsecL

-1

-0.5

0

0.5

1

yHtL

-6 -4 -2 0 2 4 6tHsecL

-1

-0.5

0

0.5

1

yHtL

-6 -4 -2 0 2 4 6tHsecL

-1

-0.5

0

0.5

1

yHtL

-6 -4 -2 0 2 4 6tHsecL

-1

-0.5

0

0.5

1

yHtL

10

10sin

5

4

10

6sin

3

4

10

2sin

4)( tttty

ππ

ππ

ππ

++=

tty10

2sin

4)(

ππ

= ttty10

6sin

3

4

10

2sin

4)(

ππ

ππ

+=

10

14sin

7

4

10

10sin

5

4

10

6sin

3

4

10

2sin

4)( ttttty

ππ

ππ

ππ

ππ

+++=

Page 23: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Fourier Series of Periodic Signal

-6 -4 -2 0 2 4 6tHsecL

-1

-0.5

0

0.5

1

yHtL

0 0.5 1 1.5 2Frequency HHzL

0

0.2

0.4

0.6

0.8

1

1.2

edutilpm

A

0 5 10 15 20n

0

0.2

0.4

0.6

0.8

1

1.2

edutilpm

Aro

nB

Page 24: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Fourier Series of Periodic Signal

Ex find the frequency content of the output voltage fr om a full-wave rectifier, If the ac input signal is given by

Known The full-wave signal can be expressed

Find The frequency content of this signal

Solution Since the function is even, the Fourier series will contain only cos terms

ttE π120sin120)( =

tty π120sin120)( =

Page 25: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Fourier Series of Periodic Signal

tnn

tyn

602cos1

41201202)(

ππ ∑ −+

×=

∑∞

=

+=1

0

2cos)(

nn T

tnAAty

π

The resulting Fourier Series is then

π1202

0

×=A

numbereven ;1

2

1

2120=

+

+−

−= n

nnAn π

numbereven =n

Page 26: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

f(t)

tTT/20

1

-1

-T/2-T

<<−

<<=

02

1-

201

)(t

T

T t

tf

number odd 2

sin14

)(1

=

= ∑∞

=

ntT

n

ntf

n

ππ

f(t)

tTT/20

1

-T/2-T

<<−−

<<==

02

22

02

2)(

tT

tT

T t t

TtT

tf

number odd 2

cos14

2

1)(

122

=

−= ∑∞

=

ntT

n

ntf

n

ππ

f(t)

TT/20

1

-T/2-Tt

<<−−

<<==

02

2sin

20

2sin2

sin)(t

Tt

T

T t t

TtT

tf π

ππ

( ) numbereven 2

cos1

142)(

22

=

−+= ∑

=

ntT

n

ntf

n

πππ

Page 27: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

number odd 2

cossin2

2

1)(

1

=

+= ∑∞

=

ntT

n

n

ntf

n

πππ

f(t)

tTT/20

1

-T/2-T

<<−

<<=

02

0

20

2sin

)(t

T

T t t

Ttf

π

( )numbereven

2

cos1

122sin

2

11)(

22

=

−++= ∑

=

n

tT

n

nt

Ttf

n

ππ

ππ

f(t)

tTT/20

1

-T/2-T

f(t)

TT/20

1

-T/2-Tt

<<−

<<=

02

0

201

)(t

T

T t

tf

<<−<<−

<<−=

24 and

420

441

)(T

tTT

tT

T t

T

tf

number odd 2

sin12

2

1)(

1

=

+= ∑∞

=

ntT

n

ntf

n

ππ

Page 28: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Fourier Transform of Complex Signal

Definition of Fourier Transform of y(t)

dtetyfY fti π2 )()( −∞

∞−∫=

Definition of Inverse Fourier Transform of Y(f)

dfefYty fti π2 )()( ∫∞

∞−=

The Fourier transform is a mathematical function th at transforms a signal from the time domain, y(t) to the frequency domain, Y(f).

)(ty )( fYℑ

Time Domain Frequency Domain

Page 29: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Fourier Transform

Ex Determine the Fourier transform, consider the one-s ided exponential signal.

Find Fourier Transform of x(t)

Solution

Known x(t) = e-7tu(t)

∫∞ −−=ℑ=

0

27)]([)( dteetxfX ftjt π

fjetu t

π27

1])([ 7

+=ℑ −

)()( 7 tuetx t−=

Page 30: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Impulse Function: Review

<<−

=elsewhere0;

2/2/;/1)(

εεεδε

tt

1)( =∫+∞

∞−

dttεδ

The function may be considered as a rectangular pul se of width εεεε and height 1/ εεεε. In the limit εεεε →→→→ 0, the height increase in such a way that the are a is 1

Which implies

tεεεε/2−ε−ε−ε−ε/2

1111////εεεε

δδδδ(t)

Visualization symbol

t

1111

δδδδ(t)

)()( lim0

tt εε

δδ→

=

This leads to the definition

Unit impulse function or Dirac delta function

Page 31: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Impulse Function: Review

dfett ttfj∫+∞

∞−

−=− )(20

0)( πδ

)()()( 00 tfdttttf =−∫+∞

∞−

δ

=∞

=−elsewhere0;

;)( 0

0

ttttδ

t

δδδδ(t)

t0

δδδδ(t-t0)

dfet ftj∫+∞

∞−

= πδ 2)(

Shifting of function by t 0

dteff tffj∫+∞

∞−

−−=− )(20

0)( πδ

dtef ftj∫+∞

∞−

−= πδ 2)(

1)( 2 =∫+∞

∞−

− dtet ftj πδ

Page 32: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Discrete Fourier Transform

Discrete Fourier Transform (DFT) of yr

∑=

−=N

r

Nrkik etry

NfY

1

/2)(2

)( πδ 2,...,2,1

Nk =

)( tryyr δ= Nr ,...,2,1=

where fkfk δ= and N

f

tNf s==

δδ

1

Page 33: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Example: Estimate the amplitude spectrum or frequency content of the discrete data taken from y(t) = 10 sin 2ππππt using a time increment of 0.125 s for the duration of 1 s.

Known: δδδδt = 0.125 s or fs = 8 Hz

Solution:

Discrete Fourier Transform

Page 34: Static and Dynamic Characteristics of Signal - Chulapioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/signalN.pdf · Input-Output Signal Concepts Engineering tasks in the measurement

Discrete Data Set for y(t) = 10 sin2ππππt

Discrete Fourier Transform

r y(r δt )1 7.0712 10.0003 7.0714 0.0005 -7.0716 -10.0007 -7.0718 0.000

0 1 2 3 4Frequency HHzL

0

5

10

15

20

edutilpm

AHV

L

k f k (Hz) Y (f k ) |Y (f k )|

1 1 -10i 102 2 0 03 3 0 04 4 0 0

Discrete Fourier Transform of y(t)

Hz 18

8===

N

ff sδ

Hz kfkfk == δ