staehle controls exam 1 review

2
CHE 06405: Process Dynamics and Control Exam #1: Practice Exam Problem A pure liquid evaporator that generates vapor at the mass flow rate Fout by using a steamheated heat exchanger coil to vaporize a liquid stream (temperature Tin) flowing in at mass flow rate Fin, is a classic example of how mass and energy interact in process systems. If T is the temperature of the liquid in the vessel, typical material and energy balances yield nonlinear mathematical model equations which, when linearized around the nominal operating values T * ,T * in,F * in, and F * out (as you will learn to do in a few weeks), produce the following approximate transfer function model: (1) where the deviation variables y and u are defined as follows: y=Fout –F * out (2) u=Fin –F * in (3) and θ is the normalized “nominal temperature load” defined by (4) The indicated parameters are related to the process physics at the nominal operating conditions around which the modeling equations have been linearized. Specifically, τ1 is the effective (material) residence time in the vessel; τ2 is the effective thermal time constant; τ3 is the vessel thermal capacity relative to that of the steam coil; β is a dimensionless constant related to the pressure in the vessel. 1. What is the steady state gain for this process? Discuss succinctly why this value makes sense from the physics of the problem. 2. For a process with specific parameter values τ1 = 2.5 min; τ2 = 1.25 min; τ3 = 5 min; and θ = 0.5, sketch the system response to a unit step increase in inlet flow rate for the following three values of the dimensionless parameter β: 32, 8, and 2. y ( s) = τ 3 θs + 1 τ 1 τ 3 β & ' ( ) * + s 2 + τ 1 τ 3 τ 2 β & ' ( ) * + s + 1 u( s) θ = T * T in * T *

Upload: john-mckenna

Post on 08-Dec-2015

224 views

Category:

Documents


5 download

DESCRIPTION

Controls process dynamics course study guide for first exam. Rowan University.

TRANSCRIPT

Page 1: Staehle Controls Exam 1 Review

CHE  06405:  Process  Dynamics  and  Control    

Exam  #1:  Practice  Exam  Problem    

A  pure  liquid  evaporator  that  generates  vapor  at  the  mass  flow  rate  Fout  by  using  a  steam-­‐heated  heat  exchanger  coil  to  vaporize  a  liquid  stream  (temperature  Tin)  flowing  in  at  mass  flow  rate  Fin,  is  a  classic  example  of  how  mass  and  energy  interact  in  process  systems.    If  T  is  the  temperature  of  the  liquid  in  the  vessel,  typical  material  and  energy  balances  yield  nonlinear  mathematical  model  equations  which,  when  linearized  around  the  nominal  operating  values  T*,  T*in,  F*in,  and  F*out  (as  you  will  learn  to  do  in  a  few  weeks),  produce  the  following  approximate  transfer  function  model:              

(1)    

where  the  deviation  variables  y  and  u  are  defined  as  follows:         y  =  Fout  –  F*out                              (2)       u  =  Fin  –  F*in                              (3)    and  θ  is  the  normalized  “nominal  temperature  load”  defined  by                                      (4)      The  indicated  parameters  are  related  to  the  process  physics  at  the  nominal  operating  conditions  around  which  the  modeling  equations  have  been  linearized.    Specifically,  τ1  is  the  effective  (material)  residence  time  in  the  vessel;  τ2  is  the  effective  thermal  time  constant;  τ3  is  the  vessel  thermal  capacity  relative  to  that  of  the  steam  coil;  β  is  a  dimensionless  constant  related  to  the  pressure  in  the  vessel.    

1. What  is  the  steady  state  gain  for  this  process?    Discuss  succinctly  why  this  value  makes  sense  from  the  physics  of  the  problem.  

2. For  a  process  with  specific  parameter  values  τ1  =  2.5  min;  τ2  =  1.25  min;  τ3  =  5  min;  and  θ  =  0.5,  sketch  the  system  response  to  a  unit  step  increase  in  inlet  flow  rate  for  the  following  three  values  of  the  dimensionless  parameter  β:  32,  8,  and  2.  

y(s) =−τ3θs+1

τ1τ3β

&

' (

)

* + s2 +

τ1τ3τ2β

&

' (

)

* + s+1

u(s)

θ =T* −Tin

*

T*

Page 2: Staehle Controls Exam 1 Review

3. On  the  other  hand,  it  can  be  shown  that,  under  some  special  conditions,  the  linearized  model  for  a  multi-­‐phase  separator  (where  the  liquid  mixture  contains  more  than  one  component)  is  given  by:    

   

(5)    where,  in  terms  of  deviations  from  their  respective  nominal  steady  state  values,  y  is  the  bottom  concentration  of  light  material;  u  is  the  feed  flow  rate.    The  parameters  τC  and  τT  are,  respectively,  the  “concentration”  and  “thermal”  time  constants,  while  K  is  a  process  parameter  interaction  between  mass  and  energy.      Derive  an  expression  for  the  response,  y(t)  to  a  unit  step  change.    Sketch  this  response,  showing  all  aspects  that  you  consider  to  be  important  and  characteristic  of  this  response.  

y(s) =Ks

(τCs+1)(τT s+1)u(s)