submission doc.: ieee 802.11-11/0166r0january 2011 barbara staehle, uni würzburgslide 1barbara...

31
January 201 1 Barbar a Stae hle, U Slide 1 Submission doc.: IEEE 802.11-11/0166r0 Barbara Staehle, Uni Würz Slide 1 Barbara Staehle, Uni Wür Motivation for Extending the 802.11 Intra-Mesh Congestion Notification Element Date: 2011-01-19 N am e A ffiliations A ddress Phone em ail Barbara Staehle U niversity of Würzburg Institute ofCS Chairof Com m unication N etw orks Am Hubland 97074 W ürzburg bstaehle etinform atik dod uni-w uerzburg dod de Dirk Staehle U niversity of Würzburg Institute ofCS Chairof Com m unication N etw orks Am Hubland 97074 W ürzburg dstaehle etinform atik dod uni-w uerzburg dod de M ichaelBahr Siem ensA G Corporate Technology O tto-H ahn-Ring 6 80200 M ünchen bahretsiem ensdod com Authors:

Upload: ryan-loxley

Post on 01-Apr-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 1Submission

doc.: IEEE 802.11-11/0166r0

Barbara Staehle, Uni WürzburgSlide 1 Barbara Staehle, Uni Würzburg

Motivation for Extending the 802.11 Intra-Mesh Congestion Notification Element

Date: 2011-01-19

Name Affiliations Address Phone email Barbara Staehle University of

Würzburg Institute of CS Chair of Communication Networks

Am Hubland 97074 Würzburg

bstaehle et informatik dod uni-wuerzburg dod de

Dirk Staehle University of Würzburg Institute of CS Chair of Communication Networks

Am Hubland 97074 Würzburg

dstaehle et informatik dod uni-wuerzburg dod de

Michael Bahr Siemens AG Corporate Technology

Otto-Hahn-Ring 6 80200 München

bahr et siemens dod com

Authors:

Page 2: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 2Submission

doc.: IEEE 802.11-11/0166r0January 2011

Barbara Staehle, Uni WürzburgSlide 2

January 2011

Barbara Staehle, Uni Würzburg

Abstract

This presentation provides the motivation for the extension of the Congestion Notification element described in IEEE 802.11-10/1429r1 and IEEE 802.11-10/1428r2. It contains results clarifying if, how, and where such an extension allows additional beneficial CC algorithms and performance improvements.

The presentation addresses CID 1314.

Page 3: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 3Submission

doc.: IEEE 802.11-11/0166r0

Simple Experiment

Januar 2011

Barbara Staehle, Uni WürzburgSlide 3

APP

TCP / UDP

IP

Mesh LLC

Mesh MAC

PHY

5 Mb/s down,

1 Mb/s up CBR

UDP

IP

Mesh LLC

RTS/CTS

6, 9, 12, 18, 24, 36, 48, 54 Mb/s

@ 2.4GHz

node configuration

heavy congestion

48 Mbps

54 Mbps

48 Mbps

24 Mbps

12 Mbps

36 Mbps

36 Mbps

18 Mbps

36 Mbps

24 Mbps

1

2

3

4

5

6

7

8

9

10

G1

Mbps

6

9

12

18

24

36

48

54

communication possible

routing path

Page 4: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 4Submission

doc.: IEEE 802.11-11/0166r0

Considered IMCC Algorithms

• TCC (Total Congestion Control)– receivers of Congestion Control Notification Frame (CCNF) stop all

transmissions • LSCC (Link Selective Congestion Control)

– receivers of Congestion Control Notification Frame (CCNF) stop all transmissions to the sender of CCNF

• PSCC (Path Selective Congestion Control)– receivers of Congestion Control Notification Frame (CCNF) stop all

transmissions to the sender of the CCNF that are destined to the destination given in the contained Congestion Notification elements (CNE).

• Congestion Notification elements are indirectly propagated– since receiver of CCNF stops some transmissions, it might become

congested itself– if receiver of CCNF gets congested it will send a CCNF as well.

January 2011

Barbara Staehle, Uni WürzburgSlide 4

Page 5: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 5Submission

doc.: IEEE 802.11-11/0166r0December 2010

Barbara Staehle, Uni Würzburg

Congestion Situation A

Link selective congestion control is helpful in the situation depicted below: C is not able to forward packets from mesh STA B fast enough over link (C,D) and consequently sends a Congestion Notification element to mesh STA B. This causes B to apply local rate control as specified in 11C.11 in order to avoid a waste of mesh resources. In turn, B can not forward the packets from A fast enough and will send a Congestion Notification element to mesh STA A. Despite the congestion detected at mesh STA B, E is still allowed to send packets to mesh STA B, as there is no congestion for link (B,A).

Page 6: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 6Submission

doc.: IEEE 802.11-11/0166r0December 2010

Barbara Staehle, Uni Würzburg

Congestion Situation B

The Congestion Notification element described in 7.3.2.99 of D7.0 does, however, NOT support a path selective congestion control which would be necessary to avoid the waste of mesh resources in the situation depicted below. Due to the same reasons as before, B has to use the Congestion Notification element to cause A to apply local rate control as specified in 11C.11 in order to avoid a waste of mesh resources. However, B could still forward packets from mesh STA A to mesh STA E. In order to avoid an unnecessary throughput reduction by the congestion control, the Congestion Notification element has to indicate that A should apply rate control only to packets destined for D and not for packets with mesh destination E. This was not possible in D7.0 but is possible with the extension of the format of the Congestion Notification element in D8.0

Page 7: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 7Submission

doc.: IEEE 802.11-11/0166r0December 2010

Barbara Staehle, Uni Würzburg

Congestion Notification element extension of D8.0

• Extend the format of the Congestion Notification element with the mesh destination in order to indicate which path causes the congestion.

• “The Destination Mesh STA Address field is represented as a 48-bit MAC address and is set to the address of the mesh destination for which the intra-mesh congestion control shall be applied. It is set to the broadcast address if the intra-mesh congestion control shall be applied to all destinations.” (i.e. broadcast address = functionality as in D7.0)

• multiple Congestion Notification elements in a single Congestion Control Notification frame

• additions to 11C.11.2 Congestion Control Signalling Protocol to accommodate extension

• full proposed normative text in 11-10/1428r2

Element ID

Length Destination Mesh STA Address

Congestion Notification Expiration Timer (AC_BK)

Congestion Notification Expiration Timer (AC_BE)

Congestion Notification Expiration Timer (AC_VI)

Congestion Notification Expiration Timer (AC_VO)

Octets: 1 1 6 2 2 2 2

Figure 7-95o135—Congestion Notification element format

Page 8: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 9Submission

doc.: IEEE 802.11-11/0166r0

YES, BUT NOT ALWAYS…Does this extension provide improvements?

January 2011

Barbara Staehle, Uni WürzburgSlide 9

Page 9: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 10Submission

doc.: IEEE 802.11-11/0166r0

Simple Experiment

Barbara Staehle, Uni WürzburgSlide 10

APP

TCP / UDP

IP

Mesh LLC

Mesh MAC

PHY

5 Mb/s down,

1 Mb/s up CBR

UDP

IP

Mesh LLC

RTS/CTS

6, 9, 12, 18, 24, 36, 48, 54 Mb/s

@ 2.4GHz

node configuration

heavy congestion

48 Mbps

54 Mbps

48 Mbps

24 Mbps

12 Mbps

36 Mbps

36 Mbps

18 Mbps

36 Mbps

24 Mbps

1

2

3

4

5

6

7

8

9

10

G1

Mbps

6

9

12

18

24

36

48

54

communication possible

routing path

Page 10: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 11Submission

doc.: IEEE 802.11-11/0166r0

1u 2u 3u 4u 5u 6u 7u 8u 9u 10u 1d 2d 3d 4d 5d 6d 7d 8d 9d 10d0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[Mb

/s]

no CC

TCC

LSCC

PSCC

Per Flow Throughputs

January 2011

Barbara Staehle, Uni WürzburgSlide 11

downlinkuplink

only feasible with extension

feasible without extension

no Congestion Control

Page 11: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 12Submission

doc.: IEEE 802.11-11/0166r0January 2011

• 40 mesh access points

• 1,2,3,4 mesh portals

Larger Topologies

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

G1

G2

G3

G4

Mb/s

6

9

12

18

24

36

48

54

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

G1

G2

G3

Mb/s

6

9

12

18

24

36

48

54

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

G1

G2

Mb/s

6

9

12

18

24

36

48

54

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

G1

Mb/s

6

9

12

18

24

36

48

54

Page 12: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 13Submission

doc.: IEEE 802.11-11/0166r0

Simulation Setup

• 40 mesh access points, 1,2,3,4 mesh portals, static routing

• 50 x 4 randomly generated network snapshots = station locations

• 3 runs of 30 sec duration per network snapshot

• constant traffic pattern, static routing

small variances for runs in one topology 95% confidence intervals not shown as near to 0

• BUT: variances between the topologies

January 2011

Barbara Staehle, Uni WürzburgSlide 13

300 kb/s down,

100 kb/s up CBR

UDP

IP

Mesh LLC

RTS/CTS

6, 9, 12, 18, 24, 36, 48, 54 Mb/s

@ 2.4GHz

January 2011

Barbara Staehle, Uni Würzburg

node configuration

Page 13: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

Submission

doc.: IEEE 802.11-10/1429r1January 2011January 2011

Barbara Staehle, Uni WürzburgBarbara Staehle, Uni Würzburg

Slide 14

5 10 15 20 25 30 35 40 45 500

2

4

6

8

10

12

14

16

network snapshot

thro

ug

hp

ut [

Mb

p/s

]

4 gateways, throughput, ordered by no CC throughput

no CCTCCLSCCPSCC

January 2011

Barbara Staehle, Uni WürzburgSlide 14

Effects of IMCC on the Total Network Throughput

January 2011

Barbara Staehle, Uni Würzburg

each point = sum of all flow throughputs averaged over 3 runs

Page 14: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

Submission

doc.: IEEE 802.11-10/1429r1January 2011January 2011

Barbara Staehle, Uni WürzburgBarbara Staehle, Uni Würzburg

Slide 15

January 2011

Barbara Staehle, Uni WürzburgSlide 15

Effects of IMCC on the Total Network Throughput

January 2011

Barbara Staehle, Uni Würzburg

5 10 15 20 25 30 35 40 45 500

2

4

6

8

10

12

14

16

network snapshot

thro

ug

hp

ut [

Mb

p/s

]

3 gateways, throughput, ordered by no CC throughput

no CCTCCLSCCPSCC

Page 15: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

Submission

doc.: IEEE 802.11-10/1429r1January 2011January 2011

Barbara Staehle, Uni WürzburgBarbara Staehle, Uni Würzburg

Slide 16

January 2011

Barbara Staehle, Uni WürzburgSlide 16

Effects of IMCC on the Total Network Throughput

January 2011

Barbara Staehle, Uni Würzburg

5 10 15 20 25 30 35 40 45 500

2

4

6

8

10

12

14

16

network snapshot

thro

ug

hp

ut [

Mb

p/s

]

2 gateways, throughput, ordered by no CC throughput

no CCTCCLSCCPSCC

Page 16: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

Submission

doc.: IEEE 802.11-10/1429r1January 2011January 2011

Barbara Staehle, Uni WürzburgBarbara Staehle, Uni Würzburg

Slide 17

January 2011

Barbara Staehle, Uni WürzburgSlide 17

Effects of IMCC on the Total Network Throughput

January 2011

Barbara Staehle, Uni Würzburg

5 10 15 20 25 30 35 40 45 500

2

4

6

8

10

12

14

16

network snapshot

thro

ug

hp

ut [

Mb

p/s

]1 gateway, throughput, ordered by no CC throughput

no CCTCCLSCCPSCC

Page 17: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

Submission

doc.: IEEE 802.11-10/1429r1January 2011January 2011

Barbara Staehle, Uni WürzburgBarbara Staehle, Uni Würzburg

Slide 18

January 2011

Barbara Staehle, Uni WürzburgSlide 18

Effects of IMCC on the Total Network Throughput

January 2011

Barbara Staehle, Uni Würzburg

5 10 15 20 25 30 35 40 45 50-6

-5

-4

-3

-2

-1

0

1

2

network snapshot

thro

ughp

ut d

iffer

ence

to

no C

C [

Mbp

/s]

4 gateways, throughput, ordered by no CC throughput

TCC

LSCCPSCC

Page 18: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

Submission

doc.: IEEE 802.11-10/1429r1January 2011January 2011

Barbara Staehle, Uni WürzburgBarbara Staehle, Uni Würzburg

Slide 19

January 2011

Barbara Staehle, Uni WürzburgSlide 19

Effects of IMCC on the Total Network Throughput

January 2011

Barbara Staehle, Uni Würzburg

5 10 15 20 25 30 35 40 45 50-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

network snapshot

thro

ughp

ut d

iffer

ence

to

no C

C [

Mbp

/s]

3 gateways, throughput, ordered by no CC throughput

TCC

LSCCPSCC

Page 19: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

Submission

doc.: IEEE 802.11-10/1429r1January 2011January 2011

Barbara Staehle, Uni WürzburgBarbara Staehle, Uni Würzburg

Slide 20

January 2011

Barbara Staehle, Uni WürzburgSlide 20

Effects of IMCC on the Total Network Throughput

January 2011

Barbara Staehle, Uni Würzburg

5 10 15 20 25 30 35 40 45 50-7

-6

-5

-4

-3

-2

-1

0

1

2

3

network snapshot

thro

ughp

ut d

iffer

ence

to

no C

C [

Mbp

/s]

2 gateways, throughput, ordered by no CC throughput

TCC

LSCCPSCC

Page 20: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

Submission

doc.: IEEE 802.11-10/1429r1January 2011January 2011

Barbara Staehle, Uni WürzburgBarbara Staehle, Uni Würzburg

Slide 21

January 2011

Barbara Staehle, Uni WürzburgSlide 21

Effects of IMCC on the Total Network Throughput

January 2011

Barbara Staehle, Uni Würzburg

5 10 15 20 25 30 35 40 45 50-4

-3

-2

-1

0

1

2

network snapshot

thro

ughp

ut d

iffer

ence

to

no C

C [

Mbp

/s]

1 gateway, throughput, ordered by no CC throughput

TCC

LSCCPSCC

Page 21: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 22Submission

doc.: IEEE 802.11-11/0166r0

no CC TCC LSCC PSCC0

5

10

15to

tal t

hro

ug

hp

ut [

Mb

/s] 1 gateway

no CC TCC LSCC PSCC0

5

10

15

tota

l th

rou

gh

pu

t [M

b/s

] 2 gateways

no CC TCC LSCC PSCC0

5

10

15

tota

l th

rou

gh

pu

t [M

b/s

] 3 gateways

no CC TCC LSCC PSCC0

5

10

15

tota

l th

rou

gh

pu

t [M

b/s

] 4 gateways

Effects of IMCC on the Total Network Throughput

January 2011

Barbara Staehle, Uni WürzburgSlide 22

each bar = averaged over all topologies + all runs95% confidence intervals

Page 22: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 23Submission

doc.: IEEE 802.11-11/0166r0

Effects of IMCC on the Uplink Throughput

January 2011

Barbara Staehle, Uni WürzburgSlide 23

no CC TCC LSCC PSCC0

1

2

3

4u

plin

k th

rou

gh

pu

t [M

b/s

] 1 gateway

no CC TCC LSCC PSCC0

1

2

3

4

up

link

thro

ug

hp

ut

[Mb

/s] 2 gateways

no CC TCC LSCC PSCC0

1

2

3

4

up

link

thro

ug

hp

ut

[Mb

/s] 3 gateways

no CC TCC LSCC PSCC0

1

2

3

4

up

link

thro

ug

hp

ut

[Mb

/s] 4 gateways

Page 23: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 24Submission

doc.: IEEE 802.11-11/0166r0

Effects of IMCC on the Downlink Throughput

January 2011

Barbara Staehle, Uni WürzburgSlide 24

no CC TCC LSCC PSCC0

5

10d

ow

nlin

k th

rou

gh

pu

t [M

b/s

]

1 gateway

no CC TCC LSCC PSCC0

5

10

do

wn

link

thro

ug

hp

ut

[Mb

/s]

2 gateways

no CC TCC LSCC PSCC0

5

10

do

wn

link

thro

ug

hp

ut

[Mb

/s]

3 gateways

no CC TCC LSCC PSCC0

5

10

do

wn

link

thro

ug

hp

ut

[Mb

/s]

4 gateways

Page 24: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 25Submission

doc.: IEEE 802.11-11/0166r0

Effects of IMCC on the Uplink Fairness

January 2011

Barbara Staehle, Uni WürzburgSlide 25

no CC TCC LSCCPSCC0

0.5

1u

plin

k fa

irn

ess

ind

ex

1 gateway

no CC TCC LSCCPSCC0

0.5

1

up

link

fair

ne

ss in

de

x

2 gateways

no CC TCC LSCCPSCC0

0.5

1

up

link

fair

ne

ss in

de

x

3 gateways

no CC TCC LSCCPSCC0

0.5

1

up

link

fair

ne

ss in

de

x

4 gateways

Page 25: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 26Submission

doc.: IEEE 802.11-11/0166r0

Effects of IMCC on the Downlink Fairness

January 2011

Barbara Staehle, Uni WürzburgSlide 26

no CC TCC LSCCPSCC0

0.5

1d

ow

nlin

k fa

irn

ess

ind

ex 1 gateway

no CC TCC LSCCPSCC0

0.5

1

do

wn

link

fair

ne

ss in

de

x 2 gateways

no CC TCC LSCCPSCC0

0.5

1

do

wn

link

fair

ne

ss in

de

x 3 gateways

no CC TCC LSCCPSCC0

0.5

1

do

wn

link

fair

ne

ss in

de

x 4 gateways

Page 26: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 27Submission

doc.: IEEE 802.11-11/0166r0

Effects of IMCC on the Intra-Mesh Packet Loss

January 2011

Barbara Staehle, Uni WürzburgSlide 27

no CC TCC LSCC PSCC0

2

4

6m

esh

loss

[Mb

/s]

1 gateway

no CC TCC LSCC PSCC0

2

4

6

me

sh lo

ss [M

b/s

]

2 gateways

no CC TCC LSCC PSCC0

2

4

6

me

sh lo

ss [M

b/s

]

3 gateways

no CC TCC LSCC PSCC0

2

4

6

me

sh lo

ss [M

b/s

]

4 gateways

Page 27: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 28Submission

doc.: IEEE 802.11-11/0166r0

Situation-dependent Additional Benefit of PSCC

Large• tree-like traffic

patterns (access networks)

• non-tree routing structures (intra-mesh traffic)

• large networks• heterogeneous traffic

demands

Small• small networks

where every transmission contends with the bottleneck link

January 2011

Barbara Staehle, Uni WürzburgSlide 28

Page 28: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 29Submission

doc.: IEEE 802.11-11/0166r0

Example where PSCC shows no Additional Benefit

January 2011

Barbara Staehle, Uni WürzburgSlide 29

5 Mb/s down,

1 Mb/s up CBR

UDP

IP

Mesh LLC

RTS/CTS

6, 9, 12, 18, 24, 36, 48, 54 Mbps

@ 2.4GHz

node configuration

bottleneck link,

18 Mbps

24 Mbps

18 Mbps

36 Mbps

24 Mbps

1

2

3

4

5

G1

Mb/s

6

9

12

18

24

36

48

54

1u 2u 3u 4u 5u 1d 2d 3d 4d 5d0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[Mb

ps]

no CC

TCC

LSCC

PSCC

Page 29: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 30Submission

doc.: IEEE 802.11-11/0166r0

Summary

• PSCC (based on the extension of the Congestion Notification element) provides improvements about TCC and LSCC in many cases.

• PSCC is always at least as good as TCC and LSCC

• PSCC provides better fairness than TCC and LSCC

• degree of improvement depends on topology and traffic pattern

Page 30: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 31Submission

doc.: IEEE 802.11-11/0166r0

CID 1314

• comment: The congestion control signalling is modified without having enough justification (such as simulation results). The benefit of the proposed method needs to be shown. Otherwise, the newly proposed scheme should be removed.

• commenter‘s proposed resolution: As in comment

• resolution: The modifications of the congestion notification element have been justified by doc 11-11/xxxx. No changes have to be made to the draft.

• resolution code: Reject. (because no changes to draft)

Page 31: Submission doc.: IEEE 802.11-11/0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg

January 2011

Barbara Staehle, Uni Würzburg

Slide 32Submission

doc.: IEEE 802.11-11/0166r0December 2010

Barbara Staehle, Uni Würzburg

References

• Desheng Fu, Barbara Staehle, Rastin Pries, Dirk Staehle, „On the Potential of IEEE 802.11s Intra-Mesh Congestion Control“, MSWiM, October 2010, Bodrum, Turkey

• 11-10/1429r1, B.Staehle, D. Staehle, M. Bahr: Proposed change to 802.11 Intra-Mesh Congestion Notification Element, December 2010

• 11-10/1428r2, M. Bahr, B. Staehle, D. Staehle, D. Harkins: „Destination Address in Congestion Notification“, December 2010

• IEEE 802.11s Draft Standard D7.03

• IEEE 802.11s Draft Standard D8.0