solar photovoltaics & energy systems - epfl · 2018-08-16 · science 342, 341–344 (2013);...

46
Solar Photovoltaics & Energy Systems Lecture 5. Emerging Technologies ChE-600 Wolfgang Tress, March 2018 1

Upload: others

Post on 03-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Solar Photovoltaics & Energy SystemsLecture 5. Emerging Technologies

ChE-600

Wolfgang Tress, March 2018

1

Page 2: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Is there room for further technologies?

2

Page 3: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Is there room for further technologies?

3

Page 4: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Perovskite Solar Cells

4http://cleantechnica.com

Page 5: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

What is Perovskite?

• 1839: perovskite = CaTiO3 discovered

• 1958: CsPbX3 (X = Cl, Br, or I) perovskite structure determined

• 1978 Cs cation replaced by methylammoniumcations CH3NH3

+ organic–inorganic hybrid

perovskites

• Last two decades: perovskite researched in electronics

Møller, C. K. Nature 182, 1436 (1958).

Mitzi, D. B. Synthesis, Structure and Properties of Organic–Inorganic Perovskites and Related Materials: Progress in Inorganic Chemistry Vol. 48 (ed. Karlin, K. D.) 1–121 (J. Wiley & Sons, 1999).

Ishihara, T. Optical properties of PbI-based perovskite structures. Journal of Luminescence 60–61, 269–274 (1994).

5

Weber, D. Z. Naturforsch. 33b, 1443–1445 (1978). Weber, D. Z. Naturforsch. 33b, 862–865 (1978).

Page 6: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

History

1. Perovskite replaces dye

Solution processing route on TiO2

2009 2012 2013 2014 2015

Miyasaka, Park, Graetzel, Snaith, Seok, Bolink …

Fabrication:PbI2 + CH3NH3I

3.5 %6.5 %

12 %15 %

20 %

16 %18 %

6

Page 7: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

The First Solar Cells

• perovskite replaces the molecular sensitizer in dye sensitized solar cell (DSSC)

• unstable (10 minutes operation), dissolves in liquid electrolyte

7

Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

CH3NH3PbI3

CH3NH3PbBr3

3.8 %2009

Structure of dye-sensitized solar cell

Page 8: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

CH3NH3Pb-Halide as Pigment in DSSC

8

Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

CH3NH3PbI36.5 %

2011

• perovskite replaces the molecular sensitizer in dye sensitized solar cell (DSSC)

• unstable (10 minutes operation), dissolves in liquid electrolyte

Page 9: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

History

9

1. Perovskite replaces dye

2. Solid state device

Solution processing route on TiO2

2009 2012 2013 2014 2015

Miyasaka, Park, Graetzel, Snaith, Seok, Bolink …

Fabrication:PbI2 + CH3NH3I

3.5 %6.5 %

12 %15 %

20 %

16 %18 %

3. Sequential deposition

Page 10: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Sequential Deposition

• Better control of crystal morphology and conformal coating

• Tuning of dipping time, concentration, solvent, temperature etc.

• Correlation of perovskite loading, conversion and thickness

Use of a two-step technique to form the hybrid perovskite:

10

Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

PbI2 + CH3NH3I CH3NH3PbI3

Page 11: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Cross Sectional SEM

P

i

nanocomposite

n

11

Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

Page 12: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

sublimation in vacuum

History

12

1. Perovskite replaces dye

2. Solid state device

4. Solvent engineering

5. Composition engineering

Solution processing route on TiO2

2009 2012 2013 2014 2015

Miyasaka, Park, Graetzel, Snaith, Seok, Bolink …

Fabrication:PbI2 + CH3NH3I

3.5 %6.5 %

12 %15 %

20 %

16 %18 %

Co

mp

act

film

s w

ith

larg

e cr

ysta

ls

planar architectures

3. Sequential deposition

Jiyoun Seo

Page 13: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

CH3NH3PbI3: A Good Solar Cell Material

*Stranks, S. D. et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide PerovskiteAbsorber. Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

• High crystallinity• Absorption coefficient of 104 … 105 cm-1

• Band gap of 1.6 eV, valence band edge at -5.4 eV • Ambipolar semiconductor with high charge carrier mobilities*• Wannier excitons with fast dissociation at room temperature, high dielectric

constant• Low defect density, even if solution processed• Characterized in stacks similar to solar cells many intrinsic parameters and

influence of morphology and grain boundaries not extensively quantified

13

Page 14: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Goldschmidt Tolerance Factor

t = 0.89–1.0 cubic structure

t = 0.8-1.0 3 D perovskite

14

ABX3

NATURE PHOTONICS DOI: 10.1038/NPHOTON.2014.134

MA: methylammonium (CH3NH3+)

EA: ethylammonium (CH3CH2NH3+)

FA: formamidinium (NH2CH=NH2+)

Page 15: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Band Gap Engineering

Valence band formed by orbitals from B and X15

http://onlinelibrary.wiley.com/doi/10.1002/smll.201402767/full#smll201402767-fig-0002

Page 16: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Additives as “Crystallization Agents”

16

Gratia, P., Zimmermann, I., Schouwink, P., Yum, J.-H., Audinot, J.-N., Sivula, K., Wirtz, T. & Nazeeruddin, M. K. The Many Faces of Mixed Ion Perovskites: Unraveling and Understanding the Crystallization Process. ACS Energy Lett. 2, 2686–2693 (2017).

“black phase”(Desired)

“yellow phase”(weak absorber)

Page 17: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Entropic Stabilization

17

“black phases”perovskite(Desired)

“yellow phase”(weak absorber)

CsPbI3 δ-phaseFAPbI3 δ-phase

FAPbI3 and CsPbI3: δ-phase energetically favorable

Mixing FA and Cs entropy favors a mixed phaseFAxCs1-xPbI3 perovskite phase energetically favorable

Yi, C., Luo, J., Meloni, S., Boziki, A., Ashari-Astani, N., Grätzel, C., Zakeeruddin, S. M., Röthlisberger, U. & Grätzel, M. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016).

Page 18: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Certification

18

PCE of 21 %> 1.1 V

19.5 % on 1 cm2

Page 19: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Luminescence and Open-Circuit Voltage

• If there is absorption, there will be emission.

• The solar cell in the dark is in thermal equilibrium with its surroundings,

meaning that it absorbs and thus emits:

𝑎 𝐸 𝛷BB 𝑇 = 300K, 𝐸

Emission spectrum can be predicted from absorption

19

absorber Black body emitter at 300 K

Page 20: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

0 0.2 0.4 0.60

1

2

3

4

x 1023

energy /eV

photo

n flu

x / m

-2 s

-1

Black body radiation at T = 300 K

1.5 1.55 1.6 1.65 1.7 1.75 1.8

10-3

10-2

10-1

100

energy / eV

no

rma

lize

d s

pe

ctr

al p

ho

ton

flu

x

1.5 1.6 1.7 1.80

0.5

1

1.5 1.55 1.6 1.65 1.7 1.75 1.8

10-3

10-2

10-1

100

energy / eV

no

rma

lize

d E

QE

PV

experimental data

model

experimental data

model T = 320 K

model T = 300 K

model T = 350 K

1.5 1.55 1.6 1.65 1.7 1.75 1.8

10-3

10-2

10-1

100

energy / eV

no

rma

lize

d s

pe

ctr

al p

ho

ton

flu

x

1.5 1.6 1.7 1.80

0.5

1

1.5 1.55 1.6 1.65 1.7 1.75 1.8

10-3

10-2

10-1

100

energy / eV

no

rma

lize

d E

QE

PV

experimental data

model T = 320 K

model T = 300 K

model T = 350 K

1.5 1.55 1.6 1.65 1.7 1.75 1.8

10-3

10-2

10-1

100

energy / eV

no

rma

lize

d s

pe

ctr

al p

ho

ton

flu

x

1.5 1.6 1.7 1.80

0.5

1

1.5 1.55 1.6 1.65 1.7 1.75 1.8

10-3

10-2

10-1

100

energy / eV

no

rma

lize

d E

QE

PV

experimental data

model T = 320 K

model T = 300 K

model T = 350 K

Spectra of Perovskite Device

20

Tress, W. et al. Predicting the Open-Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non-Radiative Recombination. Adv. Energy Mater. (2015). doi:10.1002/aenm.201400812

emission EQE ∝ absorption

Steep absorption onset, Urbach energy of approx. 15 meV

Page 21: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Luminescence and Open-Circuit Voltage

• If there is absorption, there will be emission.

• The solar cell in the dark is in thermal equilibrium with its surroundings,

meaning that it absorbs and thus emits:

𝑎 𝐸 𝛷BB 𝑇 = 300K, 𝐸

Emission spectrum can be predicted from absorption

• Under illumination (thermodynamic limit):

𝑉oc,rad =𝑘B𝑇

𝑒ln

𝐽ph

𝐽em,0+ 1

21

𝑒 𝑎 𝐸 𝛷BB 𝑇 = 300K, 𝐸 𝑑𝐸

Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

Page 22: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

10-3

10-2

10-1

100

energy / eV

scale

d E

QE

PV

Compared to Organics

Steeper absorption onset higher Voc

Charge-transfer-state absorption

Donor (ZnPc)absorption

𝑉oc,rad = 1.0 V

𝑉oc,rad = 1.2 V

𝑉oc,rad = 1.33 V

22

Page 23: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Tail States

Wolfgang Tress, Perovskite Solar Cells 2312 March 2018

De Wolf, S. et al. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

Page 24: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Shockley Queisser Limit

In theory:

CH3NH3PbI3 can reach 30 %

24

0.5 1 1.5 2 2.5 3 3.5 4 4.50

5

10

15

20

25

30

35

bandgap Eg [eV]

eff

icie

ncy

[%

]

(c)

SiGaAs

CIGS perovskite

0 0.2 0.4 0.6 0.8 1 1.2

-25

-20

-15

-10

-5

0

5

10

voltage [V]

cu

rre

nt d

en

sity [m

A / c

m 2]

0 0.2 0.4 0.6 0.8 1 1.2

-60

-40

-20

0

20

extr

acta

ble

po

we

r [m

W/c

m2]

(a)

Eg = 1.6 eV

VOC

= 1.32 V

JSC

= 25 mA/cm2

FF = 90.5 % = 30 %

MPP

𝑉oc =𝐸g

𝑒−𝑘B𝑇

𝑒ln

𝑁𝐶𝑁𝑉

𝑛𝑝

𝜂 = 𝑉oc𝐽scFF

𝑉oc

𝐽sc

Page 25: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Luminescence and Open-Circuit Voltage

• If there is absorption, there will be emission.

• The solar cell in the dark is in thermal equilibrium with its surroundings, meaning that it absorbs and thus emits:

𝑎 𝐸 𝛷BB 𝑇 = 300K, 𝐸

Emission spectrum can be predicted from absorption

• Under illumination (thermodynamic limit):

𝑉oc,rad =𝑘B𝑇

𝑒ln

𝐽ph

𝐽em,0+ 1

25

𝑒 𝑎 𝐸 𝛷BB 𝑇 = 300K, 𝐸 𝑑𝐸

Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

Page 26: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Recombination

-

+

Φem

-

+

-

via defects (SRH type)

trap

CB

VB

Au

-

at surfaces (wrong electrode)

radiativeelectron-hole

-

+

CB

VB

Auger recombination

-

non-radiative recombination

enters thermodynamic

limit

pure, defect-free material

passivation, reduction of contact area

material property (indirect

semiconductor)

26

to be avoidedunavoidable in absorber

Page 27: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Luminescence and Open-Circuit Voltage

• If there is absorption, there will be emission.

• The solar cell in the dark is in thermal equilibrium with its surroundings, meaning that it absorbs and thus emits:

𝑎 𝐸 𝛷BB 𝑇 = 300K, 𝐸

Emission spectrum can be predicted from absorption

• Under illumination (thermodynamic limit):

𝑉oc,rad =𝑘B𝑇

𝑒ln

𝐽ph

𝐽em,0+ 1

𝑉oc,real=𝑘B𝑇

𝑒ln EQEEL

𝐽ph

𝐽0+ 1

27

𝑒 𝑎 𝐸 𝛷BB 𝑇 = 300K, 𝐸 𝑑𝐸

solarcell

light

operate as LED

EQEEL =

Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

Page 28: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Driving the solar cell as LED

EL reaches 0.5 %, non-rad. recombination dominant

28

JV curve in the dark, emitted photon flux and the resulting quantum efficiency of EL

𝐽inj = 𝐽0 exp𝑒𝑉

𝒏 𝑘B𝑇− 1

Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances 2, e1501170 (2016).

Arun Paraecattil

ideality factor

Page 29: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Recombination Mechanisms

29

𝑉oc =𝐸g

𝑒−𝑘B𝑇

𝑒ln

𝑁𝐶𝑁𝑉

𝑛𝑝

𝛽𝑛𝑝

𝐺0 = 𝛼 𝐸 𝛷BB 𝐸 𝑑𝐸 = 𝛽𝑛0𝑝0 = 𝛽𝑛i2

𝛽 ≈ 10−11cm3s−1

radiativeelectron-hole

-

+

Φem

-

+

-

via defects (SRH type)

trap

CB

VB

n = 1 n = 2

𝑘𝑛 =1

𝜏𝑛

𝑑𝑛

𝑑𝑡= −𝛽𝑛2(𝑡) −

1

𝜏𝑛(𝑡)

Ideally:

Page 30: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Measure Recombination Rates

Long PL lifetime reduced non-radiative recombination

30

𝑑𝑛

𝑑𝑡= −𝛽𝑛2(𝑡) −

1

𝜏𝑛(𝑡)

𝛽 ≈ 10−11cm3s−1

PL decay

Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances 2, e1501170 (2016).

𝜏 = 350 ns

Page 31: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Voc: Light Intensity and Lifetime

Wolfgang Tress, Perovskite Solar Cells 3112 March 2018

Lifetime of 10 µs sufficient to reach ideal Voc under 1 sun

118 mV/decade

59 mV/decade

2-step2014

1-step, mixed2015

Calculation

1-step, mixed 2016

Tress, W. Progress Report: Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Open-Circuit Voltage and Low Recombination. Adv. Energy Mater. 7, 1602358(2017).

Page 32: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Why is Defect Recombination so Low?

• anti bonding valence states intrinsic traps are shallow

• high dielectric constant low capture cross section

• role of grain boundaries and “self passivation”?

Wolfgang Tress, Perovskite Solar Cells 3212 March 2018

Buin, A. et al. Materials Processing Routes to Trap-Free Halide Perovskites. Nano Lett. 14, 6281–6286 (2014).

Page 33: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Defect Tolerance

Wolfgang Tress, Perovskite Solar Cells 3312 March 2018

R. E. Brandt, et al., Chemistry of Materials, 2017, DOI: 10.1021/acs.chemmater.6b05496.

Page 34: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Hysteresis: Backward and Forward Scan

-1 -0.5 0 0.5 1

-20

-15

-10

-5

0

voltage / V

curr

ent density / m

A c

m-2

10 mV/s

100 mV/s

1,000 mV/s

10,000 mV/s

100,000 mV/s

(a)

1 sun

• Result depends on• preconditioning

• scan direction

-1 -0.5 0 0.5 1

-20

-15

-10

-5

0

voltage / V

cu

rre

nt d

en

sity / m

A c

m-2

JV curve not sufficient to accurately determine efficiencyHysteresis related to long-term instability and device degradation?

34

Page 35: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

-1 -0.5 0 0.5 1

-20

-15

-10

-5

0

voltage / V

cu

rre

nt d

en

sity / m

A c

m-2

10 mV/s

100 mV/s

1,000 mV/s

10,000 mV/s

100,000 mV/s

1 sun

Hysteresis: Voltage Sweep Rates

• Result depends on• preconditioning• scan direction• scan rate

Device has “short-term memory”

• 2 possible reasons:• Displacement

current• Modified

photocurrent

35

-0.2 0 0.2 0.4 0.6 0.8

-20

-15

-10

-5

0

5

10

15

voltage / V

curr

ent density / m

A c

m-2

100 mV/s

1,000 mV/s

10,000 mV/s

30,000 mV/s

100,000 mV/s

1 sun

(a)

Charge carrier collection efficiency recombination

Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

without TiO2 blocking layerLight induced structural changes?

Deep (surface) traps?Ferroelectrics?Ion migration?

…?

Page 36: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Hysteresis: What Happens?

36

Solar cell works as a pin device with built-in potential Vbi dropping over the approx. intrinsic perovskite layer**Bergmann, V. W. et al. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat Commun 5, (2014).

Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

CH3NH3PbI3

perovskite

-

+

CB -3.8 eV

VB -5.4 eV

-5.2 eV

-4.0 eV

1.6 eV

TiO2

HTM

Page 37: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Hysteresis: What Happens?

-1 -0.5 0 0.5 1

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

voltage / V

curr

ent density / m

A c

m-2

-0.5 0 0.5 1

-20

-15

-10

100,000 mV/s

100,000 mV/s

10,000 mV/s

200,000 mV/s

50,000 mV/s

10 mV/s

(a)

100,000 mV/s

37

Solar cell works as a pin device with built-in potential Vbi dropping over the approx. intrinsic perovskite layer**Bergmann, V. W. et al. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat Commun 5, (2014).

Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

Page 38: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Solar cell works as a pin device with built-in potential Vbi dropping over the approx. intrinsic perovskite layer*

Hysteresis: What Happens?

-1 -0.5 0 0.5 1

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

voltage / V

curr

ent density / m

A c

m-2

-0.5 0 0.5 1

-20

-15

-10

100,000 mV/s

100,000 mV/s

10,000 mV/s

200,000 mV/s

50,000 mV/s

10 mV/s

(a)

100,000 mV/s

-0.2 0 0.2 0.4 0.6 0.8-20

-15

-10

-5

0

5

10

voltage / V

curr

ent density / m

A c

m-2

-0.3 V

0.25 V

0.5 V

0.75 V

(b)

100,000 mV/s

*Bergmann, V. W. et al. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat Commun 5, (2014).

38

without TiO2 blocking layer

Page 39: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Hysteresis

Wolfgang Tress, Perovskite Solar Cells 3912 March 2018

Tress, W., Metal Halide Perovskites as Mixed Electronic-Ionic Conductors: Challenges and Chances – from Hysteresis to Memristivity. JPCL Perspective (2017)

Page 40: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Reversible Transients

40

Domanski, K., et al. Nature Energy 3, 61–67 (2018).

Page 41: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Perovskite Solar Cells: Outlook

41

Costs• Solution processing

• Low-T processes• Absorber material low-cost

• Encapsulation?

Lifetime / Stability

Efficiency

• Theoretical SQ limit with 1.57 eV gap: η = 31 %

1 2 3 40

5

10

15

20

25

30

35

bandgap Eg [eV]

eff

icie

ncy

[%

]

• Considering the predicted max. Voc (incl. tail) of 1.32 V, 24 mA/cm2

η = 29 %, (VMPP = 1.2 V, FF ≈ 90 %)

• Considering state-of-the-art recombination (SRH): Voc = 1.2 V, FF = 83 % η = 24 %

CH3NH3PbI3

• Toxicity?• Acceptance?

• Sensitive to humidity• Stable when encapsulated

• Upscaling?

Page 42: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Third Generation Concepts

42

http://www.solarroadways.com/

Page 43: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Overcoming the SQ Limit

43

http://www.intechopen.com/books/solar-cells-research-and-application-perspectives/optimization-of-third-generation-nanostructured-silicon-based-solar-cells

Page 44: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Intermediate Band Solar Cells

• Experimental trials: InAs QDs in GaAs not yet very successful

44

cstec.engin.umich.edu

• Maintain high voltage

• Increase current

• 3 quasi Fermi levels

Page 45: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Hot Carrier Solar Cells

• Avoiding thermalization by introducing “phonon bottleneck”

• Energy selective contacts

not yet successfully realized

45

web.stanford.edu

Page 46: Solar Photovoltaics & Energy Systems - EPFL · 2018-08-16 · Science 342, 341–344 (2013); Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

Up- and Down Conversion

• Effects shown, however with low yield46

www.intechopen.com

Fraunhofer ISE