skin model and its impact in digital mammographypeople.na.infn.it/~mettivie/mcma presentation/18...

30
Skin Model and its impact on Digital Mammography 1 Rodrigo T. Massera; Alessandra Tomal Institute of Physics "Gleb Wataghin” University of Campinas Campinas, Brazil

Upload: others

Post on 26-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Skin Model and its impact on Digital Mammography

    1

    Rodrigo T. Massera; Alessandra Tomal

    Institute of Physics "Gleb Wataghin”

    University of Campinas

    Campinas, Brazil

  • Outline

    2

    Motivation

    • Mammography

    • Dosimetry – Mean Glandular Dose

    Methodology

    • Implemented Models

    • How?

    Results

    • MGD vs Skin Model

    • Differences

    Conclusions• Summary

  • Introduction

    3

    Population-based screening programs

    Use Ionizing Radiation

    Quality Control and Optimization

    Why is dosimetry important in

    mammography?

  • Mean Glandular Dose (MGD)

    Adipose

    Tissue

    Glandular

    Tissue

    Skin

    Real Breast

    Incident Photons

  • Adipose

    Tissue

    Glandular

    Tissue

    Skin

    Real Breast

    Energy Deposited: Glandular Tissue Directly measured?

    Monte Carlo simulation

    Mean Glandular Dose (MGD)

  • 6

    Parameters to consider...

    • X-ray spectrum;

    • Geometric Model;

    • Breast Thickness;

    • Breast Composition (𝑓𝑔);

    • Skin Model?• 5 mm Adipose Tissue ( Dance 1990)

    • 4 mm Skin Tissue (Wu 1991/Boone 1999)

    Using breast-CT: ≈1.44 mm (Vedantham et al 2012)

    ≈1.45 mm (Huang et al 2008);

    + adipose layer

    Previous Estimations:

    Current Measures:

    64% thinnerCredits: Boone & Hernandez 2016, AAPM. “Changing

    Perceptions and Updated Methods for Mammography

    Dosimetry”

    Mean Glandular Dose (MGD)

  • Objectives

    7

    Study the impact of skin models on Mean

    Glandular Dose in Digital Mammography

    • Geometry

    • MGD calculus

    Adapt MC Code

    • MGD X Skin ModelsAnalysis

  • Outline

    8

    Motivation

    • Mammography

    • Dosimetry – Mean Glandular Dose

    Methodology

    • Implemented Models

    • How?

    Results

    • MGD vs Skin Model

    • Differences

    Conclusions• Summary

  • 9

    Monte Carlo code:

    • PENELOPE (2014) + penEasy (2015)

    Beam Parameters:

    • Monoenergetic (8 – 60 keV)

    • Polyenergetic (22 – 35 kV):

    • Mo (Mo-Rh)

    • Rh (Rh)

    • W (Rh-Al-Ag)

    *X-ray spectra from Hernandez et al (2014)

    Methodology

  • Methodology

    10*Compositions from Hammerstein et al 1979

    Breast Model*

    • t = 2 cm – 8 cm

    • Glandularity (𝑓𝑔) = 1%-100%

  • 11

    Breast Model*

    • t = 2 cm – 8 cm

    • Glandularity (𝑓𝑔) = 1%-100%

    Skin shielding Models

    I. 5 mm adipose;

    II. 4 mm skin;

    III. 1,45 mm skin;

    IV. 1,45 mm skin + 2 mm adipose;

    V. 1,45 mm skin + 3,55 mm adipose;

    *Compositions from Hammerstein et al 1979

    Methodology

  • 12

    Adipose

    Tissue

    Homogeneous Glandular-

    Adipose Tissue Mixture

    Skin

    Monte Carlo Simulations

    How do we separate the deposited

    energy between tissues?

    penEasy: 𝐸𝑎𝑣𝑔

    Mean Glandular Dose (MGD)

  • 13

    MGD Weighing method (Dance 1990)

    Simulation starts:

    𝐸𝑔𝑙𝑎𝑛𝑑=0

    InteractionType

    IncoherentPhotoelectric

    (I)

    (II)

    (III)

    Simulation Ends:

    Return𝐸𝑔𝑙𝑎𝑛𝑑

    MGD = 𝐸𝑔𝑙𝑎𝑛𝑑

    𝑀𝑎𝑠𝑠 × 𝑓𝑔

    nMGD = 𝑀𝐺𝐷

    𝐾𝑎𝑖𝑟

    Mean Glandular Dose (MGD)

  • 14

    Dosimetry

    Air Kerma from Primary

    PhotonsMGD

    Code modifications...

    nMGD = 𝑀𝐺𝐷

    𝐾𝑎𝑖𝑟

    ~40.000 simulations

  • 15

    User Input

    • Mono/Poly;

    • Energy Range/Anode Filter;

    • Breast Thickness range;

    • Breast Composition;

    • Skin Model;

    • Detector Type;

    • Antiscatter Grid Model;

    • etc

    Python

    Script

    List of Simulations

    Parallel Simulations

    Windows/Linux full compatibility

    PENELOPE

    Data Collection

    and savingPython

    Return Data

    Automatization with Python™

    ~40.000 simulations

  • 16

    Automatization with Python™

    3-10 min/simulation – Uncertainty (1 - 0.25%)

    Processor i7 7700 3.6 Ghz

  • Outline

    17

    Motivation

    • Mammography

    • Dosimetry – Mean Glandular Dose

    Methodology

    • Implemented Models

    • How?

    Results

    • MGD vs Skin Model

    • Differences

    Conclusions• Summary

  • Results - Code Validation

    18

    AAPM – Report 195 (2015)

  • 19

    • 5 cm thick;

    • 20% 𝑓𝑔;

    • 1.45 mm skin;

  • Results: Skin shielding models

    20

    Monoenergetic Beam

    20

    1% 𝑓𝑔 100% 𝑓𝑔

  • 21

    Monoenergetic Beam – Depth Dose 18 keV20% 𝑓𝑔

    2 cm breast 8 cm breast

    Results: Skin shielding models

  • 22

    Polyenergetic Beam

    2 cm 8 cm

    20% 𝑓𝑔

    36%

    15%

    34%

    16%

    Results: Skin shielding models

  • 23

    Polyenergetic Beam Mo/Mo 28 kV

    2 cm breast

    21%

    23%

    Results: Skin shielding models

  • 24

    Polyenergetic Beam Mo/Mo 28 kV

    21%

    17%

    Results: Skin shielding models

    1% 𝑓𝑔

  • Results: Summary

    25

    Polyenergetic Beam – Skin Models

  • Outline

    26

    Motivation

    • Mammography

    • Dosimetry – Mean Glandular Dose

    Methodology

    • Implemented Models

    • How?

    Results

    • MGD vs Skin Model

    • Differences

    Conclusions• Summary

  • Conclusions

    27

    𝑓𝑔 (≈50%) BreastThickness

    (≈350%)

    SkinModel

    (≈40%)

    MGD

    Variation

    Tube Potential(≈130%)

    Depth Dose : skin attenuation and Homogeneous Mixture Volume

    Anode/Filter(≈90%)

    • Skin model affects the MGD up to 37%;

    • Larger variations: low energies; high glandularity, thin breasts

    • The Skin Model has a significant impact on MGD estimates;

    • Reduce the uncertanties;

    • Patient-specific dosimetry;

    • Heterogeneous breast

  • Acknowledgement28

    • Process 2016/15366-9

    • Process 2015/21873-8 • Process 483170/2015-3

    Rodrigo T. Massera Bruno L. Rodrigues

    José Maria

    Fernandez-Varea

    Lab Members and AlumniCollaborators

  • Our Institution

    29

    University of Campinas (UNICAMP): 1st in Latin America

    Credits: Lucas Rodolfo de Castro Moura -

    http://www.lrdronecampinas.com.br/

    Funded in 1966

  • 30

    Thank You!

    [email protected]

    [email protected]

    Rodrigo T. Massera

    MSc Student

    IFGW - UNICAMP