seoul national university, august 16, 2010

108
T. Pradeep Department of Chemistry Indian Institute of Technology Madras Chennai 600 036 Seoul National University, August 16, 2010 Quantum clusters: Au 25 , Au 23 , Au 22 , Au 8 , Ag 8, Ag 9 Molecular surfaces: Low energy ion scattering at ice Established in 1959 Molecular nanomaterials and surfaces

Upload: others

Post on 21-Nov-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

T. PradeepDepartment of Chemistry

Indian Institute of Technology MadrasChennai 600 036

Seoul National University, August 16, 2010

Quantum clusters: Au25, Au23, Au22, Au8, Ag8, Ag9 Molecular surfaces: Low energy ion scattering at ice

Established in 1959

Molecular nanomaterials and surfaces

Department of Science and Technology

N. Sandhyarani and T. Pradeep, Int. Rev. Phys. Chem. 2003

Monolayer Protected Metal NanoparticlesMonolayer Protected Clusters (MPCs)

Au13 Au55

Phosphine Capped Gold Clusters

Au55 [P(C6H5)3]12Cl6 - a gold cluster of unusual size, Schmid, G.; Pfeil, R.; Boese, R.;Brandermann, F.; Meyer, S.; Calis, G. H. M.; Van der Velden.; Jan W. A. ChemischeBerichte 1981, 114, 3634. Synthesis and x-ray structural characterization of the centered icosahedral goldcluster compound [ Au13 (PMe2Ph)10Cl2](PF6)3; the realization of a theoreticalprediction, Briant, C. E.; Theobald, B. R. C.; White, J. W.; Bell, L. K.; Mingos, D. M. P.;Welch, A. J. Chem. Commun. 1981, 5, 201. Synthesis of water-soluble undecagold cluster compounds of potentialimportance in electron microscopic and other studies in biological systems, Bartlett,P. A.; Bauer, B.; Singer, S. J. Am. Chem. Soc. 1978, 100, 5085.

28 kDa Alkanethiolate-Protected Au Clusters Give Analogous SolutionElectrochemistry and STM Coulomb Staircases, Ingram, R. S.; Hostetler, M. J.;Murray, R. W.; Schaaff, T. G.; Khoury, J.; Whetten, R. L.; Bigioni, T. P.; Guthrie, D. K.;First, P. N. J. Am. Chem. Soc. 1997, 119, 9279. Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects inOptical Spectra, Schaaff, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten,R. L.; Cullen, W. G.; First, P. N.; Gutierrez-Wing, C.; Ascensio, J.; Jose-Yacaman, M. J.J. Phys. Chem. B 1997, 101, 7885. Optical Absorption Spectra of Nanocrystal Gold Molecules, Alvarez, M. M.;Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L.J. Phys. Chem. B 1997, 101, 3706.

Molecular Clusters

Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione ClusterCompound, Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L. J.Phys. Chem. B 1998, 102, 10643. Controlled Etching of Au:SR Cluster Compounds, Schaaff, T. G.; Whetten, R. L. J. Phys. Chem. B 1999, 103, 9394. Giant Gold-Glutathione Cluster Compounds: Intense Optical Activity in Metal-BasedTransitions, Schaaff, T. G.; Whetten, R. L. J. Phys. Chem. B 2000, 104, 2630. Near-Infrared Luminescence from Small Gold Nanocrystals, Bigioni, T. P.; Whetten, R.L.; Dag, O. J. Phys. Chem. B 2000, 104, 6983. Properties of a Ubiquitous 29 kDa Au:SR Cluster Compound. Schaaff, T. G.;Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. B 2001, 105,8785. Visible to Infrared Luminescence from a 28-Atom Gold Cluster, Link, S.; Beeby, A.;FitzGerald, S.; El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L. J. Phys. Chem. B 2002, 106,3410. All-Aromatic, Nanometer-Scale, Gold-Cluster Thiolate Complexes, Price, R. C.;Whetten, R. L. J. Am. Chem. Soc. 2005, 127, 13750.

Au102

Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of aThiol Monolayer–Protected Gold Nanoparticle at 1.1 Å Resolution Science 2007, 318,430.

Au102(p-MBA)44

How to make them?

Polyacrylamide gel electrophoresis (PAGE)

Negishi, Y.; Nobusada, K.; and Tsukuda, T. Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-70.

μg

Au25SG18

Synthesis: Au25 clusters can be preferentially populated by dissociative excitation of larger precursors

Scheme showing the synthesis of Au25SG18 clusters

E. S. Shibu et al. J. Phys. Chem. C. 2008

Characterization of Au25SG18

Optical absorption spectrum with anabsorption maximum at 672 nm.

Photoluminescence profile with excitationand emission maxima at 535 and 700 nm, respectively.

Tsukuda et. al. JACS 2005

FTIR spectrum: The peak at 2526 cm-1 ofglutathione due to –SH stretchingfrequency is absent in IR spectrum of Au25suggesting the ligand binding on clustersurface.

1H NMR spectrum: There is one-to-onecorrespondence between the two spectra, exceptthat the βCH2 resonance (labeled as C) disappearscompletely in the cluster which is expected as it isclose to the cluster surface. All the observedresonances have been broadened in view of theirfaster relaxation and non-uniform distribution ofligands.

F

XPS spectrumTEM image: The clusters are seen only faintly since the size is ~1 nm. Some of the individual clusters are shown by circles. There are also cluster aggregates which upon extended electron beam irradiation fuse to form bigger particles

With Arindam Banerjee

Perumal Ramasamy et al. J. Mater. Chem., 2009, 1 9, 8456.

OONH

OHOOOH

NH2NH

SH(GSH)(MB) OH

HSCH3

CH3

(NAGSH and NFGSH)

OONH

OHOOOH NH

SH

NHR

O

1

1

2

3&4

Ligand Exchange of Au25

400 600 800 10000.0

0.5

1.0

1.5

2.0Ab

sorb

ance

Wavelength(nm)

2 3 4 50.00

27.00k54.00k81.00k

108.00k135.00k

I(E)=A

(W)xW

2

Energy (eV)

Au25SG18Au25-MBAu25-SGANAu25-SGFN

400 600 800 10000.0

0.5

1.0

1.5

2.0Ab

sorb

ance

Wavelength(nm)

2 3 4 50.00

27.00k54.00k81.00k

108.00k135.00k

I(E)=A

(W)xW

2

Energy (eV)

Au25SG18Au25-MBAu25-SGANAu25-SGFN

a b cHOMO

LUMO

sp-band

d-band

Shibu et al. J. Phys. Chem. C 2008

90 87 84 810

10k20k30k40k50k

Au25SG18Au25-MBAu25-SGAN

Inten

sity (

a. u.

)

Binding Energy (eV)

4f5/24f7/2

400 500 600 700 800 9000.00

2.50x107

5.00x107

7.50x107

Energy (eV)1.381.51.82.12.53.1

I(E)=I

(W)xW

2

Wavelength (nm)

Au25SG18Au25-MBAu25-SGANAu25-SGFN

Fluorescence : A comprehensive study betweenorganic dye, gold atoms and molecular clusters of gold

Lecoultrea, S.; Rydlo, A.; F elixb, C.; Harbich, W. Eur. Phys. J. D, 2009 DOI: 10.1140/epjd/e2008-00290-0

1.5 2.0 2.50.0

5.0x106

1.0x107

1.5x107

2.0x107

Inten

sity (

a. u.)

Wavelength (eV)

Cluster Q.Yield

Au10(SG)10Au11(SG)11Au11(SG)11

1*10-4

Au15(SG)13 2*10-4

Au18(SG)14 4*10-3

Au22 (SG)16 4*10-3

Au22(SG)17 2*10-3

Au25(SG)18 1.9*10-3

Au29(SG)20 3*10-3

Au33(SG)22Au35(SG)22

2*10-3

Au38(SG)24,Au39(SG)24

2*10-3

Goldnanoparticles

1*10-10

Cluster Q. Yield

Au22 4.0*10-2

Au23 1.3*10-2

Au31 1.0*10-2

Au8(SG)8 1.5*10-1

1. Nano Res., 1(2008) 333-340.2. Chemistry A European Journal. (2009).3. ACS Applied Materials and Interfaces (2009)

Precursor

Using other ligands

Recently developed clusters using Au25 as precursor

FRET between Au25 and Dansyl Chromophore

Approaches Used for the Functionalization of Dansyl Chromophore on the Au25 Cluster.

Habeeb Muhammmed et al. J. Phys. Chem. C 2008, 1 1 2, 14324.

MPTS OTOT25 oC

55 oC

25 oC

3-mercaptopropyl trimethoxy silane (MPTS)

Au

Glutathione (GSH)

Octane thiol (OT)

AuxOTy

Au25SG18

AuxSGy

AuxMPTSy

Single Phase Etching Bi- Phase Etching

(Aqueous Layer)

(Organic Layer)

Scheme 1. Formation of the three sub-nanoclusters from Au25

SG18

by core etching by two routes. Photographs of the cluster aqueous solutions under UV light are also given.

Habeeb Muhammed et al. Chem. Euro. J. 2009, 15, 10110.

Clusters from clusters

Wavelength (nm)

Abso

rban

ce

300 450 600 750 900

Comparison of the optical absorption features of Au25

SG18

(green trace) with AuxOT

y(grey trace), Au

xSG

y(pink trace) and Au

xMPTS

y(purple

trace). The arrows show the absorption peaks of the clusters due to intra band transitions. The spectra are shifted vertically for clarity. Dotted lines

indicate the threshold of absorption. Inset shows the photographs (under white light) of the water-toluene bi-phasic mixture before (A) and after (B)

reaction at 55 ºC (interfacial etching) for 1 h.

APattern 1

Pattern 2

197229

197229

B

Au23S18-23

Figure 2. A) MALDI-MS of Aux

SGy

which shows bunch of peaks due to Aum

Sn

clusters. B) A group of peaks with m/z spacing of 197 or 229 between the major peaks of the adjacent group of peaks. C) Expanded view of peaks due to Au

23S

18-23.

B. E. (eV)

Inte

nsity

(a. u

.)

9086 8882 84

Comparison of the Au(4f) XPS spectra of Au22, Au23 and Au33 along with parent Au25.

Wavelength (nm)

Inte

nsity

(a. u

.)

500 600 700 800

Comparison of the photoluminescence profiles of Au22, Au23 and Au33 along with parent Au25.Photographs of the aqueous solutions of Au22 and Au23 under white light (A and C, respectively) and UVlight (B and D, respectively) are also given.

0 5 10

Norm

alize

d Inte

nsity

Time (ns)

IRF

Au25

Au33

Au23

Au22

Fluorescence decay pattern of Au25, Au31, Au23, and Au22 collected at 630 nm.

Wavelength (nm)

Inte

nsity

(a. u

.)

700500 600 800

3M

900

2M

1M

.5M

0

Photoluminescene profile of Au23 cluster before (pink trace) and after (orange trace) phase transfer.Emission of the cluster enhances considerably after the phase transfer. Photographs of the aqueous-toluene mixture containing the cluster before and after phase transfer under white light (A and B,respectively) and UV light (C and D, respectively). In C, only the interface is illuminated as the UV isattenuated as the sample was irradiated from the top

A

A B C

47.62 µm

EDC

Streptavidin

EDC :1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

Au23 Au23

Schematic representation of the conjugation of streptavidin on Au23

SG18

by EDC coupling.

Fluorescence (A), bright field (B) and overlay of fluorescent and bright field images (C) of human hepatoma (HepG2) cells stained with streptavidin conjugated Au

23.

A B

Bright field (A) and fluorescence (B) images of HepG2 cells stained with unconjugated Au23clusters. No fluorescence was observed from the cells after washing

Fluorescent microscopic images showing interaction of Au-BSA-FA NCs with different types of cell lines: a1-a2) FR-ve lung carcinoma A549 after 2 hours of incubation, b1-b2) FR-ve lung carcinoma A549 after 24 hours of incubation, c1-c2) FR+ve KB cells with unconjugated Au clusters, d1-d2) FR+ve KB cells with FA conjugated Au clusters at 2 hrs, e1-e2) 4 hrs and f1-f 2) 24 hrs of incubation [Archana R, Sonali S, Deepthy M et al. Molecular Receptor Specific, Non-toxic, Near-infrared Emitting Au Cluster-Protein Nanoconjugates for Targeted Cancer Imaging. Nanotechnology (2010)].

Archana et al. Nanotechnology 2010

Clusters for metal ion detection

Water soluble red emitting clusters where treated with various metal ions with a finalConcentration of 25 ppm. The emission was shifted to lower wavelength in case of silver ions andquenched completely in case of copper ions. The emission was an altered in case of other ions.

Habeeb Muhammed et al. Chem. Euro. J. 2009, 1 5, 10110.

Cluster based patterns

(GSH)

H2TPPOASH

[Au25SG18]aq [Au22(SG)15(H2TPPOAS)2]aq

(H2TPPOASH)Toluene

=

Core reduction/ligand exchange

400 600 800 10000.0

0.5

1.0

1.5

2.0

2.5

Abos

rban

ceWavelength (nm)

Au25SG18Au22H2TPPOASH

450 500 550 600 650 700 7500.0

4.0M

8.0M

12.0M

Au25SG18H2TPPOASHAu22 emissionexcitation

Inten

sity (

cps)

Wavelength (nm)

RT 5 °C

A B

C D

25 °C

5 °C

400 500 600 700 8000.0

5.0M

10.0M

15.0M

20.0M

25.0M

Wavelength (nm)

Inten

sity

excitation emission

500 600 700 800 9000.0

0.2

0.4

0.6

Abos

rban

ce

Wavelength (nm)B

Q

N

N

N

N

H

H

OH1,8-dibromooctaneK2CO3/DMF

OBr

N

N

N

N

H

H

OSH

N

N

N

N

H

H

(Me3Si)2S/TBAF/THF

III

III

N

N

N

N

H

H

OH1,8-dibromooctaneK2CO3/DMF

OBr

N

N

N

N

H

H

OSH

N

N

N

N

H

H

(Me3Si)2S/TBAF/THF

N

N

N

N

H

H

OH

N

N

N

N

H

H

OH1,8-dibromooctaneK2CO3/DMF

OBr

N

N

N

N

H

H

OBr

N

N

N

N

H

H

OSH

N

N

N

N

H

H

OSH

N

N

N

N

H

H

(Me3Si)2S/TBAF/THF

III

III

Au22S17+Au20S15

+Au18S13+Au16S11

+Au14S9+Au12S7

+

(AunSm)+775

4878

821

A

m/z2000 4000 6000600 750 900

8.0 K

20.0 K

0.0 K

Inte

nsity

x 9

550 600 650 700 750 800 850

0

1x106

2x106

3x106

4x106

5x106

Addit

ion of

Cu+2 (m

M)

d (300 µL)c (100 µL)

b (50 µL)a (0 µL)

Wavelength (nm)

Inten

sity (

cps)

1

2

3

4

550 600 650 700 750 800 850

01x106

2x106

3x106

4x106

5x106

6x106

Addit

ion of

Zn+2 (m

M)

d (300 µL)c (150 µL)

b (20 µL)a (0 µL)

Wavelength (nm)

Inten

sity (

cps)

0 50 100 150 200 250 300

1x106

2x106

3x106

4x106

Flu.In

tensit

y at 6

70 nm

Concentration of Zn+2 (µM)

0 50 100 150 200 250 300

0

1x106

2x106

3x106

4x106

Flu. In

tensit

y at 6

70 nm

Concentration of Cu+2 (µM)

A

B

C

D

0 50 100 150 200

1k

10k

Inten

sity

Time (ns)

(IRF)

Cluster

Lifetime (ns) %

H2TPPOASH

Lifetime (ns) %

0.05 86.50 9.15 70.00

1.16 6.60 1.24 30.00

9.59 3.50 - -

141.80 3.40 - -

0 10 20 30 40

10

100

1k

10k

Inten

sity

Time (ns)

(IRF)

I

50 0C

II

III

532 nm

A

B D

C

1 µm 1 µm

0 1 2 3 4 5 6 70

50

100

150

200

Heigh

t (nm)

Distance (µm)

10 µm

0 CCD Cts 4500 CCD Cts600 700 800 9000

200

400

600

800

Inte

nsity

Wavelength (nm)

A C

B

D E

0 3 6 9300.0k

302.0k

304.0k

CCD

coun

ts

Distance (µm)

E. S. Shibu et al. ACS Appl. Mater. 2009, 1, 2199.

With G. U. Kulkarni

Scheme: Au15 was synthesized inside thecyclodextrin (CD) cavity (in situ). Note: CDand GSH are the abbreviations ofcyclodextrin and glutathione,respectively. For our synthesis we have usedall 3 CDs (alpha, beta and gamma)

Au@SG – glutathione (GSH) protected gold nanoparticle

n= 6, 7, 86---alpha CD7---beta CD8---gamma CD

123

4 56a,b

OHOH

Basic unit of CD is 6 membered glucose

OH

n

OO

NHOH

O

OOH

NH2 NHSH

3D image of CD showing the nanometer cavity

350 400 450 600 650 700 7500

1x106

2x106

3x106

Intens

ity (cp

s)

Wavelength (nm)

Au15@αCD Au15@βCD Au15@γCD

300 400 500 600 700

211

1x212

1x213

214

215

216

217

Au15@αCD Au15@βCD Au15@γCD

ln (I=

A(W)

x W2 )

Wavelength (nm)

400 600 8000.0

5.0x104

1.0x105

1.5x105

I= A(W

)x W2

Wavelength (nm)

C

D

E

F

EmissionExcitation

A

B

a1 a2

300 600 9000.0

0.7

1.4

I= A(W

)xW2

Wavelength (nm)

GSH α CD

E. S. Shibu and T. Pradeep. Unpublished

e

H3

e

e

H3

H3

α Au15

A B

A C

B D

F

E

H

*$

1 µm

I

G

A

B

c2

Au Mα

30 µm

c1C

100 nm

c3~ 8 µm

A B C

ED

300 400 500 600 7000

2k

4k

6k ii iii ivi

Inten

sity

Wavelength (nm)

Clusters in proteins - BSA

Habeeb Muhammed et al. Chem. Euro. J. 2010 Online

200 400 600 800 1000

Abso

rban

ce (a

.u.)

Wavelength (nm)

A

1 2.5 5 10 20 25HAuCl4(mM)

UV

Vis

ible

B

Clusters in proteins -Lactoferrin

75k 80k 85k 90k 95k 100k

Inte

nsity

(a.u

.)

m/z

Au25

NLfAuQC@NLfAu13

NLf+

Lourdu Xavier et al. Nanoscale (2010)

Au3+ / NaOH

300 nm

350 nm

650 nm

FRET300 nm

C D

A

Native Lactoferrin

Au cluster

380 nm

510 nm

~ 650 nm

450 nm

i ii

B

NLf

AuQCNLfNLf

AuQCNLf

350 400 450 500 550 600 650 700

Inte

nsity

(a.u

.)Wavelength (nm)

AuQCNLf

AuQCHLfAuQCNLf

B

A

B C

1680 1660 1640 1620 1600

1648

1681

1680

162116271639

1634 16071644

16521677

AuQC@NLf

1615

1607

1651

1686

1685 1615

16771672 1664 1657

1645

1640

1635

1627

1622

166016651672

d2 (%T)

/(dcm

-1)2

Wavelength (cm-1)

NLf

500 1000 1500 2000 2500 3000 3500 400014

50

1400

amide

III

amide

IIam

ide I

AuQC@NLf

34843295

3294

1069 1243688

12411070

2961

2962

1399

1545

15421654

1657700

% A

bsor

banc

e

Wavenumber (cm-1)

NLf

200 210 220 230 240

Ellip

ticity

(mde

g)

Wavelength (nm)

HLF AuQC@HLF

75k 80k 85k 90k 95k 100k

Au25

~ 88.2 kDa

Au23

Au13

~ 86.2 kDa

~ 87.6 kDa

48 h

24 h

12 h

8 h

4 h

0 h

Norm

alized

inten

sity

Lf at pH 12,~ 83 kDa

Mechanism of growth

Kamalesh Choudhari et al. Unpublished

Silver clusters - interfacial etching

550 nm

640 nm

350 nm

550 nm

TUB Rao and T Pradeep, Angew. Chem. Int. Ed. (2010)

A)

300 450 600 750 9000.0

0.2

0.4

0.6

A

λ/nm

Ag@H2MSA 10 min 60 min 360 min 24 h 48 h

200 400 600 800 10000

1

2

A

λ/nm

1st band 2nd band

B)

D)

400 500 600 700 8000

4M

8M

12M

I (a.

u.)

λ/nm

λexi 350 λexi 550

d

d

dd

b

A)

m/z1200 1600 2000 2400 2800

1785 1790 1795 1800

i)ExperimentalTheoretical

[Ag7(HMSA)7]-

2045 2050 2055

i)ExperimentalTheoretical

[Ag8(HMSA)8]-

ii)

X 3

Cluster 1 Ag8(HMSA)8 – nH +nNa

n = 0 1 2 3 4 65

Cluster 2 [Ag7(HMSA)7- nH + nNa]-

n = 0 1 2 3 4 65

ii) X 3

d

600 800 1000 1200 1400 1600

ab c

e f

C

C

Crude

B)g +2(HMSA)-+(HMSA)-

X 3

-(HMSA)- h

X 3

m/z

1020 1050 1080 1110 1140 1170

Na6{Ag4(HMSA)(MSA)3}-

Na5{Ag4(HMSA)2(MSA)2}-

Na4{Ag4(HMSA)3(MSA)}-

Na3{Ag4(HMSA)4}-

Na2{Ag4(H2MSA)(HMSA)3}-

Na{(Ag4(H2MSA)2(HMSA)2}-

{Ag4(H2MSA)3(HMSA)}-

1156.51138.71114.81092.7

1070.6

1048.7

1026.7

m/z

C)

600 1200 1800 2400

I (a.

u.)

m/z

Ag9S5

Ag11S6

Ag13S7

Ag15S8 Ag17S9

Ag7S4

Ag5S4

E)

D) a b c d e

366 369 372 375 378I (

a.u.

)B.E (eV)

abc

dA)

500 550 600 650 700 7500

200k

400k

600k

800k

I (a.u.

)

λ/nm

0 ppm

30 ppm

NH3

B)

White light RT

TUV lightWhite light RT

TUV lightWhite light RT

TUV light

b a VII

450 489

625 886

VI Ag9

10 nm

Ag9Ag9Ag9Ag9

10 nm

VIII

- ) (

(+)

P A G E

V

IV

I II III

g round

NaB H4(s )

g round

AgNO3 + H2MSA(Initially both

are colorless)

Became orange color

Water +[ Ethanol (excess)]

Ag9MSA7

TUB Rao and T Pradeep, JACS, revised

2-

3-

4-

22

22

{Ag4(H2MSA)3}--Ag

1002 1005 1008 10111002 1005 1008 10111002 1005 1008 1011

ii)

{Ag9 (MSA)7 [14-(n+2)]H nNa}2-

i)

1000 1040 1080 1120

Ag9

a

bAg9

a

bAg9Ag9Ag9Ag9

a

b

a

b

a b H2MSA

ppm

Ag(I)MSA

Ag(I)MSA

H2MSA

Ag9(MSA)7

Ag9(MSA)7

a

bcd

{Ag25(SG)18}-

{Ag25(SG)18}q+

T.U.B. Rao and T. Pradeep, unpublished

400 600 800 10001200140016000

6000

m/z

800 1000 1200 1400 1600m/z

[Ag25(SG)18] m/z 8208

[Ag25(SG)18]5-

8208/5 =1642

[Ag25(SG)18]6-

8208/6 =1368

[Ag25(SG)18]7-

8208/7 =1172

[Ag25(SG)18]8-8208/8 =1026

[Ag25(SG)18]10-8208/10 =820

9-

0.1 µm

A

1 nm

7.8 nm

20 nm

B

4.8 nm

1 nm

0.1 µm

A

1 nm

7.8 nm

0.1 µm

A

1 nm

7.8 nm7.8 nm

20 nm

B

4.8 nm

1 nm

20 nm

B

4.8 nm

1 nm1 nm

E. S. Shibu et al. Adv. Mater. 2008; Nano Res. 2009; Chem. Mater. 2009

Fluorescent superlattices

E. S. Shibu et al, Adv. Mater. 2008; Nano Res. 2008, Chem. Mater.; 2009

P. R. Sajanlalal and T. Pradeep – Nano Res. 2009; JPC C 2009; 2010

0 200 400 600 8000

1

2

3

4

Inten

sity

Distance (nm)

Au Ag

AuAg

AuAg

A B

C D

1 µm 1 µm

500 nm 500 nm

0 200 400 600 800

1.2x10-6

1.8x10-6

2.4x10-6

Current Raman Intensity

Time (sec)

Curre

nt (m

A)

100

200

300

400

500

Raman Intensity

B

A

a= particle diameterd= gas molecule diameterl= thickness of monolayer

da

l

z

0.000

Keithley

Power supply

to gas source

Rotary pump

Manometer

0.000.00

0 500 1000 1500 20004.5x10-6

5.0x10-6

5.5x10-6

6.0x10-6

6.5x10-6

7.0x10-6

Curre

nt (m

A)

Time (sec)

1.5 volt 100 torr H21.5 volt 500 torr CO21.5 volt 10 torr H2 + 490 torr CO2

New phenomena

E. S. Shibu et al, UnpublishedC. Subramaniam, et al., Phys. Rev. Lett. 2007; JPC C, 2008

Product is marketed nowCartridges are recovered after use

A pesticide test kit has been developed > 25 ppb

Noble metal nanomaterials for water purification

Ongoing field trialsOngoing field trials of fluoride treatment unit (domestic unit) at Kotlapalli, Anantapur, Andhra Pradesh

Date: August 07, 2010

Noble metal nanoparticles for water purification: A critical review, T. Pradeep and Anshup, Invited Feature, Thin Solid Films, 517 (2009) 6441-6478.

Quantum clusters are interesting new materialsThey exhibit new properties and can be used for diverse applicationsCatalysisEnvironmental remediationDiagnosticsSecurity…….

73

Low energy ion scattering (LEIS) ISS, RBS, SIMSEnergy range, resolution

One of the new tools of mass spectrometry used for surface science

1. Low energy ion impact at surfaces and the energy analysis of the scattered ions.2. Energy and mass selected ion impact at surfaces and energy and mass analysis of the scattered ions.

Why is it important?

Ion spends only femtoseconds at the surface, within the interaction region.Ion collision is surface specific. Only the top atomic layer is sampled.Instantaneous surface changes are sampled.Extremely sensitive to specific surface species.Extremely sensitive to surface morphology – Chemical and physical effects

Extreme surface specificity demands UHV conditions.

Low energy ion scattering at molecular solids, Chem. Rev. 2010, to appear

74

JEOL HX-110 CID/SID-TOF

BEEQ

QE-TOF

Q-TOF

75

Reaction product or fragments

Quadrupole Q3

Molecules

EI ionizerSample substrate

Electron multiplier

Quadrupole Q1

Ions

Schematic of the process

QQ instrument, 90o T ≥ 110 K10-11 torrNo energy analysis , post collisionDown to 1 eV kinetic energyPositive ionsOnly with non-condensable gasesNo independent technique for surface analysis. No TPD

77Low energy ion scattering spectrometer

78

More photographs…

10-11 torrOil free

Primary ions < 100 eV

Scattered ions~ eV

Investigating molecular solids

80Pradeep et al. JACS 116 (1994) 8658-8665

Chemistry at ice surfaces

82

Processes at ice surfacesRole of ice particles in the polar stratospheric clouds in the seasonal depletion of the ozone layerM. J. Molina, T.-L. Tso, L. T. Molina, F. C. –Y. Wang, Antarctic stratospheric Chemistry of chlorine nitrate, hydrogen chloride and ice: Release of active chlorine, Science, 1987, 238, 1253-1257.

Possible implication of such processes in troposphere as 10% of the land area is covered by ice/snowV. F. Petrenko and R. W. Whitworth, Physics of Ice, Oxford University Press, Oxford, UK, 1999, Chapters 6 and 10

Generation of active halogen species in arctic troposphere due to sea salt ice or aerosolsL. A. Barrie and U. Plat, Arctic tropospheric chemistry: An overview, Tellus, 1997, 49B, 450-454

Interstellar icy grains contribute to the formation of extraterrestrial organicsSimple molecules transform to complex molecules in icy layers of interstellar clouds J.M. Greenberg, Cosmic dust and our origins, Suf. Sci., 2002, 500, 793-822.Muńoz Caro, G. M., Meierhenrich, U. J., Schutte, W. A. , Barbier, B., Arcones Segovia, A., Rosenbauer, H., Thiemann, W. H.-P., Brack, A., Greenberg, J. M. (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature, 416, 403.

Bulb with ice and CO2

Glass set-up

MassSpectrometer

Concentration of CO2 over melting ice oscillates

Time / seconds

1000 2000 3000 4000 5000

Inte

nsity

/ arb

. uni

ts

1.00

2.00

3.00

x 10-8

Temp. / K153 213 273 273 303

Inte

nsity

/ arb

. uni

ts2.90

3.10

3.30x 10-8

3000 3600 4200Time / seconds

S. Usharani et al., Phys. Rev. Lett. 93 (2004) 048304.

85

(a) Chemical sputtering spectra from the Cu surfaceat 110 K and (b) after 5ML coverage of ASW on Cu at110 K.

Surface sensitivity

Surfaces are Contaminated,Sensitive tosub-monolayer coverage

86

Comparison of the intensity of sputtered H3O+ (m/z 19) peakfrom (a) ASW at 110 K and (b) CW at 145 K. CW wasprepared by annealing ASW at 155 K and then cooling backto 145 K to measure the chemical sputtering spectra.

Structure sensitivity

2H2O H3O+ + OH-

87

Chemical sputtering spectra of 50 ML CCl4 at threedifferent collision energies; (a) 3 eV, (b) 30 eV and (c) 60eV. Increase in intensity of the sputtered ions is observedas the collision energy is increased from 30 to 60 eV.

CCl4 is detectable

3 eV

30 eV

60 eV

88

Probing diffusion of CCl4 through ice overlayers. Massspectra corresponding to (a) 30 eV and (b) 40 eV collisionof Ar+ at 50 ML CCl4@50 ML ASW. Only H3O+ ions arepresent in the spectra even at 40 eV collision energy.

CCl4 is absent when ice is deposited

89

Sputtering spectra of 50 ML CHCl3 and 50 ML CHCl3@50 ML ASW at 30 eV collision of Ar+.

But the case is different for CHCl3!

90

Spectra showing the difference in diffusion of CHCl3molecule at two different coverages of ASW. (a) 250 ML and (b) 300 ML.

Even at 250 ML!

300 ML

91

Diffusive mixing of 50 ML CH2Cl2 at varying coverages ofH2O. (a), (b) and (c) are the chemical sputtering spectra atdifferent coverages 300, 600 and 650 ML of ASW,respectively.

Similar case for CH2Cl2

92

Spectra showing the diffusive mixing of H2O molecules throughCCl4 overlayers. (a) and (b) are the spectra from ASW andASW@CCl4, respectively. The presence of H3O+ peak afterdepositing CCl4 shows the transport of H2O through CCl4overlayers. Sputtering spectra from CW and CW@CCl4 aregiven in (c) and (d), respectively.

Water diffusion through CCl4

93

Chemical sputtering spectra collected for different systems (a)CCl4@CHCl3, (b) CCl4@CH2Cl2 and (c) CCl4@C2H2Cl4. Thefeatures of both the layers are present in the spectra.

Mixing

94

Control experiments

Diffusive mixing at varying thickness of ASW

Effect of substrate

Effect of temperature on the mixing process

Chemically similar molecule on chloromethanes

Deposition rate of the molecular solids

From 1 ML to several hundreds ML

Deposited another molecule to cancel the effect of Cu surface

Ramping the temperature at 5 K steps

Chemically similar molecules; D2O and CH3OH

Deposited vapours at 5.0 x 10-8, 1.0 x 10-7

& 5.0 x 10-7 mbar

95

Effect of H2O thickness on the diffusive mixing of 50 ML CCl4deposited on copper substrate. (a) CCl4@1 ML ASW, (b) CCl4@2

ML ASW, (c) CCl4@3 ML ASW at 30 eV collision of Ar+. (d), (e) and (f) represent 60 eV collision of Ar+ at CCl4@3 ML ASW,

CCl4@4 ML ASW and CCl4@5 ML ASW, respectively.

Where does diffusive mixing stop?

96

ASW/CWCu

+1eV

+

20 40 60 80

190 K120 K

110 K

m/z

Inte

nsity

Scattering intensity variation of 1 eV Ar+ collisions at 50 ML ASW(□), 50 ML D2O (■) and 50 ML CW (•). Bare copper is (○). Inset:Ar+ scattering mass spectra of 50 ML ASW for three differenttemperatures and averaged for 50 scans.

Copper

ASW

CW

New structural change at ice

Mass spectrum generated upon the collision of 2 eV H+ on cASW and CW surfaces at125 K. The process is represented in cartoon form in the inset.

Protons on ice make H2+!

0 10 20 30 40 50

D+

D2+

m/z

D+

HD+

Inten

sity

10 20 30 40 50

HD2O+

Inten

sity

H2DO+

H3O+

D3O+

m/z

i) 1 eV – 10 eV D+ for 1.5 h

ii) 50 eV Ar+

100 ML H2O

+ + +

Cu (125 K)

D+

100 ML D2O

+ + +

Cu (125 K)

(a)

(b)

0 10 20 30 40 50

H+

m/z

H+

H2+

Inten

sity

MeOH

EtOH

n-PrOH

n-BuOH

n-PenOH

n-Hexane

100 ML XOH

+H+ +

+

Cu (125 K)X = Me, Et, n-Pr, n-But, n-Pen

Possible channels:

H+ + H2O(ice) → H2+ + HO●(ice)

H+ + H2O(ice) → H3O+(ice)

H3O+(ice) + H+ → H2O+(ice) + H2+

H3O+(ice) → H2O+(ice) + H

H + H+ → H2+

H+ + H2O(ice) → H2O+(ice) (ground state) + H,

10 20 30 400

200

400

600

800

1000CH3

+Int

ensit

y

m/z

ASWCW

100 ML H2O

+2 eV CH3

+

+

+

Cu (125 K & 142 K)

Mass spectrum generated upon the collision of 2 eV CH3+ on ASW and CW surfaces at

125 K. The process is represented in cartoon form in the inset. Clear interactiondifference is observed for two surfaces.

Ion scattering senses surface structure

Usharani, S., Srividhya, J., Gopinathan, M. S., Pradeep, T. (2005) Concentration ofCO2 over melting ice oscillates. Physical Review Letters, 93, 048304.

Cyriac, J., Pradeep, T. (2005) Structural transformation in formic acid on ultra cold ice surfaces. Chemical Physics Letters, 402, 116.

Cyriac, J., Pradeep, T. (2007) Probing difference in diffusivity of chloromethanes through water ice in the temperature range of 110-150 K. Journal of Physical Chemistry C, 111, 8557.

Cyriac, J., Pradeep, T. (2008) Interaction of carboxylic acids and water ice probed by argon ion induced chemical sputtering. Journal of Physical Chemistry C, 112, 1604.

Cyriac, J., Pradeep, T. (2008) Structural reorganization on amorphous ice films below 120 K revealed by near-thermal (~1 eV) argon ion scattering. Journal of Physical Chemistry C, 112, 5129.

Naresh Kumar, G.; Cyriac, J.; Bag, S.; Pradeep, T. (2009) Incomplete diffusive mixing of n-butanol with amorphous solid water in the temperature range of 110-150 K, Journal of Physical Chemistry C 113, 14259 .

Cyriac, J.; Pradeep, T.; Souda, R.; Kang, H.; Cooks, R. G. Low energy ion scattering at molecular solids, Chemical Reviews 2010 (accepted proposal).

Soumabha Bag et al. Ultralow energy collisions of protons with ice surfaces make H2+!,

(Submitted).

200 L/s TMP

400 L/s TMP

Ionization chamber 10-9 mbar

Electrostaticdeflector

Analyzer quadrupoleEinz

elle

nses

Diaphragm Pump

60 L/s TMP

Diaphragm Pump

Load chamber 10-8 mbar

Magnetic translator

Gate valve

Gas inlet

Sample inlet

BA gauge

Electricalfeed-through

Analysis chamber 10-10 mbar

Electricalfeed-through

BA gaugeProvision for TSP

View port

Samples

View port

RG

A

H2 Lamp

Pirani gauge

Gas

cyl

inde

rs

Leak valve

Leak valve

Differential pumping baffle

Provision for expansion

He cryostage manipulator Gate valve

Gate valve

KRS window for RAIRS

My DST

Thank you all

IIT Madras

Nano Mission, Department of Science and Technology

Thanks!

105

The effect of substrate on the chemical sputteringspectra. (a)10 ML C2H2Cl4 alone, (b) 10 MLC2H2Cl4@50 ML CCl4 and (c) 10 ML C2H2Cl4@50 MLCCl4@10 ML ASW.

Substrate effect

106

The intensities of the CHCl2+ and CHCl3+ peaks are increaseddue to the change in concentration of CHCl3 on the surfacewith raise in temperature. The projectile ion is 30 eV Ar+ andthe system is 50 ML CHCl3@250 ML ASW. With thetemperature rise from 125 K (lower trace) to 130 K (uppertrace), more CHCl3 is diffusing through ice overlayers.

Temperature effect

107

Spectra showing the diffusive mixing of 50 ML of CHCl3with other molecular solids (a) D2O, (b) CCl4 and (d) CH3OH (thickness is 50 ML for each molecular solid).

Chemical similarity

108

(a), (b) and (c) are the Ar+ induced chemical sputtering spectra from the 50 ML CHCl3@50 ML ASW surface where upper ASW layer is prepared at three different deposition pressures.

Rate of deposition