seccion 1 - wiener.edu.pewiener.edu.pe/manuales/cicloii/matematica-aplicada …  · web...

33
INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER Manual del Alumno ASIGNATURA: Matemática Aplicada II

Upload: duongkhanh

Post on 21-May-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

INSTITUTO SUPERIOR TECNOLÓGICONORBERT WIENER

Manual del Alumno

ASIGNATURA: Matemática Aplicada II

PROGRAMA: S3C

LIMA-PERU

2 Manual del Alumno

MANUAL DE MATEMATICA APLICADA II

INDICE.-SECCION 1 : MATRICES Ejercicios 1SECCION 2 : OPERACIONES CON MATRICES Ejercicios 2SECCION 3 : TRANSFORMACIONES ELEMENTALES( inversa de una Matriz: método de Gauss-Jordan (de orden 2x2)) Ejercicios 3SECCION 4 : TRANSFORMACIONES ELEMENTALES( inversa de una Matriz: método de Gauss-Jordan (de orden 3x3)) Ejercicios 4SECCION 5 : DETERMINANTES Ejercicios 5 SECCION 6 : RELACIONES Y FUNCIONES Ejercicios 6SECCION 7 : GEOMETRIA ANALITICA Ejercicios 7SECCION 8 : ANGULO ENTRE RECTAS Ejercicios 8SECCION 9 : LA ECUACION DE LA RECTA Ejercicios 9SECCION 10 : LA CIRCUNFERENCIA Ejercicios 10SECCION 11 : LIMITES Ejercicios 11SECCION 12 : LIMITES INDETERMINADOS Ejercicios 12SECCION 13 : LA DERIVADA Ejercicios 13SECCION 14 : REGLAS DE DERIVACION Ejercicios 14SECCION 15 : LA ANTIDERIVADA Ejercicios 15

3 Manual del Alumno

SESION 1 MATRICES

DEFINICION :Una matriz es un arreglo rectangular de números reales ordenados en filas o columnas

Ejemplo.

Sen , Cos , Tg

4 53 4

Las matrices se denotan con letras mayúsculas A,B,C... etc. El conjunto de los elementos se denotan con letras minúsculas subindicadas aij, bij, cij...etc. A = aij

En general : el elemento aij ocupa la intersección de la i-esima fila y la j-ésima columna.

ORDEN DE UNA MATRIZEl orden de una matriz esta dado por el producto del número de filas con el número de columnas.

Ejemplo. 2 3 4 A= -1 2 0 es una matriz de orden 2x3

TIPOS DE MATRICES

A- MATRIZ RECTANGULAR.-Es la matriz donde el número de filas es diferente al número de columnas

1 0 5A = 2 1 3 (2X3)

B- MATRIZ FILA.-Es la matriz donde es una sola fila y varias columnas.

P = 3 -2 1 5 (1X4)

C- MATRIZ COLUMNA.-Es la matriz que tiene varias filas y una sola columna.

-3G = 1 4 (3X1)

4 Manual del Alumno

D- MATRIZ CERO.-Es la matriz que todos sus elementos son cero.

0 0 0K = 0 0 0 0 0 0 (3X3)

E- MATRIZ CUADRADA.-Es aquella matriz que tiene el mismo numero de filas y columnas

3 4 5 A = 6 7 -1 2 -5 0 EJERCICIOS 1

Indicar que tipo de matrices y que orden tienen las siguientes matrices .

2 -5 1A = 3 4 0

B = 0 0 0

2 -2C = k b

-3F = 1 7

0 0 0 0 G = 0 0 1 0 0 0 0 1

5 Manual del Alumno

SESION 2OPERACIONES CON MATRICES

SUMA DE MATRICES.-Dados dos matrices A y B del mismo orden, se llama suma de A y B a otra matriz C.

Ejemplo.

Sí: 7 -2 -2 5A = y B =

5 2 4 -1

Hallar: A+BSolución:

7 -2 -2 5A = + B = 5 2 4 -1

7 + -2 -2 + 5 5 3A + B = = 5 + 2 4 + -1 9 1

5 3A + B =

9 1

PROPIEDADES1. A y B, (A+B) E K mxn Clausura2. A + B = B + A Conmutativa3. A + ( B + C ) = ( A + B ) + C Asociativa4. A + 0 = 0 + A = A Elemento neutro aditivo5. (-A ) + A = 0 Elemento inverso aditivo

DIFERENCIA DE MATRICESDado dos matrices A y B del mismo orden la diferencia entre A y B es otra matriz C.

Ejm: 7 -2 5 -1 4 -2A = B = 3 0 1 1 3 3

Hallar : A - B

Solución:

7 -2 5 -1 4 -2A - B = - 3 0 1 1 3 3

6 Manual del Alumno

7-(-1) -2 -4 5-(-2) 8 -6 7 A -B = = 3 -1 0 -3 1-3 2 -3 -2

8 -6 7A -B =

2 -3 -2

PRODUCTO DE UN ESCALARDado una matriz y un escalar K que es un número real definimos como: KA

Ejm: -3 4Sí K= -2 A =

5 1/2

Solución:3 4 (-2)(-3) (-2)(4)

KA = -2 = 5 1/2 (-2)(5) (-2)(1/2)

6 8KA =

-10 -1

PROPIEDADES

p(qA) = (pq)A Asociativa(p+q)A = pA +qA Distributiva con respecto a escalaresp(A+B) = pA +pB Distributiva con respecto a matrices

MULTIPLICACION DE MATRICESEl producto de AxB nos da otra matriz C

Ejm: 8 6 4 5 5Sí A = y B = 4 2

3 2 1 7 3

Hallar A x BSolución:1 Paso: la matriz A es de orden 2x3 y la matriz B es de orden 3x2

Entonces:2x3 = 3x2 y la matriz resultado tiene un orden de 2x2

2 Paso

8 6 4 5 5 8x5+6x4+4x7 8x5+6x2+4x3 92 60 4 2

3 2 1 7 3 3x5+2x4+1x7 3x5+2x2+1x3 30 22

3 Paso

92 60AxB =

30 22

7 Manual del Alumno

PROPIEDADESA(B.C) = (A.B)C Asociativa(A+B)C = AC + BC DistributivaAB = BA Conmutativa

EJERCICIOS 2

1. 4 5 -7 2 3 -1A= B=

-2 0 1 0 -4 8

Hallar :* A+B* A-B* AxB* BxA* B-A

2. Sí: 4 -1/2 1/3 -1/4D = E =

5 0 2 3

Hallar la matriz "X" de la siguiente ecuación. 3D - E = 2X + (E - D)

8 Manual del Alumno

SESION 3 TRANSFORMACIONES ELEMENTALES

INVERSA DE UNA MATRIZ : METODO DE GAUSS-JORDAN ( de orden 2x2 )

Ejemplo : 3 -1Determinar si A = tiene inversa.

5 -2

Solución:- 3 -1 1 0 A -¹ = 5 -2 0 1

Multiplicar 1/3 a la fila 1

F(1) (1/3) 3/3 -1/3 1/3 0 5 -2 0 1

Multiplicar 1/5 a la fila 2

1 -1/3 1/3 0

F(2)(1/5) 5/5 -2/5 0 -1/5 Restar la primera fila con la segunda fila

1 -1/3 1/3 0

F1² 1 -2/5 0 1/5

Multiplicar -1 por la fila 2

1 -1/3 1/3 0

F(2)(-1) 0 1/15 -1/3 1/5 Multiplicar la fila 2 por 15

1 -1/3 1/3 0

F(2)(-15) 0 -15/15 15/3 -15/5

Multiplicar la fila 2 por 1/3

1 -1/3 1/3 0

F(2)(1/3) 0 1 5 -3

9 Manual del Alumno

Sumar la fila 2 y la fila 1

1 -1/3 1/3 0

F2¹ 0 1/3 5/3 -3/3

Multiplicar la fila 2 por 3

1 0 2 -1

F(2)(3) 0 1/3 5/3 -1

Hallamos la matriz inversa

1 0 2 -1

0 1 5 -3

2 -1A -¹ = 5 -3

EJERCICIOS 3Hallar la inversa de las matrices por el método de Gauss-Jordan

5 6B = 7 8

-1 3C = 2 -4

1 2D = -1 3

4 -1E = 2 6

10 Manual del Alumno

SESION 4

TRANSFORMACIONES ELEMENTALES

INVERSA DE UNA MATRIZ :METODO GAUSS-JORDAN (de orden 3x3)

Hallar la A-1 para la matriz :

3 2 1 A = 4 5 2 2 1 4

Solución :

3 2 1 1 0 0A-1 = 4 5 2 0 1 0 2 1 4 0 0 1

1 2/3 1/3 1/3 0 0 4 5 2 0 1 0

F1 (1/3) 2 1 4 0 0 1

1 2/3 1/3 1/3 0 0

F12 (-4) 0 7/3 2/3 -4/3 1 0

F13 (-2) 0 -1/3 10/3 -2/3 0 1

1 2/3 1/3 1/3 0 0

F2 (3/7) 0 1 2/7 -4/7 3/7 0 0 -1/3 10/3 -2/3 0 1

1 0 1/7 5/7 -2/7 0

F21 (-2/3) 0 1 2/7 -4/7 3/7 0

F23 (1/3) 0 0 24/7 -6/7 1/7 1

11 Manual del Alumno

1 0 1/7 5/7 -2/7 0 F3 (7/24) 0 1 2/7 -4/7 3/7 0

0 0 1 -1/4 1/24 7/24

F31 (-1/7) 1 0 0 3/4 -7/24 -1/24

0 1 0 -1/2 5/12 -1/12

F32 (-2/7) 0 0 1 -1/4 1/24 7/24

18 -7 -1 A-1 = (1/24) -12 10 -2 -6 1 7

EJERCICIOS 4

Hallar la inversa de las siguientes matrices :

1 2 3B = 4 5 6 7 8 9

-3 2 5C = 6 4 -2 1 1 1

2 -5 -6D = 4 -2 7 3 2 1

-2 3 4E = 1 2 5 -3 5 6

2 6 4 F = 5 4 2 -4 1 2

12 Manual del Alumno

SESION 5 DETERMINANTES

Definición.-El determinante es un numero real o un escalar asociado a una matriz cuadrada que se denota por : D (A)

CALCULO DE UNA MATRIZ DE ORDEN 2X2

a11 a12 D(A) = = a11. a22 + a21. a12 a 21 a22 4 -3Ejemplo. Hallar el determinante de A =

1 2Solución :

4 -3D(A) = = 4x2 - 1x (-3) = 8 + 3 = 11

1 2

CALCULO DEUNA MATRIZ DE ORDEN 3X3

a11 a12 a13 a11 a12D(A) = a21 a22 a23 a21 a22 = a11.a22.a33 + a12.a23.a31 + a31 a32 a33 a31 a 32 a13.a21.a32 - a13.a22.a31 - - - - + + + a11.a23.a32 - a12.a21.a33

Ejemplo . Calcular el determinante de:

1 2 10A = 2 3 9 4 5 11

Solución :

1 2 10 1 2A = 2 3 9 2 3 = 1.3.11 + 2.9.4 + 10.2.5 - 10.3.4 - 1.9.5 - 2.2.11

13 Manual del Alumno

4 5 11 4 5

D(A) = 33 + 72 + 100 - 120 - 45 -44D(A) = -4

RESOLUCION DE SISTEMAS DE ECUACIONES EN DOS VARIABLES

Resolver el sistema : 3x + 4y = 6 5x + 3y = -1

Solución :

3 4D(A) = = 3.3 - 4.5 = 9 -20 = -11

5 3

Luego x 3 -4 6 3.(6) + (-4)(-1) 22 -2 = ( 1/-11 ) = = (-1/11) = Y 5 -3 -1 -5.(6) + 3.(-1) -33 3

Siendo el conjunto solución : S = ( -2,3 )

EJERCICIOS 5

1.- Hallar el determinante de:

5 6 7A = 4 2 3

1 2 0

-5 -8 9B = -2 3 5 4 5 2

2 1 0C= 1 1 1 -3 6 -8 2.- Resolver las siguientes ecuaciones por determinantes :

5x + 4y = 54x + 2y = 1

3x + 7y = 0-2x - 2y = 2

14 Manual del Alumno

SESION 6RELACIONES Y FUNCIONES

RELACIONES

Definición.-Se llama relación entre los elementos de un conjunto A y los elementos de un conjunto B a todo subconjunto R del producto cartesiano AxB ; esto es, una relación R consiste en lo siguiente :

1.- Un conjunto A ( conjunto de partida )2.- Un conjunto B ( conjunto de llegada )

Simbólicamente se denota por:R : AB R A x B

DOMINIO DE UNA RELACION.-Se llama dominio a todas las primeras componentes de los pares ordenados de la relación . Se denota Dom(R) y se simboliza :Dom (R)= x A / y B , ( X,Y ) R

RANGO DE UNA RELACION.-Se llama rango de una relación R de A en B al conjunto de las segundas componentes de los pares ordenados de la relación. Se denota Ran (R) y es simboliza :Ran (R)= y B / x A , ( X,Y ) R

EJEMPLO: Hallar el dominio y el rango de las relaciones en A siendo A = 1,2,3,4,5 y, R1 = (x,y) AxA / x+y = 7

Solución.-

R1 = ( 2,5);(3,4);(5,2);(4,3)

Siendo : Dom (R1) = 2,3,4,5 Ran (R1) = 2,3,4,5

15 Manual del Alumno

FUNCIONESDefinición.-Es un conjunto de pares ordenados en el que dos pares distintos nunca tienen la misma primera componente es decir :

1.- f AxB2.- (x,y) f (x,z) f (y=z)

EJEMPLO : Sea A = 1,2,3,4 y B = a,b,c,d,e si f es la función: f = (1,a);(2,b);(3,c);(4,c)

Solución .-

Dom f = 1,2,3,4Ran f = a,b,c

En la función y = f(x) = 3 x 0,4 hallar el dominio y el rango.

Solución.-

Dom f = 0,4 Ran f = 3

Hallar el dominio y rango de la función f(x) = (x-1) (x-9)

Solución.-(x-1) (x-9) > 0( X-1 0 X-9 0 ) ( X-1 0 X-9 0 ) ( X1 X9) ( X1 X9 ) (X 9 ) ( X 1)

<- ,1 9, > = Dom fy = f(x)( x-1) (x-9) 0 0, >y = f(x) 0, >entonces el rango es : Ran f = 0, >

EJERCICIOS 6 Hallar el dominio y rango de las relaciones en A siendo A = 1,2,3,4,5 a.- R = (x,y) AxA / x+y < 4 b.- R = (x,y) AxA / y < 4c.- R = (x,y) AxA / x2-2 yd.- R = (x,y) AxA / x-3y = 12

Hallar el rango de la función f(x) = (x+1) x 0,8

Hallar el dominio y rango de la función f(x) = x2-6x+8

Hallar el dominio y rango de la función f(x) = x2+6x+8

16 Manual del Alumno

SESION 7 GEOMETRIA ANALITICA

DISTANCIA ENTRE DOS PUNTOSSean P1 = ( X1,Y1 ) Y P2 = ( X2,Y2 ) cualesquiera entonces podemos hallar su distancia que esta dado por : | P1 P2 | = [( X2 - X1 )² + ( Y2 - Y1 )²]

Ejemplo. Si A = ( -3,10 ) y B = ( 1,2 ).Hallar la distancia de ABSolución.-

| AB | = [( 1 - (-3) )² + ( 2 - 10 )²] | AB | = [( 4 )² + ( -8 )²] | AB | = [16+ 64] | AB | = [80] | AB | = 4 [5]

EJERCICIOS1.- Si los puntos A = ( -3,10 ) ; B = ( 1,2 ) y C = ( 4,-4 ) demostrar que: | AC | = | AB | + | BC |

2.- Hallar el perímetro del triángulo formado por los puntos A = ( 4,7 ) ; B = ( -1,-8 ) y C = ( 8.-5 )

3.- Hallar X ,si A = ( X,8 ) ; B = ( 5,-2 ) y su distancia es 2√41.

4.- Demostrar que el cuadrilátero con vértices en A = ( -2,-1 ) ; B = ( 5,-4 ) ; C = ( -1,-18 ) y D = ( -8,-15) es un rectángulo.

17 Manual del Alumno

SESION 8 ANGULO ENTRE DOS RECTAS

Dos rectas son paralelas si sus pendientes son iguales : L1 L2 m1 = m2 Donde : L1 y L2 : son dos rectas m1 y m2 : son pendientesLa Pendiente :

m = y2 - y1 ; x1 x2 x2 - x1

Dos rectas son perpendiculares si y solo si e producto de sus pendientes es -1 . L1 L2 m1 . m2 = -1

Ejemplo : Determinar si L1 y L2 son paralelas o perpendiculares, L1 esta formado por ( 1,-1 ) y ( 3 ,2 ) . L2 esta formado por ( 3,2 ) y ( 7,8 ) .

Solución .

mL1= 2 - (-1) = 3 mL2 = 8 - 2 = 3 3 - 1 2 7 - 3 2

Por lo tanto: L1 L2 m1 = m2

EJERCICIOS 8

1.-Determinar si las rectas L1 y L2 son paralelas o perpendiculares.

a- L1 = ( 9,2 ) y ( 11,6 ) ; L2 = ( 3,5 ) y ( 1,1 ) b- L1 = ( 2,1 ) y ( 1,5 ) ; L2 = ( 3,5 ) y ( 1,1 )

2.- Dados los puntos A= ( -1,5 ) ; B= ( 3,2 ) ; C= ( 4,3 )hallar la pendiente de la recta L que pasa por C y que divide al segmento AB en la razón -3/2.

3.- Una recta de pendiente 7/3 pasa por P ( 1,2 ) . Hallar las coordenadas de dos puntos sobre la recta que distan 58 unidades de P.

18 Manual del Alumno

4.- Si la recta L1 que contiene los puntos A (a,2) y B (0,2a) es paralela a la recta L2 que contiene a los puntos C ( -a,3 ) y D (1;-2a).Hallar el valor de a.

SESION 9LA ECUACION DE LA RECTA

ECUACIONES PARA UNA RECTA :1.- LA FORMA PUNTO PENDIENTE.- es cuando una recta pasa por el punto P1 = (x1,y1) y de pendiente m es :

y-y1 = m(x-x1)

2.- LA FORMA DE LOS DOS PUNTOS.- es la recta que pasa por dos puntos dados P1 ( x1,y1) y P2 ( x2,y2) tiene la ecuación :

(y - y1) / ( x - x1) = (y2 - y1 ) / (x2 - x1 ) x2 x1

3.- LA FORMA PENDIENTE Y ORDENADA AL ORIGEN.- es la recta cuya pendiente es m y ordenada esta en el origen es b, tiene por ecuación

y = mx + b

4.- LA FORMA DE LAS COORDENADAS AL ORIGEN.- es la recta cuya intersección con los ejes x e y son a 0 y b 0 respectivamente , tiene por ecuación:

x/a +y/b = 1

5.- LA FORMA GENERAL.- su ecuación es :

Ax + By + C = 0

EJEMPLO.-Hallar la ecuación de la recta que tiene por pendiente -4/3 y pasa por el punto ( 1,-1 ).Solución.- Aplicando : y -y1 = m ( x -x1)Reemplazando : y - (-1) = -4/3 ( x -1 ) y + 1 = -4/3 ( x -1 ) 3y + 3 = -4x + 4 Entonces la ecuación de la recta es : 4x + 3y -1 = 0

EJERCICIOS .-

19 Manual del Alumno

1.- Hallar la ecuación de la recta cuya ordenada y abscisa en el origen suman cero y que contiene al punto P (2,4).

2.- Dado el triángulo de vértices A (-10,-1) ; B (-3,7) y C (2,5) ;Hallar las ecuaciones de las rectas que pasa por el vértice B y trisecan al lado opuesto AC.

3.- Una recta pasa por el punto P (2,3) y la suma de los segmentos que determina sobre los ejes coordenadas es 10.Hallar la ecuación de la recta.

4.- Hallar la ecuación de la recta cuya ordenada y abscisa en el origen suman 2 y cuya pendiente es 9/5.

SESION 10 LA CIRCUNFERENCIA

ECUACION GENERAL DE LA CIRCUNFERENCIA ( x - h )² + ( y - k )² = r² ..................(1)

Desarrollando la ecuación (1) x² + y² - 2hx - 2ky + ( h² + k² - r² ) = 0

Esta ecuación tiene la forma : X² + Y² + DX + EY+ F = 0 .................( Ec. General )

Ejemplo. Que tipo de circunferencia es representada por la ecuación 9x² + 9y² - 72x - 6y + 1 = 0Solución :

Dividimos entre 9 . (1/9) 9x² + 9y² - 72x - 6y + 1 = 0 x² + y² - 8x - (2/3)y + 1/9 = 0Completando cuadrados ( x² - 8x + 16 ) + ( y² -- 2/3y + 1/9 ) = - 1/9 +16 + 1/9Entonces : ( x - 4 )² + ( y - 1/3 )² = 16Por lo tanto: la ecuación representa una circunferencia de centro c = ( 4 , 1/3 ) y el radio r = 4

EJERCICIOS 10 Determinar el centro y el radio de cada ecuación siguiente:

20 Manual del Alumno

9x² + 9y² - 144x + 12y + 580 = 0

4x² + 4y² - 12x + 8y + 77 = 0

36x² + 36y² - 48x - 36y + 16 = 0

4x² + 4y² - 16x + 20y + 25 = 0

x² + y² + 4x + 16y - 39 = 0

SESION 11 LIMITES

Definición.- El numero L se llama limite de una función en el punto X0 ( X0 no necesariamente Dom f ) si para cada 0, es posible hallar 0, que depende de X0 y tal que :

x Dom f 0 X - X0 f(x) - L

Se denota : Lim f(x) = L XX0

Ejemplo : Demostrar Lim X² - 9 = 6 XX0 X - 3

Solución.- X0 = 3 L = 6 f(x) = ( X - 3 ) ( X + 3 ) ( X + 3 ) donde : f(x) = X + 3 X 3Entonces 0, hallamos 0 tal que : x Dom f 0 X - 3 f(x) - 6

f(x) - 6 = X - 9 - 6 = X + 3 - 6 = X - 3 = X + 3 Hemos comprobado

Lim X² - 9 = Lim ( X - 3 ) ( X + 3 ) = Lim ( x + 3) = 3 + 3 = 6 X3 X - 3 X3 ( X - 3 ) X3

EJERCICIOS 11

21 Manual del Alumno

Demostrar por la definición de limites

Lim ( 3x ) = 12 X4 Lim ( 4x - 3 ) = 9 X3

Lim 4 = 2 X4 x - 2

Lim x - 9 = 2 X-7 x - 1

SESION 12LIMITES INDETERMINADOS

Definición.-La función f tiene limite +. En si los limites laterales en x0 son iguales a + y tienen limite - en x0 si los limites laterales en x0 son iguales a - y se denota :

Lim f(x) = + Lim f(x) = -xx0 xx0

EJEMPLO.-Hallar el limite de :

Lim x+1 x3+ x2-9

Solución.-

Lim x+1 x3+ (x+3)(x-3)

Lim 3+1 = 4 = + x3+ (3+3)(3-3) 0

EJERCICIOS 12

Calcular con limites infinitos los siguientes ejercicios :

1.- Lim x 2 -4 x2 (x-2)3

2.- Lim x 2 +3 x- x+1

3.- Lim ( x 2 +7x+10 ) x x

22 Manual del Alumno

4.- Lim x- x x0 x2+x

5.- Lim 1-cos z z0 z

CONTINUIDADCONTINUIDAD DE UNA FUNCION EN UN PUNTODefinición.-La función f es continua en x0 Dom f si para cada 0 existe un 0 ( que depende de y x0 ) tal que : XDom f x- x0 f(x) - f(x0)

Si x0 es además un punto de acumulación del Dom f entonces tiene en forma equivalente que f es continua en x= x0 si y solo si cumple :

1.- f(x0) esta definido.2.- Existe el limite de f en x0.3.- Lim f(x) = f(x0). x x0

EJEMPLO.-Probar que f es continua en x0 =0 para

X2+2 , x<0F(x) = 2senx x>0 x

Solución.-1.- f(0) esta definido por f(0) = 2.2.- x0 = 0 es punto de acumulación de Dom f = -, Lim (x2-4) = 2 x0 Lim 2senx = 2 x0 x Lim f(x) = 2 x03.- Lim f(x) = f(0) =2 entonces f es continua en x0 = 0. x0

EJERCICIOS 12.-1.- Probar que la función es continua

xsen(1/x) ,x 0f(x) =

0 , x=0

2.- Probar que la siguiente función es continua

3 ,x=2f(x) = 3x 2 -7x+2 ,x 2 x-2

3.- Probar si la función es continua en todo R

x3/2 ,x>2f(x) =

23 Manual del Alumno

2x , x<2

4.- Dada la función probar si f es continua en -,3

x-2 ,x>3f(x) = x+1 ,x<3

SESION 13LA DERIVADA

Definición.- Dado una función f y x0 que pertenece al dominio de f se llama derivada de f en el punto x0 al valor.

f (x0 ) = lim f (x0 +h ) - f ( x0 ) h0 h

Hallar la derivada de xSolución.-

f (x0 ) = lim f (x +h ) - f ( x ) h0 h

f (x0 ) = lim ( x+h ) - x h0 h

f (x0 ) = lim h h0 h ( x+h ) - x

f (x0 ) = lim 1 = 1 , x 0 h0 ( x+h ) - x 2x

EJERCICIOS 13.-

Hallar la derivada de las siguientes funciones :

f(x) = ( x ) 3

24 Manual del Alumno

f(x) = x2 - 7

f(x) = 1/(x4 +3)

f(x) = cos x

f(x) = 3x2 + 4x - 2

SESION 14REGLAS DE LA DERIVACION

1.- Dc = 0 , c= funcion constante

2.- Dx (x) = 1

3.- Dx (x) = 1 2(x)

4.- Dx senx = cosx

5.- Dx (xn) = nxn-1

6.- D f + g (x) = Df(x) + Dg(x)

7.- D f .g x = f(x)Dgx) + g(x)Df(x)

8.- D f /g x = g(x)Dfx) - f(x)Dg(x) (g(x))2

EJERCICIOS 14.-

Derivar las siguientes funciones usando las reglas de derivación :

f(x) = 5x + 4x2 - 7x6

f(x) = (3cosx).(4x)

f(x) = senx x

25 Manual del Alumno

f(x) = senx cosx

f(x) = x²(senx)

SESION 15LA ANTIDERIVADA ( integracion)

FORMULAS DE INTEGRACION

1.- dx = x + c , c = constante

2.- xndx = x n+1 + c n+1

3.- kf(x)dx = k f(x)dx

4.- ( u + v )dx = udx + vdx

5.- audx = a u + c lna

6.- senudu = -cosu +c

7.- cosudu = senu +c

8.- tgudu = lnsecu + c

9.- ctgudu = lnsenu + c

10.- secudu = lnsecu + tgu + c

11.- cscudu = lncscu - ctgu + c

12.- sec²udu = tgu + c

13.- csc²udu = -ctgu + c

14.- secu.tgudu = secu + c

26 Manual del Alumno

15.- cscu.ctgudu = -cscu + c

EJERCICIOS 15.-

5a²x²dx

(x4+x2+1)(x-1) dx

cos3xsen33xdx

dx cos6x

sen²xcos²xdx

2x-3dx (x2-3x+2)3

(x3+x+1)dx

BIBLIOGRAFIA.-

VENERO BALDEON , Armando j.(1997) : Análisis Matemático I .Lima-Perú. Editorial San Marcos. FIGUEROA GARCIA ,Ricardo (1998) : Vectores y Matrices, Lima-Perú W.H. Editores. FIGUEROA GARCIA ,Ricardo (1998) : Matemática básica , Lima-Perú W.H. Editores. FIGUEROA GARCIA ,Ricardo (1998) : Vectores y Matrices , Lima-Perú W.H. Editores. FIGUEROA GARCIA ,Ricardo (1991) : Geometría Analitica , Lima-Perú W.H. Editores. ESPINOZA RAMOS ,Eduardo (1993) : Análisis Matemático II (solucionario de DEMIDOVICH ).