samytindel - math.purdue.edustindel/teaching/ma... · asimpleexampleofcounting(2)...

37
Combinatorial analysis Samy Tindel Purdue University Introduction to Probability Theory - MA 519 Mostly taken from A first course in probability by S. Ross Samy T. Combinatorial analysis Probability Theory 1 / 37

Upload: others

Post on 18-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Combinatorial analysis

Samy Tindel

Purdue University

Introduction to Probability Theory - MA 519

Mostly taken from A first course in probabilityby S. Ross

Samy T. Combinatorial analysis Probability Theory 1 / 37

Page 2: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Outline

1 Introduction

2 The basic principle of counting

3 Permutations

4 Combinations

5 Multinomial coefficients

Samy T. Combinatorial analysis Probability Theory 2 / 37

Page 3: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Outline

1 Introduction

2 The basic principle of counting

3 Permutations

4 Combinations

5 Multinomial coefficients

Samy T. Combinatorial analysis Probability Theory 3 / 37

Page 4: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

A simple example of counting

A communication system:Setup: n antennas lined upFunctional system:↪→ when no 2 consecutive defective antennasWe know that m antennas are defective

Problem: computeP (functional system)

Samy T. Combinatorial analysis Probability Theory 4 / 37

Page 5: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

A simple example of counting (2)Particular instance of the previous situation:

Take n = 4 and m = 2Possible configurations:

0011 0101 01101001 1010 1100

We get 3 working configurations among 6, and thus

P (functional system) = 12

Conclusion: need an effective way to count, that is

Combinatorial analysis

Samy T. Combinatorial analysis Probability Theory 5 / 37

Page 6: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Outline

1 Introduction

2 The basic principle of counting

3 Permutations

4 Combinations

5 Multinomial coefficients

Samy T. Combinatorial analysis Probability Theory 6 / 37

Page 7: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Basic principle of counting

Suppose 2 experiments to be performed andFor Experiment 1, we have m possible outcomesFor each outcome of Experiment 1↪→ We have n outcomes for Experiment 2

Then

Total number of possible outcomes is m × n

Theorem 1.

Samy T. Combinatorial analysis Probability Theory 7 / 37

Page 8: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Proof

Sketch of the proof: Set

(i , j) ≡ Outcome i for Experiment 1 & Outcome j for Experiment 2

Then enumerate possibilities

Samy T. Combinatorial analysis Probability Theory 8 / 37

Page 9: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Application of basic principle of counting

Example: Small community with10 womenEach woman has 3 chidren

We have to pick one pair as mother & child of the year

Question:

How many possibilities?

Samy T. Combinatorial analysis Probability Theory 9 / 37

Page 10: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Generalized principle of counting

Suppose r experiments to be performed andFor Experiment 1, we have n1 possible outcomesFor each outcome of Experiment i↪→ We have ni+1 outcomes for Experiment i + 1

Then total number of possible outcomes isr∏

i=1ni = n1 × n2 × · · · × nr

Theorem 2.

Samy T. Combinatorial analysis Probability Theory 10 / 37

Page 11: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Application of basic principle of counting

Example 1: Find # possible 7 place license plates ifFirst 3 places are lettersFinal 4 places are numbers

Answer: 175,760,000

Example 2: Find # possible 7 place license plates ifFirst 3 places are lettersFinal 4 places are numbersNo repetition among letters or numbers

Answer: 78,624,000

Samy T. Combinatorial analysis Probability Theory 11 / 37

Page 12: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Outline

1 Introduction

2 The basic principle of counting

3 Permutations

4 Combinations

5 Multinomial coefficients

Samy T. Combinatorial analysis Probability Theory 12 / 37

Page 13: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Permutations

Definition:A permutation of n objects is an ordered sequence of those n objects.

Property:Two permutations only differ according to the order of the objects

Counting:Let Pn be the number of permutations for n objects. Then

Pn = n! = n × (n − 1) · · · × 2 =n∏

j=1j

Samy T. Combinatorial analysis Probability Theory 13 / 37

Page 14: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Example of permutation

Example: 3 balls, Red, Black, Green

Permutations: RBG, RGB, BRG, BGR, GBN, GBR↪→ 6 possibilities

Formula: P3 = 3! = 6

Samy T. Combinatorial analysis Probability Theory 14 / 37

Page 15: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Proof for the counting number Pn

Sketch of the proof:Direct application of Theorem 2

Samy T. Combinatorial analysis Probability Theory 15 / 37

Page 16: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Example of permutation (1)

Problem:Count possible arrangements of letters in PEPPER

Samy T. Combinatorial analysis Probability Theory 16 / 37

Page 17: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Example of permutation (2)

Solution 1:Consider all letters as distinct objects

P1 E1 P2 P3 E2 R

ThenP6 = 6! = 720 possibilities

Samy T. Combinatorial analysis Probability Theory 17 / 37

Page 18: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Example of permutation (3)

Solution 2:Do not distinguish P’s and E’s.

ThenP6

P3 P2= 6!

3! 2! = 60 possibilities

Samy T. Combinatorial analysis Probability Theory 18 / 37

Page 19: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Outline

1 Introduction

2 The basic principle of counting

3 Permutations

4 Combinations

5 Multinomial coefficients

Samy T. Combinatorial analysis Probability Theory 19 / 37

Page 20: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Combinations

Definition:A combination of p objects among n objects is non ordered subset ofp objects.

Property:Two combinations only differ according to nature of their objects

Counting:The number of combinations of p objects among n objects is(

np

)= n!

p! (n − p)!

Samy T. Combinatorial analysis Probability Theory 20 / 37

Page 21: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Proof of counting

Combination when order is relevant:Number of possibilities is

n × (n − 1) · · · × (n − p + 1) = n!(n − p)!

Combination when order is irrelevant:We divide by # permutations of p objectsNumber of possibilities is

n × (n − 1) · · · × (n − p + 1)p! = n!

p!(n − p)! =(np

)

Samy T. Combinatorial analysis Probability Theory 21 / 37

Page 22: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Example of combination (1)

Situation:We have a group of 5 women and 7 menWe wish to form a committee with 2 women and 3 men

Problem:Find the number of possibilities

Samy T. Combinatorial analysis Probability Theory 22 / 37

Page 23: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Example of combination (2)

Number of possibilities: (52

)(73

)= 350

Samy T. Combinatorial analysis Probability Theory 23 / 37

Page 24: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Example of combination (3)

Situation 2:We have a group of 5 women and 7 menWe wish to form a committee with 2 women and 3 men2 men refuse to serve together

Problem:Find the number of possibilities

Samy T. Combinatorial analysis Probability Theory 24 / 37

Page 25: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Example of combination (4)

New number of possibilities:(52

) {(73

)−(22

)(51

)}= 300

Samy T. Combinatorial analysis Probability Theory 25 / 37

Page 26: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Binomial theorem

Letx1, x2 ∈ Rn ≥ 1

Then

(x1 + x2)n =n∑

k=0

(nk

)x k

1 xn−k2

Theorem 3.

Samy T. Combinatorial analysis Probability Theory 26 / 37

Page 27: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Combinatorial proofFirst expansion:

(x1 + x2)n =∑

(i1,...,in)∈{1,2}nxi1 xi2 · · · xin

Definition of a family of sets:

Ak = {(i1, . . . , in) ∈ {1, 2}n; there are k j ’s such that ij = 1} .

New expansion: we have (convention: |Ak | ≡ Card(Ak))

(x1 + x2)n =n∑

k=0|Ak | x k

1 xn−k2

=n∑

k=0

(nk

)x k

1 xn−k2

Samy T. Combinatorial analysis Probability Theory 27 / 37

Page 28: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Application of the binomial theorem

LetA a set with |A| = nPn ≡ collection of all subsets of A

Then|Pn| = 2n

Proposition 4.

Samy T. Combinatorial analysis Probability Theory 28 / 37

Page 29: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Proof

Decomposition of |Pn|: Write

|Pn| =n∑

k=0|Subsets of A with k elements|

=n∑

k=0

(nk

)

Application of the binomial theorem:

|Pn| = (1 + 1)n

= 2n

Samy T. Combinatorial analysis Probability Theory 29 / 37

Page 30: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Outline

1 Introduction

2 The basic principle of counting

3 Permutations

4 Combinations

5 Multinomial coefficients

Samy T. Combinatorial analysis Probability Theory 30 / 37

Page 31: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Multinomial coefficientsDivisions of n objects into r groups with size n1, . . . , nr : We have

n objects and r groupsWe want nj objects in group j and ∑r

j=1 nj = n

Notation: Set (n

n1, . . . , nr

)= n!∏r

j=1 (nj !)

Counting: We have

# Divisions of n objects into r groups with size n1, . . . , nr=(n

n1, . . . , nr

)

Samy T. Combinatorial analysis Probability Theory 31 / 37

Page 32: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Proof of counting

Number of choices for the ith group:(n −∑i−1

j=1 nj

ni

)

Number of divisions: We have

# Divisions of n objects into r groups with size n1, . . . , nr

=r∏

i=1

(n −∑i−1

j=1 nj

ni

)

=(

nn1, . . . , nr

)

Samy T. Combinatorial analysis Probability Theory 32 / 37

Page 33: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Example of multinomial coefficient (1)

Situation: Police department with 10 officers and5 have to patrol the streets2 are permanently working at the station3 are on reserve at the station

Problem:How many divisions do we get?

Samy T. Combinatorial analysis Probability Theory 33 / 37

Page 34: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Example of multinomial coefficient (2)

Answer:10!

5! 2! 3! = 2520

Samy T. Combinatorial analysis Probability Theory 34 / 37

Page 35: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Tournament example

Situation: Tournament with n = 2m players↪→ How many outcomes?

Particular case:Take m = 3, thus n = 8

Number of rounds: 3

Samy T. Combinatorial analysis Probability Theory 35 / 37

Page 36: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Tournament example (2)Counting number of outcomes for the first round:

# pairings with order︷ ︸︸ ︷(8

2, 2, 2, 2

) No ordering︷︸︸︷14!

Possible outcomes︷︸︸︷24 = 8!

4!

Counting number of outcomes for second and third round:

4!2! and 2!

1!

Conclusion:

8!4!

4!2!

2!1! = 8! = 40, 320 possible outcomes

Samy T. Combinatorial analysis Probability Theory 36 / 37

Page 37: SamyTindel - math.purdue.edustindel/teaching/ma... · Asimpleexampleofcounting(2) Particularinstanceoftheprevioussituation: Taken= 4andm= 2 Possibleconfigurations: 0011 0101 0110

Multinomial theorem

Letx1, x2, . . . , xr ∈ Rn ≥ 1

Then

(x1 + x2 + . . . + xr)n =∑

(n1,...,nr )∈An,r

(n

n1, . . . , nr

)xn1

1 xn22 · · · xnr

r

where

An,r = {(n1, . . . , nr) ∈ Nr ; n1 + n2 + · · ·+ nr = n}

Theorem 5.

Samy T. Combinatorial analysis Probability Theory 37 / 37