robust 3d gravity gradient inversion by planting anomalous densities

139
 Robust 3D gravity gradient inversion by planting anomalous densities Leonardo Uieda Valéria C. F. Barbosa September, 2011 Observatório Nacional

Upload: leonardo-uieda

Post on 19-Jun-2015

425 views

Category:

Technology


3 download

DESCRIPTION

Paper presented at the 2011 SEG Annual Meeting

TRANSCRIPT

Page 1: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust 3D gravity gradient inversionby planting anomalous densities

Leonardo Uieda

Valéria C. F. Barbosa

September, 2011

Observatório Nacional

Page 2: Robust 3D gravity gradient inversion by planting anomalous densities

   

Outline

Page 3: Robust 3D gravity gradient inversion by planting anomalous densities

   

Forward Problem

Outline

Page 4: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inverse ProblemForward Problem

Outline

Page 5: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inverse Problem Planting AlgorithmForward Problem

Inspired by René (1986)

Outline

Page 6: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inverse Problem Planting Algorithm

Synthetic Data

Forward Problem

Inspired by René (1986)

Outline

Page 7: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inverse Problem Planting Algorithm

Synthetic Data Real Data

Forward Problem

Inspired by René (1986)

Outline

Quadrilátero Ferrífero, Brazil

Page 8: Robust 3D gravity gradient inversion by planting anomalous densities

   

Forward problem

Page 9: Robust 3D gravity gradient inversion by planting anomalous densities

   

Observed gαβ

gαβ

Page 10: Robust 3D gravity gradient inversion by planting anomalous densities

   

Observed gαβ

gαβ

Page 11: Robust 3D gravity gradient inversion by planting anomalous densities

   

Observed gαβ

gαβ

Anomalous density

Page 12: Robust 3D gravity gradient inversion by planting anomalous densities

   

Observed gαβ

gαβ

Anomalous densityWant to model this

Page 13: Robust 3D gravity gradient inversion by planting anomalous densities

   

Interpretative model

Page 14: Robust 3D gravity gradient inversion by planting anomalous densities

   

Interpretative model

Right rectangular prism

Δρ=p j

Page 15: Robust 3D gravity gradient inversion by planting anomalous densities

   Prisms with not shown

p j=0

Page 16: Robust 3D gravity gradient inversion by planting anomalous densities

   

p=[p1

p2

pM]

Prisms with not shown

p j=0

Page 17: Robust 3D gravity gradient inversion by planting anomalous densities

   

Predicted gαβ

dαβ

p=[p1

p2

pM]

Prisms with not shown

p j=0

Page 18: Robust 3D gravity gradient inversion by planting anomalous densities

   

Predicted gαβ

dαβ

p=[p1

p2

pM]

dαβ=∑j=1

M

p j a jαβ

Prisms with not shown

p j=0

Page 19: Robust 3D gravity gradient inversion by planting anomalous densities

   

Predicted gαβ

dαβ

p=[p1

p2

pM]

dαβ=∑j=1

M

p j a jαβ

Contribution of jth prism

Prisms with not shown

p j=0

Page 20: Robust 3D gravity gradient inversion by planting anomalous densities

   

d xx

d xy

d xz

d yy

d yz

d zz

More components:

Page 21: Robust 3D gravity gradient inversion by planting anomalous densities

   

d

d xx

d xy

d xz

d yy

d yz

d zz

More components:

Page 22: Robust 3D gravity gradient inversion by planting anomalous densities

   

d

d xx

d xy

d xz

d yy

d yz

d zz

=∑j=1

M

p j a j

More components:

Page 23: Robust 3D gravity gradient inversion by planting anomalous densities

   

d

d xx

d xy

d xz

d yy

d yz

d zz

=∑j=1

M

p j a j =A p

More components:

Page 24: Robust 3D gravity gradient inversion by planting anomalous densities

   

d

d xx

d xy

d xz

d yy

d yz

d zz

=∑j=1

M

p j a j =A p

Jacobian (sensitivity) matrix

More components:

Page 25: Robust 3D gravity gradient inversion by planting anomalous densities

   

d

d xx

d xy

d xz

d yy

d yz

d zz

=∑j=1

M

p j a j =A p

Column vector of

More components:

A

Page 26: Robust 3D gravity gradient inversion by planting anomalous densities

   

Forward problem:

p dd=∑j=1

M

p j a j

Page 27: Robust 3D gravity gradient inversion by planting anomalous densities

   

p̂ g?Inverse problem:

Page 28: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inverse problem

Page 29: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Page 30: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Data­misfit function:

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Page 31: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Data­misfit function:

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

 ℓ2­norm of r

Page 32: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Data­misfit function:

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

 ℓ2­norm of r

Least­squares fit

Page 33: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Data­misfit function:

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

 ℓ2­norm of r

Least­squares fit

ϕ( p)=∥r∥1=∑i=1

N

∣gi−d i∣

 ℓ1­norm of r

Page 34: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Data­misfit function:

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

 ℓ2­norm of r

Least­squares fit

ϕ( p)=∥r∥1=∑i=1

N

∣gi−d i∣

 ℓ1­norm of r

Robust fit

Page 35: Robust 3D gravity gradient inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

Page 36: Robust 3D gravity gradient inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

constraints

Page 37: Robust 3D gravity gradient inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

well­posed problem

exist

unique

stable

constraints

Page 38: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact

Page 39: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

Page 40: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

Page 41: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts● Any # of ≠ density contrasts

ρs

Page 42: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts

3. Only 

● Any # of ≠ density contrasts

orp j=0 p j=ρs

ρs

Page 43: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts

3. Only 

● Any # of ≠ density contrasts

orp j=0 p j=ρs

ρs

4.  of closest seed p j=ρs

Page 44: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Page 45: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Data­misfit function

Page 46: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

(Tradeoff between fit and regularization)Regularizing parameter

Page 47: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

θ( p)=∑j=1

M p j

p j+ϵl j

β

Page 48: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

θ( p)=∑j=1

M p j

p j+ϵl j

βSimilar to Silva Dias et al. (2009)

Page 49: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

θ( p)=∑j=1

M p j

p j+ϵl j

βSimilar to Silva Dias et al. (2009)

Distance between jth prism and seed

Page 50: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

θ( p)=∑j=1

M p j

p j+ϵl j

βSimilar to Silva Dias et al. (2009)

Distance between jth prism and seed

Imposes:

● Compactness ● Concentration around seeds

Page 51: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact

2. Concentrated around “seeds”Regularization

3. Only  orp j=0 p j=ρs

4.  of closest seed p j=ρs

Page 52: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact

2. Concentrated around “seeds”Regularization

Algorithm3. Only  orp j=0 p j=ρs

4.  of closest seed p j=ρs Based on René (1986)

Page 53: Robust 3D gravity gradient inversion by planting anomalous densities

   

Planting Algorithm

Page 54: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup: g = observed data

Page 55: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:Define interpretative model

Interpretative model

g = observed data

Page 56: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:Define interpretative model

All parameters zero

Interpretative model

g = observed data

Page 57: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:

seedsN S

Define interpretative model

All parameters zero

Interpretative model

g = observed data

Page 58: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Prisms with not shown

p j=0

g = observed data

Page 59: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

Prisms with not shown

p j=0

g = observed data

d = predicted data

Page 60: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

Prisms with not shown

p j=0

g = observed data

Predicted by seeds

d = predicted data

Page 61: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

Prisms with not shown

p j=0

g = observed data

d = predicted data

r(0)=g−(∑s=1

N S

ρs a jS)

Page 62: Robust 3D gravity gradient inversion by planting anomalous densities

   

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−(∑s=1

N S

ρs a jS)

Prisms with not shown

g = observed data

d = predicted data

NeighborsFind neighbors of seeds

p j=0

Setup:

Page 63: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

p j=0

Growth:

Page 64: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

Choose neighbor:

p j=0

Growth:

Page 65: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Choose neighbor:

p j=0

Growth:

(New elements)

j

Page 66: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Choose neighbor:

p j=0

Growth:

(New elements)

j

Update residuals

r(new)=r(old )

− p j a j

Page 67: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Choose neighbor:

p j=0

Growth:

(New elements)

j

Update residuals

r(new)=r(old )

− p j a j

Contribution of j

Page 68: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Choose neighbor:

p j=0

Growth:

(New elements)

j

Update residuals

r(new)=r(old )

− p j a j

Variable sizes

None found = no accretion

Page 69: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

p j=0

Growth:

(New elements)

Page 70: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

p j=0

Growth:

j

(New elements)

Page 71: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

p j=0

Growth:

j

(New elements)

Page 72: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes

p j=0

Growth:

j

(New elements)

Page 73: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

Growth:

Done!

j

(New elements)

Page 74: Robust 3D gravity gradient inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

Page 75: Robust 3D gravity gradient inversion by planting anomalous densities

   

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Page 76: Robust 3D gravity gradient inversion by planting anomalous densities

   

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

No matrix multiplication (only vector +)

Page 77: Robust 3D gravity gradient inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Page 78: Robust 3D gravity gradient inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed

Page 79: Robust 3D gravity gradient inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed & delete after update

Page 80: Robust 3D gravity gradient inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed

Lazy evaluation

& delete after update

Page 81: Robust 3D gravity gradient inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

Page 82: Robust 3D gravity gradient inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

No matrix multiplication (only vector +)

Lazy evaluation of Jacobian

Page 83: Robust 3D gravity gradient inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

No matrix multiplication (only vector +)

Lazy evaluation of Jacobian

Fast inversion + low memory usage

Page 84: Robust 3D gravity gradient inversion by planting anomalous densities

   

Synthetic Data

Page 85: Robust 3D gravity gradient inversion by planting anomalous densities

   

Data set:

● 3 components

● 51 x 51 points

● 2601 points/component

● 7803 measurements

● 5 Eötvös noise

Page 86: Robust 3D gravity gradient inversion by planting anomalous densities

   

Model:

Page 87: Robust 3D gravity gradient inversion by planting anomalous densities

   

Model: ● 11 prisms

Page 88: Robust 3D gravity gradient inversion by planting anomalous densities

   

Model: ● 11 prisms ● 4 outcropping

Page 89: Robust 3D gravity gradient inversion by planting anomalous densities

   

Model: ● 11 prisms ● 4 outcropping

Page 90: Robust 3D gravity gradient inversion by planting anomalous densities

   

Model: ● 11 prisms ● 4 outcropping

Page 91: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Strongly interfering effects

Page 92: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Strongly interfering effects

● What if only interested in these?

Page 93: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Common scenario

Page 94: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Common scenario

● May not have prior information

● Density contrast

● Approximate depth

Page 95: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Common scenario

● May not have prior information

● Density contrast

● Approximate depth

● No way to provide seeds

Page 96: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Common scenario

● May not have prior information

● Density contrast

● Approximate depth

● No way to provide seeds

● Difficult to isolate effect of targets

Page 97: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust procedure:

Page 98: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust procedure:● Seeds only for targets

Page 99: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust procedure:● Seeds only for targets

Page 100: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust procedure:● Seeds only for targets

●  ℓ1­norm to “ignore” non­targeted

Page 101: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust procedure:● Seeds only for targets

●  ℓ1­norm to “ignore” non­targeted

Page 102: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data

Page 103: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data

Page 104: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data

Page 105: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data

Page 106: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data

Page 107: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data ● 37,500 prisms

Page 108: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Only prisms with zerodensity contrast not shown

Page 109: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Only prisms with zerodensity contrast not shown

Page 110: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Only prisms with zerodensity contrast not shown

Page 111: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Only prisms with zerodensity contrast not shown

Page 112: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Only prisms with zerodensity contrast not shown

Page 113: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

● Recover shape of targets

Only prisms with zerodensity contrast not shown

Page 114: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

● Recover shape of targets

● Total time = 2.2 minutes (on laptop) Only prisms with zerodensity contrast not shown

Page 115: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Predicted data in contours

Page 116: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Predicted data in contours

Effect of true targeted sources

Page 117: Robust 3D gravity gradient inversion by planting anomalous densities

   

Real Data

Page 118: Robust 3D gravity gradient inversion by planting anomalous densities

   

Data:

● 3 components

● FTG survey

● Quadrilátero Ferrífero, Brazil

Page 119: Robust 3D gravity gradient inversion by planting anomalous densities

   

Data:

● 3 components

● FTG survey

● Quadrilátero Ferrífero, Brazil

Targets:

● Iron ore bodies

● BIFs of Cauê Formation

Page 120: Robust 3D gravity gradient inversion by planting anomalous densities

   

Data:

● 3 components

● FTG survey

● Quadrilátero Ferrífero, Brazil

Targets:

● Iron ore bodies

● BIFs of Cauê Formation

Page 121: Robust 3D gravity gradient inversion by planting anomalous densities

   

Data:

Seeds for iron ore:

● Density contrast 1.0 g/cm3

● Depth 200 m

Page 122: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion:O

bser

ved

Pre

dict

ed● 46 seeds ● 13,746 data

Page 123: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 124: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 125: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 126: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 127: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 128: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 129: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Only prisms with zerodensity contrast not shown

Page 130: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Only prisms with zerodensity contrast not shown

Page 131: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Only prisms with zerodensity contrast not shown

Page 132: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 133: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 134: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

● Agree with previous interpretations

(Martinez et al., 2010)

Page 135: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

● Agree with previous interpretations

(Martinez et al., 2010)

● Total time = 14 minutes

(on laptop)

Page 136: Robust 3D gravity gradient inversion by planting anomalous densities

   

Conclusions

Page 137: Robust 3D gravity gradient inversion by planting anomalous densities

   

● New 3D gravity gradient inversion● Multiple sources● Interfering gravitational effects● Non­targeted sources● No matrix multiplications● No linear systems● Lazy evaluation of Jacobian matrix

Conclusions

Page 138: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Estimates geometry● Given density contrasts● Ideal for:

● Sharp contacts● Well­constrained physical properties

– Ore bodies– Intrusive rocks– Salt domes

Conclusions

Page 139: Robust 3D gravity gradient inversion by planting anomalous densities

   

Thank you