3d gravity inversion by planting anomalous densities

180
 3D gravity inversion by planting anomalous densities Leonardo Uieda and Valéria C. F. Barbosa August, 2011 Observatório Nacional

Upload: leonardo-uieda

Post on 19-Jun-2015

554 views

Category:

Technology


0 download

DESCRIPTION

Paper presented at the 2011 SBGf International Congress in Rio de Janeiro, Brazil. Abstract: This paper presents a novel gravity inversion method for estimating a 3D density-contrast distribution defined on a grid of prisms. Our method consists of an iterative algorithm that does not require the solution of a large equation system. Instead, the solution grows systematically around user-specified prismatic elements called “seeds”. Each seed can have a different density contrast, allowing the interpretation of multiple bodies with different density contrasts and interfering gravitational effects. The compactness of the solution around the seeds is imposed by means of a regularizing function. The solution grows by the accretion of neighboring prisms of the current solution. The prisms for the accretion are chosen by systematically searching the set of current neighboring prisms. Therefore, this approach allows that the columns of the Jacobian matrix be calculated on demand. This is a known technique from computer science called “lazy evaluation”, which greatly reduces the demand of computer memory and processing time. Test on synthetic data and on real data collected over the ultramafic Cana Brava complex, central Brazil, confirmed the ability of our method in detecting sharp and compact bodies.

TRANSCRIPT

Page 1: 3D gravity inversion by planting anomalous densities

   

3D gravity inversion by planting anomalous densities

Leonardo Uieda and Valéria C. F. Barbosa

August, 2011

Observatório Nacional

Page 2: 3D gravity inversion by planting anomalous densities

   

Outline

Page 3: 3D gravity inversion by planting anomalous densities

   

Forward Problem

Outline

Page 4: 3D gravity inversion by planting anomalous densities

   

Inverse ProblemForward Problem

Outline

Page 5: 3D gravity inversion by planting anomalous densities

   

Inverse Problem Planting AlgorithmForward Problem

Inspired by René (1986)

Outline

Page 6: 3D gravity inversion by planting anomalous densities

   

Inverse Problem Planting Algorithm

Synthetic Data

Forward Problem

Inspired by René (1986)

Outline

Page 7: 3D gravity inversion by planting anomalous densities

   

Inverse Problem Planting Algorithm

Synthetic Data Real Data

Forward Problem

Inspired by René (1986)

Outline

Page 8: 3D gravity inversion by planting anomalous densities

   

Forward problem

Page 9: 3D gravity inversion by planting anomalous densities

   

Surface of the Earth

Page 10: 3D gravity inversion by planting anomalous densities

   

Observations      of gz

Surface of the Earth

Page 11: 3D gravity inversion by planting anomalous densities

   

Observations      of gz

Group in a vector:

g=[g1

g2

⋮gN

]N×1

 = observed datag

Surface of the Earth

Page 12: 3D gravity inversion by planting anomalous densities

   

 = observed datag

Page 13: 3D gravity inversion by planting anomalous densities

   

 = observed datag

Assume caused by anomalous sources

Page 14: 3D gravity inversion by planting anomalous densities

   

 = observed datag

Assume caused by anomalous sources

ΔρDensity contrast = 

Page 15: 3D gravity inversion by planting anomalous densities

   

Parametrize the gravitational effect

Page 16: 3D gravity inversion by planting anomalous densities

   

Parametrize the gravitational effect

Linearize

Page 17: 3D gravity inversion by planting anomalous densities

   

Parametrize the gravitational effect

Discretize intoM elements

Linearize

Interpretative model

Page 18: 3D gravity inversion by planting anomalous densities

   

Right rectangular prisms

Parametrize the gravitational effect

Discretize intoM elements

Homogeneous density contrast

jth element

Linearize

 (Nagy et al., 2000)

Interpretative model

p j

Page 19: 3D gravity inversion by planting anomalous densities

   

Arrange M density contrasts in a vector:

Parametrize the gravitational effect

Discretize intoM elements

p=[p1

p2

⋮pM

]M×1

Parameter vector

Linearize

Interpretative model

Page 20: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

p j=Δρ

Prisms with not shown

p j=0

Page 21: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

g≈d

Prisms with not shown

p j=0

p j=Δρ

Page 22: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

g≈dPredicted data

Prisms with not shown

p j=0

p j=Δρ

Page 23: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

d=∑j=1

M

p j a j

g≈dPredicted data

Prisms with not shown

p j=0

p j=Δρ

Page 24: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

d=∑j=1

M

p j a j

Density contrast of jth prism

g≈dPredicted data

Prisms with not shown

p j=0

p j=Δρ

Page 25: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

d=∑j=1

M

p j a j

g≈dPredicted data

Effect of prism with unit density Prisms with not shown

p j=0

p j=Δρ

Page 26: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

g≈dPredicted data

d=∑j=1

M

p j a j=A p

Prisms with not shown

p j=0

p j=Δρ

Page 27: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

g≈dPredicted data

Parameter vector

d=∑j=1

M

p j a j=A p

Prisms with not shown

p j=0

p j=Δρ

Page 28: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

g≈dPredicted data

Jacobian (sensitivity) matrix

d=∑j=1

M

p j a j=A p

Prisms with not shown

p j=0

p j=Δρ

Page 29: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

g≈dPredicted data

Column vector of A

d=∑j=1

M

p j a j=A p

Prisms with not shown

p j=0

p j=Δρ

Page 30: 3D gravity inversion by planting anomalous densities

   

Solved forward problem:

p dd=∑j=1

M

p j a j

Page 31: 3D gravity inversion by planting anomalous densities

   

p̂ g?How to do the inverse?

Page 32: 3D gravity inversion by planting anomalous densities

   

Inverse problem

Page 33: 3D gravity inversion by planting anomalous densities

   

Minimize difference between

Page 34: 3D gravity inversion by planting anomalous densities

   

Minimize difference between g

Observed data

Page 35: 3D gravity inversion by planting anomalous densities

   

Minimize difference between andg d

Predicted data

Page 36: 3D gravity inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−d

Page 37: 3D gravity inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−d

Residual vector

Page 38: 3D gravity inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−d

Residual vector

Data­misfit function: ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Page 39: 3D gravity inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−d

Residual vector

Data­misfit function: ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

 ℓ2­norm of r

Least­squares fit

Page 40: 3D gravity inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

Page 41: 3D gravity inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

constraints

Page 42: 3D gravity inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

well­posed problem

exist

unique

stable

constraints

Page 43: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact

Page 44: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

Page 45: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

Page 46: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

Similar to René (1986)

Page 47: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms

Similar to René (1986)

Page 48: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts ρs

Similar to René (1986)

Page 49: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts● Any n° of ≠ density contrasts

ρs

Similar to René (1986)

Not like René (1986)

Page 50: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts

3. Only 

● Any n° of ≠ density contrasts

orp j=0 p j=ρs

ρs

Similar to René (1986)

Not like René (1986)

Page 51: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts

3. Only 

● Any n° of ≠ density contrasts

orp j=0 p j=ρs

ρs

4.  of closest seed p j=ρs

Similar to René (1986)

Not like René (1986)

Page 52: 3D gravity inversion by planting anomalous densities

   

ill­posed problem well­posed problemconstraints

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Minimize data misfit Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Page 53: 3D gravity inversion by planting anomalous densities

   

ill­posed problem well­posed problemconstraints

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Minimize data misfit Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing parameter

Page 54: 3D gravity inversion by planting anomalous densities

   

ill­posed problem well­posed problemconstraints

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Minimize data misfit Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

Page 55: 3D gravity inversion by planting anomalous densities

   

ill­posed problem well­posed problemconstraints

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Minimize data misfit Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

μ = tradeoff between fit and regularization

Page 56: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl j

β

Γ( p)=ϕ( p)+μθ( p)

Page 57: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl j

β

Γ( p)=ϕ( p)+μθ( p)Similar to 

Silva Dias et al. (2009)

Page 58: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl jβ

Γ( p)=ϕ( p)+μθ( p)

ϵ = avoid singularity

l j = distance between jth prism and seed

β = how much compactness (3 to 7)

Similar to Silva Dias et al. (2009)

Page 59: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl jβ

Γ( p)=ϕ( p)+μθ( p)

For p j≠0 :

Page 60: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl j

β

Γ( p)=ϕ( p)+μθ( p)

distance from seeds

For p j≠0 :

Page 61: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl j

β

Γ( p)=ϕ( p)+μθ( p)

distance from seeds regularizing function

For p j≠0 :

Page 62: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl j

β

Γ( p)=ϕ( p)+μθ( p)

distance from seeds regularizing function

Imposes:

● Compactness ● Concentration around seeds

For p j≠0 :

Page 63: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact

2. Concentrated around “seeds”

3. Only  orp j=0 p j=Δρs

4.  of closest seed p j=Δρs

Regularization

Page 64: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact

2. Concentrated around “seeds”

3. Only  orp j=0 p j=Δρs

4.  of closest seed p j=Δρs

Regularization

Algorithm

Page 65: 3D gravity inversion by planting anomalous densities

   

Planting Algorithm

Page 66: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Overview:

Page 67: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

Overview:

Page 68: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

Overview:

Page 69: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds known density contrast & position

Overview:

Page 70: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds known density contrast & position

All other parameters set to 0

Overview:

Page 71: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

All other parameters set to 0

Iteratively grow

Overview:

known density contrast & position

Page 72: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

All other parameters set to 0

Iteratively grow add neighbor of seed

Overview:

known density contrast & position

Page 73: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

All other parameters set to 0

Iteratively grow add neighbor of seed

accretion

Overview:

known density contrast & position

Page 74: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

All other parameters set to 0

Iteratively grow add neighbor of seed

accretion

Controlled by goal function and data misfit function

Overview:

Γ( p)=ϕ( p)+μθ( p) ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

known density contrast & position

Page 75: 3D gravity inversion by planting anomalous densities

   

Algorithm:

Page 76: 3D gravity inversion by planting anomalous densities

   

Algorithm:Define interpretative model

Interpretative model

Page 77: 3D gravity inversion by planting anomalous densities

   

Algorithm:Define interpretative model

g = observed data

Interpretative model

Page 78: 3D gravity inversion by planting anomalous densities

   

Algorithm:Define interpretative model

All parameters zero

g = observed data

Interpretative model

Page 79: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

g = observed data

Interpretative model

Page 80: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Prisms with not shown

p j=0

Seeds

Page 81: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

Prisms with not shown

p j=0

Page 82: 3D gravity inversion by planting anomalous densities

   

Algorithm:

Residual vector

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

Prisms with not shown

p j=0

Page 83: 3D gravity inversion by planting anomalous densities

   

Algorithm:

Observed data

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

g = observed data

Prisms with not shown

p j=0

Page 84: 3D gravity inversion by planting anomalous densities

   

Algorithm:

Predicted by seeds

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

g = observed data

d = predicted data

Prisms with not shown

p j=0

Page 85: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

g = observed data

d=∑j=0

M

p j a j

d = predicted data

Prisms with not shown

p j=0

Page 86: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

g = observed data

d=∑j=0

M

p j a j

Many=0

d = predicted data

Prisms with not shown

p j=0

Page 87: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

g = observed data

d=∑s=1

N S

ρs a jS

d = predicted data

Prisms with not shown

p j=0

Page 88: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−(∑s=1

N S

ρs a jS)

Prisms with not shown

g = observed data

d = predicted data

p j=0

Page 89: 3D gravity inversion by planting anomalous densities

   

Algorithm:

Density contrastof sth seed

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−(∑s=1

N S

ρs a jS)

Prisms with not shown

g = observed data

d = predicted data

p j=0

Page 90: 3D gravity inversion by planting anomalous densities

   

seedsN S

Algorithm:Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−(∑s=1

N S

ρs a jS)Column vector

of APrisms with not shown

g = observed data

d = predicted data

p j=0

Page 91: 3D gravity inversion by planting anomalous densities

   

seedsN S

Algorithm:Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−(∑s=1

N S

ρs a jS)

Prisms with not shown

g = observed data

d = predicted data

NeighborsFind neighbors of seeds

p j=0

Page 92: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

p j=0

Page 93: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

p j=0

Page 94: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

p j=0

Page 95: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

ϕ( p)=∥r∥2

p j=0

Page 96: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=0

Page 97: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

j = chosen

j

p j=0

Page 98: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

j

p j=0

(New elements)

Page 99: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

j

p j=0

(New elements)new predicted data

Page 100: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−d(new)

p j=0

(New elements)new predicted data

j

Page 101: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−d(new)

p j=0

(New elements)new predicted data

j

d(old )+ effect of j

Page 102: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−d(new)

p j=0

(New elements)new predicted data

j

d(old )+ effect of j

∑s=1

N S

ρs a j Sp j a j+

Page 103: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−d(new)

p j=0

(New elements)new predicted data

j

d(old )+ effect of j

∑s=1

N S

ρs a j Sp j a j+

Page 104: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−∑

s=1

N S

ρs a j S− p j a j

p j=0

(New elements)new predicted data

j

Page 105: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−∑

s=1

N S

ρs a j S− p j a j

p j=0

(New elements)new predicted data

j{

r(0)

Page 106: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

p j=0

(New elements)new predicted data

jr(new)

=r(old )− p j a j

Page 107: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

p j=0

Page 108: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

Variable sizes

p j=0

Page 109: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

p j=0

Page 110: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

p j=0

(New elements)

j

Page 111: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

Page 112: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

Page 113: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

(New elements)

j

Page 114: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

(New elements)

j

Page 115: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

j

Page 116: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0j

Page 117: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

j

Page 118: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0j

Page 119: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

j

Page 120: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

j

Page 121: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

Page 122: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

Done!p j=0

Page 123: 3D gravity inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

Page 124: 3D gravity inversion by planting anomalous densities

   

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Page 125: 3D gravity inversion by planting anomalous densities

   

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

No matrix multiplication (only vector +)

Page 126: 3D gravity inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Page 127: 3D gravity inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed

Page 128: 3D gravity inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed & delete after update

Page 129: 3D gravity inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed

Lazy evaluation

& delete after update

Page 130: 3D gravity inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

Page 131: 3D gravity inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

No matrix multiplication (only vector +)

Lazy evaluation of Jacobian

Page 132: 3D gravity inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

No matrix multiplication (only vector +)

Lazy evaluation of Jacobian

Fast inversion + low memory usage

Page 133: 3D gravity inversion by planting anomalous densities

   

Synthetic Data

Page 134: 3D gravity inversion by planting anomalous densities

   

Page 135: 3D gravity inversion by planting anomalous densities

   

● Sources = 1 km X 1 km X 1 km

Page 136: 3D gravity inversion by planting anomalous densities

   

Δρ=0.5 g/ cm3

● Sources = 1 km X 1 km X 1 km

Page 137: 3D gravity inversion by planting anomalous densities

   

Δρ=1.0 g/ cm3

Δρ=0.5 g/ cm3

● Sources = 1 km X 1 km X 1 km

Page 138: 3D gravity inversion by planting anomalous densities

   

● Sources = 1 km X 1 km X 1 km

Depth=0.8 km

Page 139: 3D gravity inversion by planting anomalous densities

   

● Sources = 1 km X 1 km X 1 km

Depth=1.6 km

Depth=0.8 km

Page 140: 3D gravity inversion by planting anomalous densities

   

● Sources = 1 km X 1 km X 1 km ● Data set = 375 observations

Depth=1.6 km

Depth=0.8 km

Page 141: 3D gravity inversion by planting anomalous densities

   

● Sources = 1 km X 1 km X 1 km

● Area = 5 km X 3 km

● Data set = 375 observations

Depth=1.6 km

Depth=0.8 km

Page 142: 3D gravity inversion by planting anomalous densities

   

● 0.05 mGal Gaussian noise

● Sources = 1 km X 1 km X 1 km

● Area = 5 km X 3 km

● Data set = 375 observations

Depth=1.6 km

Depth=0.8 km

Page 143: 3D gravity inversion by planting anomalous densities

   

● Interpretative model = 151,875 prisms

● Prisms = 66.7 m X 66.7 m X 66.7 m

Page 144: 3D gravity inversion by planting anomalous densities

   

● Used 2 seeds

Page 145: 3D gravity inversion by planting anomalous densities

   

● Used 2 seeds ● Placed in center of sources

Page 146: 3D gravity inversion by planting anomalous densities

   

● Used 2 seeds

● With corresponding density contrasts

● Placed in center of sources

Page 147: 3D gravity inversion by planting anomalous densities

   

Δρ=0.5 g/ cm3

● Used 2 seeds

● With corresponding density contrasts

● Placed in center of sources

Page 148: 3D gravity inversion by planting anomalous densities

   

Δρ=1.0 g/cm3

Δρ=0.5 g/ cm3

● Used 2 seeds

● With corresponding density contrasts

● Placed in center of sources

Page 149: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 150: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 151: 3D gravity inversion by planting anomalous densities

   

Inversion result

● compact● concentrated around seeds● recover correct geometry of sources 

Page 152: 3D gravity inversion by planting anomalous densities

   

Predicted data

Inversion result

● compact● concentrated around seeds● recover correct geometry of sources 

Page 153: 3D gravity inversion by planting anomalous densities

   

Predicted dataObserved data

Inversion result

● compact● concentrated around seeds● recover correct geometry of sources 

Page 154: 3D gravity inversion by planting anomalous densities

   

Predicted dataObserved data

Inversion result

● compact● concentrated around seeds

● fits observations

● recover correct geometry of sources 

Page 155: 3D gravity inversion by planting anomalous densities

   

Predicted dataObserved data

On laptop with 2.0 GHz

● 375 data● 151,875 prisms● Total time≈4.4 min

Page 156: 3D gravity inversion by planting anomalous densities

   

Real Data

Page 157: 3D gravity inversion by planting anomalous densities

   

After Carminatti et al. (2003)

Page 158: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC)

After Carminatti et al. (2003)

Page 159: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC) & Palmeirópolis sequence (PVSS)

After Carminatti et al. (2003)

Page 160: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC) & Palmeirópolis sequence (PVSS)

● Outcropping

● North of Goiás

● Tocantins Province

● Amazonian & São Francisco cratons

After Carminatti et al. (2003)

Page 161: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC) & Palmeirópolis sequence (PVSS)

Gravimetric data:

● 132 observations

● Residual Bouguer

● Max 45 mGal

After Carminatti et al. (2003)

Page 162: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC) & Palmeirópolis sequence (PVSS)

Previous interpretation:

After Carminatti et al. (2003)

● Carminatti et al. (2003)

● PVSS

● CVC● Max depth

Δρ=0.27 g/cm3

Δρ=0.39 g /cm3

≈6 km

Page 163: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC) & Palmeirópolis sequence (PVSS)

Previous interpretation:

After Carminatti et al. (2003)

● Carminatti et al. (2003)

● PVSS

● CVC● Max depth

Δρ=0.27 g/cm3

Δρ=0.39 g /cm3

≈6 kmTest this hypothesis

Page 164: 3D gravity inversion by planting anomalous densities

   

Assign seeds

Green:z=0 km

Δρ=0.27 g /cm3

Blue:z=2 km

Δρ=0.27g /cm3

Red:z=0 km

Δρ=0.39 g /cm3

Total = 269

Assign seeds

Page 165: 3D gravity inversion by planting anomalous densities

   

Interpretative model

Size: 120 km X 50 km X 11 km

480,000 prisms

Prism size: 500 m X 500 m X 575 m

Page 166: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 167: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 168: 3D gravity inversion by planting anomalous densities

   

Inversion result

Predicted dataObserved data

Page 169: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 170: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 171: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 172: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 173: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 174: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 175: 3D gravity inversion by planting anomalous densities

   

Inversion result

≈6 kmMax depth

Agree with previous interpretation

Compact

Fits observations

Page 176: 3D gravity inversion by planting anomalous densities

   

Inversion result

On laptop with 2.0 GHz

● 132 data● 480,00 prisms● Total time≈3.75 min

Page 177: 3D gravity inversion by planting anomalous densities

   

Conclusions

Page 178: 3D gravity inversion by planting anomalous densities

   

● New 3D gravity inversion● Multiple sources● Interfering gravitational effects● Abrupt density­contrast distribution● No matrix multiplication● No need to solve large linear systems● Ideal for: ore bodies, intrusions, salt domes, etc

Conclusions

Page 179: 3D gravity inversion by planting anomalous densities

   

● Developed for gravity gradients

● Presented at EAGE 2011 preliminary results

● To be presented at SEG 2011:

● Final results 

● Robust method to handle non­targeted sources

Previous and future work

Page 180: 3D gravity inversion by planting anomalous densities

   

Thank you