research article some identities involving chebyshev...

6
Research Article Some Identities Involving Chebyshev Polynomials Xiaoxue Li School of Mathematics, Northwest University, Xi’an, Shaanxi 710127, China Correspondence should be addressed to Xiaoxue Li; [email protected] Received 18 December 2014; Accepted 18 March 2015 Academic Editor: Fabio Tramontana Copyright Β© 2015 Xiaoxue Li. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e main purpose of this paper is using the combinatorial method and algebraic manipulations to study some sums of powers of Chebyshev polynomials and give several interesting identities. As some applications of these results, we obtained several divisibility properties involving Chebyshev polynomials. 1. Introduction For any integer β‰₯0, the famous Chebyshev polynomials of the first and second kind () and () are defined as follows: 0 () = 1, 1 () = , and +1 () = 2 () βˆ’ βˆ’1 () for all β‰₯1; 0 () = 1, 1 () = 2, and +1 () = 2 () βˆ’ βˆ’1 () for all β‰₯1. It is clear that these polynomials are the second-order linear recurrence polynomial; they satisfy the computational formulae: () = 1 2 [( + √ 2 βˆ’ 1) + ( βˆ’ √ 2 βˆ’ 1) ], () = 1 2 √ 2 βˆ’1 β‹… [( + √ 2 βˆ’ 1) +1 βˆ’ ( βˆ’ √ 2 βˆ’ 1) +1 ]. (1) About the elementary properties of Chebyshev polyno- mials and related second-order linear recurrences, many authors had studied them and obtained a series of interesting conclusions. For example, some of the theoretical results can be found in [1–4], and other some important applications of the Chebyshev polynomials can also be found in [5–10]. Recently, several authors studied the sums of powers of Fibonacci numbers { } and Lucas numbers { }, and obtained a series of important identities; see [11–13]. At the same time, Melham [13] also proposed the following two conjectures. Conjecture 1. Let β‰₯1 be an integer. en the sum 1 3 5 β‹…β‹…β‹… 2+1 βˆ‘ =1 2+1 2 (2) can be expressed as ( 2+1 βˆ’ 1) 2 2βˆ’1 ( 2+1 ), where 2βˆ’1 () is a polynomial of degree 2 βˆ’ 1 with integer coefficients. Conjecture 2. Let β‰₯0 be an integer. en the sum 1 3 5 β‹…β‹…β‹… 2+1 βˆ‘ =1 2+1 2 (3) can be expressed as ( 2+1 βˆ’ 1) 2 ( 2+1 ), where 2 () is a polynomial of degree 2 with integer coefficients. Wang and Zhang [14] solved the Conjecture 2 completely and made some substantial progress for the Conjecture 1. e main purpose of this paper is using the algebraic manipulations to obtain some identities involving Chebyshev polynomials of the first and second kind () and (). As some applications, we give three interesting corollaries. at is, we will prove the following two results. Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2015, Article ID 950695, 5 pages http://dx.doi.org/10.1155/2015/950695

Upload: others

Post on 22-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Some Identities Involving Chebyshev ...downloads.hindawi.com/journals/mpe/2015/950695.pdfis proves the identity (A) of eorem . Similarly, from formula wecanalsodeducethe

Research ArticleSome Identities Involving Chebyshev Polynomials

Xiaoxue Li

School of Mathematics, Northwest University, Xi’an, Shaanxi 710127, China

Correspondence should be addressed to Xiaoxue Li; [email protected]

Received 18 December 2014; Accepted 18 March 2015

Academic Editor: Fabio Tramontana

Copyright Β© 2015 Xiaoxue Li. This is an open access article distributed under the Creative Commons Attribution License, whichpermits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The main purpose of this paper is using the combinatorial method and algebraic manipulations to study some sums of powers ofChebyshev polynomials and give several interesting identities. As some applications of these results, we obtained several divisibilityproperties involving Chebyshev polynomials.

1. Introduction

For any integer 𝑛 β‰₯ 0, the famous Chebyshev polynomialsof the first and second kind 𝑇

𝑛(π‘₯) and π‘ˆ

𝑛(π‘₯) are defined as

follows:

𝑇0(π‘₯) = 1, 𝑇

1(π‘₯) = π‘₯, and 𝑇

𝑛+1(π‘₯) = 2π‘₯𝑇

𝑛(π‘₯) βˆ’

π‘‡π‘›βˆ’1(π‘₯) for all 𝑛 β‰₯ 1;

π‘ˆ0(π‘₯) = 1, π‘ˆ

1(π‘₯) = 2π‘₯, and π‘ˆ

𝑛+1(π‘₯) = 2π‘₯π‘ˆ

𝑛(π‘₯) βˆ’

π‘ˆπ‘›βˆ’1(π‘₯) for all 𝑛 β‰₯ 1.

It is clear that these polynomials are the second-orderlinear recurrence polynomial; they satisfy the computationalformulae:

𝑇𝑛(π‘₯) =

1

2

[(π‘₯ + √π‘₯2βˆ’ 1)

𝑛

+ (π‘₯ βˆ’ √π‘₯2βˆ’ 1)

𝑛

] ,

π‘ˆπ‘›(π‘₯) =

1

2√π‘₯2βˆ’ 1

β‹… [(π‘₯ + √π‘₯2βˆ’ 1)

𝑛+1

βˆ’ (π‘₯ βˆ’ √π‘₯2βˆ’ 1)

𝑛+1

] .

(1)

About the elementary properties of Chebyshev polyno-mials and related second-order linear recurrences, manyauthors had studied them and obtained a series of interestingconclusions. For example, some of the theoretical results canbe found in [1–4], and other some important applications ofthe Chebyshev polynomials can also be found in [5–10].

Recently, several authors studied the sums of powersof Fibonacci numbers {𝐹

𝑛} and Lucas numbers {𝐿

𝑛}, and

obtained a series of important identities; see [11–13]. At thesame time, Melham [13] also proposed the following twoconjectures.

Conjecture 1. Letπ‘š β‰₯ 1 be an integer. Then the sum

𝐿1𝐿3𝐿5β‹… β‹… β‹… 𝐿2π‘š+1

𝑛

βˆ‘

π‘˜=1

𝐹2π‘š+1

2π‘˜(2)

can be expressed as (𝐹2𝑛+1

βˆ’ 1)2

𝑃2π‘šβˆ’1

(𝐹2𝑛+1

), where 𝑃2π‘šβˆ’1

(π‘₯)

is a polynomial of degree 2π‘š βˆ’ 1 with integer coefficients.

Conjecture 2. Letπ‘š β‰₯ 0 be an integer. Then the sum

𝐿1𝐿3𝐿5β‹… β‹… β‹… 𝐿2π‘š+1

𝑛

βˆ‘

π‘˜=1

𝐿2π‘š+1

2π‘˜(3)

can be expressed as (𝐿2𝑛+1

βˆ’ 1)𝑄2π‘š(𝐿2𝑛+1

), where 𝑄2π‘š(π‘₯) is a

polynomial of degree 2π‘š with integer coefficients.

Wang and Zhang [14] solved the Conjecture 2 completelyand made some substantial progress for the Conjecture 1.

The main purpose of this paper is using the algebraicmanipulations to obtain some identities involving Chebyshevpolynomials of the first and second kind 𝑇

𝑛(π‘₯) andπ‘ˆ

𝑛(π‘₯). As

some applications, we give three interesting corollaries. Thatis, we will prove the following two results.

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2015, Article ID 950695, 5 pageshttp://dx.doi.org/10.1155/2015/950695

Page 2: Research Article Some Identities Involving Chebyshev ...downloads.hindawi.com/journals/mpe/2015/950695.pdfis proves the identity (A) of eorem . Similarly, from formula wecanalsodeducethe

2 Mathematical Problems in Engineering

Theorem 3. For any positive integers β„Ž and 𝑛, we have theidentities

(a)

β„Ž

βˆ‘

π‘š=0

𝑇2𝑛+1

2π‘š+1(π‘₯) =

1

22𝑛+1

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)

π‘ˆ2(2π‘˜+1)(β„Ž+1)βˆ’1

(π‘₯)

π‘ˆ2π‘˜(π‘₯)

; (4)

(b)

β„Ž

βˆ‘

π‘š=0

π‘ˆ2𝑛+1

2π‘š(π‘₯) =

1

4𝑛(π‘₯2βˆ’ 1)𝑛

β‹…

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

) (βˆ’1)π‘›βˆ’π‘˜

π‘ˆ2

(2π‘˜+1)(β„Ž+1)βˆ’1(π‘₯)

π‘ˆ2π‘˜(π‘₯)

.

(5)

Theorem 4. For any positive integers β„Ž and 𝑛, we have theidentities

(A)

β„Ž

βˆ‘

π‘š=1

𝑇2𝑛+1

2π‘š(π‘₯)

=

1

22𝑛+1

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)

π‘ˆ(2π‘˜+1)(2β„Ž+1)βˆ’1

(π‘₯) βˆ’ π‘ˆ2π‘˜(π‘₯)

π‘ˆ2π‘˜(π‘₯)

;

(6)

(B)

β„Ž

βˆ‘

π‘š=1

π‘ˆ2𝑛+1

2π‘šβˆ’1(π‘₯)

=

1

22𝑛+1

(π‘₯2βˆ’ 1)𝑛+1

β‹…

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

) (βˆ’1)π‘›βˆ’π‘˜

𝑇(2π‘˜+1)(2β„Ž+1)

(π‘₯) βˆ’ 𝑇2π‘˜+1

(π‘₯)

π‘ˆ2π‘˜(π‘₯)

.

(7)

The benefit of these identities is that it can transformthe complex sums of powers of Chebyshev polynomials thatbecome relatively simple linear sums of Chebyshev polyno-mials. This can simplify the calculation problems related tothe sums of powers of Chebyshev polynomials.

Whether there exists an exact expression for the deriva-tive or integral of the Chebyshev polynomials of the first kindin terms of the Chebyshev polynomials of the first kind (andvice-versa) is an open problem. we will be looking for somenew methods to further research.

Note that 𝑇𝑛(cos πœƒ) = cos(π‘›πœƒ) and π‘ˆ

𝑛(cos πœƒ) = sin((𝑛 +

1)πœƒ)/ sin πœƒ; it is clear that from Theorems 3 and 4 we candeduce some identities involving sinπ‘₯ and cosπ‘₯. On theother hand, we can also obtain some divisibility propertiesinvolving Chebyshev polynomials. That is, we have thefollowing.

Corollary 5. Let β„Ž β‰₯ 1 and 𝑛 β‰₯ 0 be two integers. Then thesum

π‘ˆ0(π‘₯)π‘ˆ2(π‘₯)π‘ˆ4(π‘₯) β‹… β‹… β‹… π‘ˆ

2𝑛(π‘₯)

β„Ž

βˆ‘

π‘š=0

𝑇2𝑛+1

2π‘š+1(π‘₯) (8)

can be divided by polynomials π‘ˆ2β„Ž+1

(π‘₯).The sum

π‘ˆ0(π‘₯)π‘ˆ2(π‘₯)π‘ˆ4(π‘₯) β‹… β‹… β‹… π‘ˆ

2𝑛(π‘₯)

β„Ž

βˆ‘

π‘š=0

π‘ˆ2𝑛+1

2π‘š(π‘₯) (9)

can be divided by polynomials π‘ˆ2β„Ž(π‘₯).

Corollary 6. Let β„Ž β‰₯ 1 and 𝑛 β‰₯ 0 be two integers. Then thesum

π‘ˆ0(π‘₯)π‘ˆ2(π‘₯)π‘ˆ4(π‘₯) β‹… β‹… β‹… π‘ˆ

2𝑛(π‘₯)

β„Ž

βˆ‘

π‘š=1

𝑇2𝑛+1

2π‘š(π‘₯) (10)

can be expressed as (π‘ˆ2β„Ž(π‘₯) βˆ’ 1)𝑃

2𝑛(π‘₯, 𝑇2β„Ž+1

(π‘₯)), where𝑃2𝑛(π‘₯, 𝑦) is an integer coefficients polynomial of two variables

with degree 2𝑛 of 𝑦.

Corollary 7. Let β„Ž β‰₯ 1 and 𝑛 β‰₯ 0 be two integers. Then thesum

π‘ˆ0(π‘₯)π‘ˆ2(π‘₯)π‘ˆ4(π‘₯) β‹… β‹… β‹… π‘ˆ

2𝑛(π‘₯)

β„Ž

βˆ‘

π‘š=1

π‘ˆ2𝑛+1

2π‘šβˆ’1(π‘₯) (11)

can be expressed as (𝑇2β„Ž+1

(π‘₯) βˆ’ π‘₯)𝑄2𝑛(π‘₯, 𝑇2β„Ž+1

(π‘₯)), where𝑄2𝑛(π‘₯, 𝑦) is an integer coefficients polynomial of two variables

with degree 2𝑛 of 𝑦.

2. Proof of the Theorems

In this section, we will use the algebraic manipulationsto complete the proof of our theorems. First we proveTheorem 3. In fact, for any positive integer 𝑛 and real number𝑦 = 0, by using the familiar binomial expansion

(𝑦 +

1

𝑦

)

𝑛

=

𝑛

βˆ‘

π‘˜=0

(

𝑛

π‘˜

)π‘¦π‘›βˆ’2π‘˜ (12)

we may get

(𝑦 +

1

𝑦

)

2𝑛+1

=

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)(𝑦2π‘˜+1

+

1

𝑦2π‘˜+1

) ,

(𝑦 βˆ’

1

𝑦

)

2𝑛+1

=

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

) (βˆ’1)π‘›βˆ’π‘˜

(𝑦2π‘˜+1

βˆ’

1

𝑦2π‘˜+1

) .

(13)

Nowwe take 𝑦 = (π‘₯+√π‘₯2 βˆ’ 1)2π‘š+1 in (13); then note that1/𝑦 = (π‘₯ βˆ’ √π‘₯

2βˆ’ 1)2π‘š+1; from the definitions of 𝑇

𝑛(π‘₯) and

π‘ˆπ‘›(π‘₯), we may immediately deduce the identities

𝑇2𝑛+1

2π‘š+1(π‘₯) =

1

4𝑛

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)𝑇(2π‘š+1)(2π‘˜+1)

(π‘₯) , (14)

Page 3: Research Article Some Identities Involving Chebyshev ...downloads.hindawi.com/journals/mpe/2015/950695.pdfis proves the identity (A) of eorem . Similarly, from formula wecanalsodeducethe

Mathematical Problems in Engineering 3

π‘ˆ2𝑛+1

2π‘š(π‘₯) =

1

4𝑛(π‘₯2βˆ’ 1)𝑛

β‹…

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

) (βˆ’1)π‘›βˆ’π‘˜

π‘ˆ4π‘šπ‘˜+2π‘š+2π‘˜

(π‘₯) .

(15)

If we take𝑦 = (π‘₯+√π‘₯2 βˆ’ 1)2π‘š in (13), thenwe can also deducethe identities

𝑇2𝑛+1

2π‘š(π‘₯) =

1

4𝑛

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)𝑇2π‘š(2π‘˜+1)

(π‘₯) , (16)

π‘ˆ2𝑛+1

2π‘šβˆ’1(π‘₯) =

1

4𝑛(π‘₯2βˆ’ 1)𝑛

β‹…

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

) (βˆ’1)π‘›βˆ’π‘˜

π‘ˆ2π‘š(2π‘˜+1)βˆ’1

(π‘₯) .

(17)

Let 𝛼 = π‘₯+√π‘₯2 βˆ’ 1 and 𝛽 = 1/𝛼 = π‘₯βˆ’βˆšπ‘₯2 βˆ’ 1. Then for anyinteger β„Ž > 0, note that 𝛼𝛽 = 1; from (14) and the definitionsof π‘ˆπ‘›(π‘₯) and 𝑇

𝑛(π‘₯) we have

β„Ž

βˆ‘

π‘š=0

𝑇2𝑛+1

2π‘š+1(π‘₯)

=

1

4𝑛

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)

β„Ž

βˆ‘

π‘š=0

𝑇(2π‘š+1)(2π‘˜+1)

(π‘₯)

=

1

2 β‹… 4𝑛

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)[

𝛼2π‘˜+1

(𝛼2(2π‘˜+1)(β„Ž+1)

βˆ’ 1)

𝛼2(2π‘˜+1)

βˆ’ 1

+

𝛽2π‘˜+1

(𝛽2(2π‘˜+1)(β„Ž+1)

βˆ’ 1)

𝛽2(2π‘˜+1)

βˆ’ 1

]

=

1

2 β‹… 4𝑛

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)

𝛼4π‘˜β„Ž+4π‘˜+2β„Ž+2

βˆ’ 𝛽4π‘˜β„Ž+4π‘˜+2β„Ž+2

𝛼2π‘˜+1

βˆ’ 𝛽2π‘˜+1

=

1

22𝑛+1

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)

π‘ˆ4β„Žπ‘˜+4π‘˜+2β„Ž+1

(π‘₯)

π‘ˆ2π‘˜(π‘₯)

.

(18)

This proves the identity (a) of Theorem 3.Similarly, from formula (15) we can deduce the identity

(b) of Theorem 3.Now we proveTheorem 4. From (16) we haveβ„Ž

βˆ‘

π‘š=1

𝑇2𝑛+1

2π‘š(π‘₯)

=

1

4𝑛

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)

β„Ž

βˆ‘

π‘š=1

𝑇2π‘š(2π‘˜+1)

(π‘₯)

=

1

22𝑛+1

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)[

𝛼2(2π‘˜+1)

(𝛼2β„Ž(2π‘˜+1)

βˆ’ 1)

𝛼2(2π‘˜+1)

βˆ’ 1

+

𝛽2(2π‘˜+1)

(𝛽2β„Ž(2π‘˜+1)

βˆ’ 1)

𝛽2(2π‘˜+1)

βˆ’ 1

]

=

1

22𝑛+1

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)[

𝛼(2π‘˜+1)(2β„Ž+1)

βˆ’ 𝛼2π‘˜+1

𝛼2π‘˜+1

βˆ’ 𝛽2π‘˜+1

βˆ’

𝛽(2π‘˜+1)(2β„Ž+1)

βˆ’ 𝛽2π‘˜+1

𝛼2π‘˜+1

βˆ’ 𝛽2π‘˜+1

]

=

1

22𝑛+1

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)

π‘ˆ(2π‘˜+1)(2β„Ž+1)βˆ’1

(π‘₯) βˆ’ π‘ˆ2π‘˜(π‘₯)

π‘ˆ2π‘˜(π‘₯)

.

(19)

This proves the identity (A) of Theorem 4.Similarly, from formula (17) we can also deduce the

identity (B) of Theorem 4.Now we use Theorem 3 to prove Corollary 5. From

the properties of Chebyshev polynomials we know that𝑇𝑛(π‘‡π‘š(π‘₯)) = 𝑇

π‘šπ‘›(π‘₯) andπ‘ˆ

𝑛(π‘‡π‘š(π‘₯)) = π‘ˆ

π‘š(𝑛+1)βˆ’1(π‘₯)/π‘ˆ

π‘šβˆ’1(π‘₯);

from (a) of Theorem 3 we may immediately deduce that

β„Ž

βˆ‘

π‘š=0

𝑇2𝑛+1

2π‘š+1(π‘₯)

=

1

22𝑛+1

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

)

π‘ˆ2β„Ž+1

(π‘₯) β‹… π‘ˆ2π‘˜(𝑇2β„Ž+2

(π‘₯))

π‘ˆ2π‘˜(π‘₯)

.

(20)

That is, the power sum

π‘ˆ0(π‘₯)π‘ˆ2(π‘₯)π‘ˆ4(π‘₯) β‹… β‹… β‹… π‘ˆ

2𝑛(π‘₯)

β„Ž

βˆ‘

π‘š=0

𝑇2𝑛+1

2π‘š+1(π‘₯) (21)

can be divided by polynomial π‘ˆ2β„Ž+1

(π‘₯).Similarly, note that π‘ˆ

2

(2π‘˜+1)(β„Ž+1)βˆ’1(π‘₯) = π‘ˆ

2

β„Ž(π‘₯) β‹…

π‘ˆ2

2π‘˜(π‘‡β„Ž+1(π‘₯)); from (b) of Theorem 3 we know that π‘ˆ2

β„Ž(π‘₯)

divide the power sum

π‘ˆ0(π‘₯)π‘ˆ2(π‘₯)π‘ˆ4(π‘₯) β‹… β‹… β‹… π‘ˆ

2𝑛(π‘₯)

β„Ž

βˆ‘

π‘š=0

π‘ˆ2𝑛+1

2π‘š(π‘₯) . (22)

This proves Corollary 5.Now we use (B) of Theorem 4 to prove Corollary 7. It is

clear that if 𝐹(π‘₯) is an integer coefficients polynomial withvariable π‘₯, then, for any polynomials π‘Ž(π‘₯) and 𝑏(π‘₯), we haveπ‘Ž(π‘₯) βˆ’ 𝑏(π‘₯) divides 𝐹(π‘Ž(π‘₯)) βˆ’ 𝐹(𝑏(π‘₯)). From those propertiesand noting that the identity 𝑇

2π‘˜+1(𝑇2β„Ž+1

(π‘₯)) = 𝑇(2β„Ž+1)(2π‘˜+1)

(π‘₯)

we can deduce that

(𝑇2β„Ž+1

(π‘₯) βˆ’ π‘₯) | 𝑇2π‘˜+1

(𝑇2β„Ž+1

(π‘₯)) βˆ’ 𝑇2π‘˜+1

(π‘₯)

= 𝑇(2β„Ž+1)(2π‘˜+1)

(π‘₯) βˆ’ 𝑇2π‘˜+1

(π‘₯) .

(23)

From (23) and (B) of Theorem 4 we can deduce that

π‘ˆ0(π‘₯)π‘ˆ2(π‘₯)π‘ˆ4(π‘₯) β‹… β‹… β‹… π‘ˆ

2𝑛(π‘₯)

β„Ž

βˆ‘

π‘š=1

π‘ˆ2𝑛+1

2π‘šβˆ’1(π‘₯)

=

π‘ˆ0(π‘₯)π‘ˆ2(π‘₯)π‘ˆ4(π‘₯) β‹… β‹… β‹… π‘ˆ

2𝑛(π‘₯)

22𝑛+1

(π‘₯2βˆ’ 1)𝑛+1

Page 4: Research Article Some Identities Involving Chebyshev ...downloads.hindawi.com/journals/mpe/2015/950695.pdfis proves the identity (A) of eorem . Similarly, from formula wecanalsodeducethe

4 Mathematical Problems in Engineering

β‹… (

𝑛

βˆ‘

π‘˜=0

(

2𝑛 + 1

𝑛 βˆ’ π‘˜

) (βˆ’1)π‘›βˆ’π‘˜

𝑇(2π‘˜+1)(2β„Ž+1)

(π‘₯) βˆ’ 𝑇2π‘˜+1

(π‘₯)

π‘ˆ2π‘˜(π‘₯)

)

= (𝑇2β„Ž+1

(π‘₯) βˆ’ π‘₯)𝑄2𝑛(π‘₯, 𝑇2β„Ž+1

(π‘₯)) ,

(24)

where 𝑄2𝑛(π‘₯, 𝑦) is an integer coefficients polynomial of two

variables with degree 2𝑛 of 𝑦. This proves Corollary 7.Finally, we prove Corollary 6. We first prove that

(π‘ˆ2β„Ž(π‘₯) βˆ’ 1) | (π‘ˆ

(2π‘˜+1)(2β„Ž+1)βˆ’1(π‘₯) βˆ’ π‘ˆ

2π‘˜(π‘₯)) (25)

for all integers π‘˜ β‰₯ 0. It is clear that if π‘˜ = 0, then the con-clusion is correct. So without loss of generality we can assumeπ‘˜ β‰₯ 1. Note that the identity π‘ˆ

(2π‘˜+1)(2β„Ž+1)βˆ’1(π‘₯) = π‘ˆ

2β„Ž(π‘₯) β‹…

π‘ˆ2π‘˜(𝑇2β„Ž+1

(π‘₯)), so we have

π‘ˆ(2π‘˜+1)(2β„Ž+1)βˆ’1

(π‘₯) βˆ’ π‘ˆ2π‘˜(π‘₯) = (π‘ˆ

2β„Ž(π‘₯) βˆ’ 1) β‹… π‘ˆ

2π‘˜(𝑇2β„Ž+1

(π‘₯))

+ π‘ˆ2π‘˜(𝑇2β„Ž+1

(π‘₯)) βˆ’ π‘ˆ2π‘˜(π‘₯) .

(26)

Therefore, to prove (25), we only need to prove that

(π‘ˆ2β„Ž(π‘₯) βˆ’ 1) | (π‘ˆ

2π‘˜(𝑇2β„Ž+1

(π‘₯)) βˆ’ π‘ˆ2π‘˜(π‘₯)) . (27)

Since π‘ˆ2π‘˜(π‘₯) is an even function, from (π‘Ž βˆ’ 𝑏) | (π‘ˆ

2π‘˜(π‘Ž)βˆ’

π‘ˆ2π‘˜(𝑏)) we can deduce that (𝑇

2β„Ž+1(π‘₯) Β± π‘₯) | (π‘ˆ

2π‘˜(𝑇2β„Ž+1

(π‘₯))βˆ’

π‘ˆ2π‘˜(π‘₯)); note that the coprime relations (𝑇

2β„Ž+1(π‘₯) + π‘₯,

𝑇2β„Ž+1

(π‘₯) βˆ’ π‘₯) = π‘₯, so from the properties of polynomials weknow that

(𝑇2

2β„Ž+1(π‘₯) βˆ’ π‘₯

2

) | π‘₯ β‹… (π‘ˆ2π‘˜(𝑇2β„Ž+1

(π‘₯)) βˆ’ π‘ˆ2π‘˜(π‘₯)) . (28)

Since (π‘ˆ2β„Ž(π‘₯) βˆ’ 1, π‘₯) = 1, from (28) we know that to prove

(27), we only need to prove

(π‘ˆ2β„Ž(π‘₯) βˆ’ 1) | (𝑇

2

2β„Ž+1(π‘₯) βˆ’ π‘₯

2

) . (29)

Note that the identity

𝑇2

2β„Ž+1(π‘₯) βˆ’ π‘₯

2

= (π‘₯π‘ˆ2β„Ž(π‘₯) βˆ’ π‘ˆ

2β„Žβˆ’1(π‘₯))2

βˆ’ π‘₯2

= π‘₯2

π‘ˆ2

2β„Ž(π‘₯) βˆ’ 2π‘₯π‘ˆ

2β„Ž(π‘₯)π‘ˆ2β„Žβˆ’1

(π‘₯) + π‘ˆ2

2β„Žβˆ’1(π‘₯) βˆ’ π‘₯

2

= π‘₯2

(π‘ˆ2

2β„Ž(π‘₯) βˆ’ 1) βˆ’ π‘ˆ

2β„Žβˆ’1(π‘₯)π‘ˆ2β„Ž+1

(π‘₯)

= π‘₯2

(π‘ˆ2

2β„Ž(π‘₯) βˆ’ 1) βˆ’

1

4 (π‘₯2βˆ’ 1)

β‹… [(𝛼2β„Ž+2

βˆ’ 𝛽2β„Ž+2

) β‹… (𝛼2β„Ž

βˆ’ 𝛽2β„Ž

)]

= π‘₯2

(π‘ˆ2

2β„Ž(π‘₯) βˆ’ 1) βˆ’

1

4 (π‘₯2βˆ’ 1)

β‹… [(𝛼2β„Ž+1

βˆ’ 𝛽2β„Ž+1

)

2

βˆ’ (𝛼 βˆ’ 𝛽)2

]

= π‘₯2

(π‘ˆ2

2β„Ž(π‘₯) βˆ’ 1) βˆ’ π‘ˆ

2

2β„Ž(π‘₯) + π‘ˆ

2

0(π‘₯)

= (π‘₯2

βˆ’ 1) β‹… (π‘ˆ2

2β„Ž(π‘₯) βˆ’ 1) .

(30)

From this identity we may immediately deduce (29). That is,(25) is correct.

Applying (25) and (A) ofTheorem 4 we can easily deducethat the sum

π‘ˆ0(π‘₯)π‘ˆ2(π‘₯)π‘ˆ4(π‘₯) β‹… β‹… β‹… π‘ˆ

2𝑛(π‘₯)

β„Ž

βˆ‘

π‘š=1

𝑇2𝑛+1

2π‘š(π‘₯) (31)

can be expressed as (π‘ˆ2β„Ž(π‘₯)βˆ’1)𝑃

2𝑛(π‘₯, 𝑇2β„Ž+1

(π‘₯)), where 𝑃2𝑛(π‘₯,

𝑦) is an integer coefficients polynomial of two variables withdegree 2𝑛 of 𝑦.

This completes the proofs of our all results.

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper.

Acknowledgments

The author would like to thank the referees for their veryhelpful and detailed comments, which have significantlyimproved the presentation of this paper. This work is sup-ported by the P. S. F. (2014JM1009) and N. S. F. (11371291).

References

[1] W. Zhang, β€œSome identities involving the Fibonacci numbersand Lucas numbers,”The Fibonacci Quarterly, vol. 42, no. 2, pp.149–154, 2004.

[2] X. Wang and D. Han, β€œSome identities related to Dedekindsums and the Chebyshev polynomials,” International Journal ofApplied Mathematics and Statistics, vol. 51, no. 21, pp. 334–339,2013.

[3] C. Cesarano, β€œIdentities and generating functions onChebyshevpolynomials,” Georgian Mathematical Journal, vol. 19, no. 3, pp.427–440, 2012.

[4] C.-L. Lee and K. B. Wong, β€œOn Chebyshev’s polynomialsand certain combinatorial identities,” Bulletin of the MalaysianMathematical Sciences Society, vol. 34, no. 2, pp. 279–286, 2011.

[5] E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, β€œNumericalapproximations for fractional diffusion equations via a Cheby-shev spectral-tau method,” Central European Journal of Physics,vol. 11, no. 10, pp. 1494–1503, 2013.

[6] A. H. Bhrawy, β€œAn efficient Jacobi pseudospectral approxi-mation for nonlinear complex generalized Zakharov system,”Applied Mathematics and Computation, vol. 247, pp. 30–46,2014.

[7] A. H. Bhrawy and M. A. Zaky, β€œA method based on the Jacobitau approximation for solving multi-term time-space fractionalpartial differential equations,” Journal of Computational Physics,vol. 281, pp. 876–895, 2015.

[8] A. H. Bhrawy and M. A. Zaky, β€œNumerical simulation for two-dimensional variable-order fractional nonlinear cable equa-tion,” Nonlinear Dynamics, vol. 80, no. 1-2, pp. 101–116, 2015.

[9] E. H. Doha, A. H. Bhrawy, R. M. Hafez, and M. A. Abdelkawy,β€œA Chebyshev-Gauss-Radau scheme for nonlinear hyperbolicsystem of first order,” Applied Mathematics & InformationSciences, vol. 8, no. 2, pp. 535–544, 2014.

Page 5: Research Article Some Identities Involving Chebyshev ...downloads.hindawi.com/journals/mpe/2015/950695.pdfis proves the identity (A) of eorem . Similarly, from formula wecanalsodeducethe

Mathematical Problems in Engineering 5

[10] E. H. Doha and A. H. Bhrawy, β€œA Jacobi spectral Galerkinmethod for the integrated forms of fourth-order elliptic dif-ferential equations,” Numerical Methods for Partial DifferentialEquations, vol. 25, no. 3, pp. 712–739, 2009.

[11] H. Prodinger, β€œOn a sum of Melham and its variants,” TheFibonacci Quarterly, vol. 46-47, pp. 207–215, 2008-2009.

[12] K. Ozeki, β€œOnMelham’s sum,”The Fibonacci Quarterly, vol. 46-47, pp. 107–110, 2008.

[13] R. S. Melham, β€œSome conjectures concerning sums of odd pow-ers of Fibonacci and Lucas numbers,” The Fibonacci Quarterly,vol. 46/47, no. 4, pp. 312–315, 2009.

[14] T. Wang and W. Zhang, β€œSome identities involving Fib-onacci, Lucas polynomials and their applications,” BulletinMathematique de la Societe des Sciences Mathematiques deRoumanie, vol. 103, no. 1, pp. 95–103, 2012.

Page 6: Research Article Some Identities Involving Chebyshev ...downloads.hindawi.com/journals/mpe/2015/950695.pdfis proves the identity (A) of eorem . Similarly, from formula wecanalsodeducethe

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of