chebyshev filter design

Upload: amit-choudhary

Post on 26-Feb-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Chebyshev filter Design

    1/30

    Presented By

    Mr. Amit ChoudharyAsst. Prof.

    At

    National Conference on

    EMERGING TREND IN MOBIE COMM!NICATION"ETMC#$%&'(

    A)A* +!MAR GARG ENGINEERING COEGEG,A-IABD

    1

    SIMULATION AND ANALYSIS OFSIMULATION AND ANALYSIS OF

    RECONFIGURABLE gRECONFIGURABLE gmm-C LADDER BASE-BAND-C LADDER BASE-BAND

    FILTER USING TUNABLE OTAFILTER USING TUNABLE OTA

  • 7/25/2019 Chebyshev filter Design

    2/30

    CONTENTS

    Objective

    Int!"#cti!n

    OTA B$%e" gm-C &i'te

    OTA B$%e" gm-C L$""e &i'te

    T#n$b'e OTA

    T#n$b'e OTA (it) C$%c!"e C#ent Mi!%

    *t)O"e C)eb+%)ev L,F &! LAN

    C!nc'#%i!n

    2

  • 7/25/2019 Chebyshev filter Design

    3/30

    OB.ECTI/E0

    T! "e%ign $n" %im#'$te

    A T#n$b'e O1e$ti!n$' T$n%c!n"#ct$nce Am1'i&ie 2OTA3

    (it) c$%c!"e c#ent mi!%

    A ec!n&ig#$b'e gm-C '$""e b$%e-b$n" &i'te &! LAN

    C#t!&& &e4#enc+ 2&13 056788 M9:

    St!1 b$n" &e4#enc+2 &%3 0 ;

  • 7/25/2019 Chebyshev filter Design

    4/30

    INTRODUCTION

    A &i'te i% $n e'ectic cic#it ()ic) 1$%%e% %ign$'% ()!%e &e4#enc+

    %1ect#m 'ie% (it)in $ %1eci&ie" $nge> $n" %t!1 !#t%i"e %ign$'%

    T)e b$n"(i"t) !& $ LAN T$n%ceive %+%tem 2IEEE ?

  • 7/25/2019 Chebyshev filter Design

    5/30

    OTA BASED GM-C FILTER0

    OTA ased /m#C&i'te% $e c!m1!%e" !& e%i%t!%> c$1$cit!% $n" OTA

    OTA %t$n"% &! O0erational Transconductance Am0lifier7 An O1e$ti!n$'

    T$n%c!n"#ct$nce Am1'i&ie 2OTA3 i% $ "#$' in1#t v!'t$ge c!nt!''e" c#ent

    S!#ce 2/CCS37 It i% $ n"$ment$' b#i'"ing b'!c !& gm-C &i'te%

    Fig#e ;0 OTA

    OTA t$n%c!n"#ct$nce gmI!#t@ /i" c$n 'ine$'+ be t#ne" b+ e=ten$' DC

    bi$% c#ent IB7

  • 7/25/2019 Chebyshev filter Design

    6/30

    OTA BASED GM-C FILTER CONTD7

    /m#c &i'te% $e %#ite" &! )ig) c#t!&& &e4#enc+ &i'teing $11'ic$ti!n% "#e t!

    )ig) b$n"(i"t) !& OTA

    Fi%t !"e OTA-C &i'te0

    C#t!&& &e4#enc+ !& &i'te0 253

    OTA-C &i'te% $e ec!n&ig#$b'e $g$in%t envi!nment$' ! 1!ce%%ing

    v$i$ti!n% $% it% t$n%c!n"#ct$nce c$n be t#ne" b+ e=ten$' DC bi$% c#ent

    2IB36

    Fig7 50 2$3 Fi%t O"e OTA-C &i'te 2b3 M$gnit#"e e%1!n%e !& &i'te

  • 7/25/2019 Chebyshev filter Design

    7/30

    OTA BASED GM-C LADDER FILTERS0

    S+nt)e%i:e LCR '$""e net(! b$%e" !n given &i'te %1eci&ic$ti!n%

    Re1'$ce in"#ct!% $n" e%i%t!% b+ t)ei e4#iv$'ent OTA cic#it%

    LCR ladder filters are less sensitive to component tolerances [2]

    Fig7 ; 0 2$3 A t)i" !"e LCR '$""e &i'te 2b3 Im1'ement$ti!n !& e%i%t! #%ing OTA 2c3 Im1'ement$ti!n !& in"#ct!#%ing OTA

    7

  • 7/25/2019 Chebyshev filter Design

    8/30

    INTRINSIC NONLINEARITY OF OTA

    T! t#ne &i'te c#t!&& 2&-"B3 $g$in%t $n+ tem1e$t#e ! 1!ce%%ing v$i$ti!n%>

    OTA -gmm#%t )$ve 'ine$ e'$ti!n%)i1 (it) e=ten$' DC bi$% c#ent IB7

    T+1ic$''+ OTA in1#t "i&&eenti$' 1$i ()ic) )$% n!n'ine$ e'$ti!n%)i1

    bet(een gm $n" e=ten$' DC bi$% c#ent IB7

    Fig7 0 CMOS B$'$nce" OTA

    2;3

  • 7/25/2019 Chebyshev filter Design

    9/30

    TUNABLE OTA T#n$b'e OTA cic#it i% im1'emente" #%ing t(! c$%c$"e" B$'$nce" OTA

    t)!#g) $n $ctive e%i%t!

    Fig7 H0 T#n$b'e OTA

    T)e t$n%c!n"#ct$nce 2gm3

    9

    23

  • 7/25/2019 Chebyshev filter Design

    10/30

    TUNABLE OTA CONTD7 T#n$b'e OTA cic#it i% im1'emente" #%ing t(! c$%c$"e" B$'$nce" OTA

    t)!#g) $n $ctive e%i%t!

    Fig7 H0 T#n$b'e OTA

    T)e t$n%c!n"#ct$nce 2gm3

    10

    23

  • 7/25/2019 Chebyshev filter Design

    11/30

    TUNABLE OTA CONTD7 T#n$b'e OTA cic#it i% im1'emente" #%ing t(! c$%c$"e" B$'$nce" OTA

    t)!#g) $n $ctive e%i%t!

    Fig7 H0 T#n$b'e OTA

    T)e t$n%c!n"#ct$nce 2gm3

    11

    23

  • 7/25/2019 Chebyshev filter Design

    12/30

    TUNABLE OTA CONTD7 T#n$b'e OTA cic#it i% im1'emente" #%ing t(! c$%c$"e" B$'$nce" OTA

    t)!#g) $n $ctive e%i%t!

    Fig7 H0 T#n$b'e OTA

    T)e t$n%c!n"#ct$nce 2gm3

    12

    23

  • 7/25/2019 Chebyshev filter Design

    13/30

    TUNABLE OTA CONTD7 T#n$b'e OTA cic#it i% im1'emente" #%ing t(! c$%c$"e" B$'$nce" OTA

    t)!#g) $n $ctive e%i%t!

    Fig7 H0 T#n$b'e OTA

    T)e t$n%c!n"#ct$nce 2gm3 "e1en"% !n t$i' bi$% c#ent 2IB 3 'ine$'+

    132H3

  • 7/25/2019 Chebyshev filter Design

    14/30

    TUNABLE OTA IT9 CASCODE CURRENT MIRRORS

    B+ e1'$cing %im1'e c#ent mi!% b+ c$%c!"e c#ent mi!%

    In case of simple current mirrors, channel length modulation effect

    results in significant error in copying currents.C)$nne' 'engt) m!"#'$ti!ne&&ect i% e=c'#"e" b+ #%ing c$%c!"e c#ent mi!%7

    O#t1#t e%i%t$nce $n" t)e g$in !& t)e m!"i&ie" OTA get en)$nce"

    M!"i&ie" OTA c!n%#me '!(e 1!(e

    Fig7 *0 T#n$b'e OTA (it) C$%c!"e C#ent Mi!%

    14

  • 7/25/2019 Chebyshev filter Design

    15/30

    TUNABLE OTA IT9 CASCODE CURRENT MIRRORS

    CONTD7

    15

    Fig7 0 Sc)em$tic "i$g$m !& Bi$%ing cic#it%

    T$b'e 50 T$n%i%t!% A%1ect $ti!% !& T#n$b'e OTA

    (it) C$%c!"e C#ent Mi!%

  • 7/25/2019 Chebyshev filter Design

    16/30

    SIMULATION RESULTS OF TUNABLE OTA IT9

    CASCODE CURRENT MIRRORS O0en oo0 1re2uency Res0onse3

    4dd

    56 &.748 IB

    5 &mA

    DC g$in0 H< "B> -"B B0

  • 7/25/2019 Chebyshev filter Design

    17/30

    SIMULATION RESULTS OF TUNABLE OTA IT9

    CASCODE CURRENT MIRRORS CONTD7o9le: Rate "9R( 3

    Fig7 ?0 SR me$%#ement Fig7 60 O#t1#t v!'t$ge ($ve&!m !& SR me$%#ement %et#1

    %et#1 *

    Ri%ing S'e( R$te i%

  • 7/25/2019 Chebyshev filter Design

    18/30

    SIMULATION RESULTS OF TUNABLE OTA IT9

    CASCODE CURRENT MIRRORS CONTD7oRout3

    18

    Fig7 5< DC %(ee1 %im#'$ti!n Re%#'t% !& ,!1!%e"

    OTA &! R!#t me$%#ement

    U%ing /TC c#ve% !& OTA

    (it) $n" (it) !#t '!$"> O#t1#t

    im1e"$nce !& OTA c$n be

    &!#n" #%ing &!''!(ing

    e4#$ti!n *

    /!5 $n" /!; $e !#t1#t

    v!'t$ge% !& OTA (it) $n"

    (it) !#t '!$"% $t %$me in1#tv!'t$ge

    R!#t ;H7?H J

    2*3

  • 7/25/2019 Chebyshev filter Design

    19/30

    SIMULATION RESULTS OF TUNABLE OTA IT9

    CASCODE CURRENT MIRRORS CONTD7 Transconductance "/m(3

    Fig7 550 gmme$%#ement Fig7 5; gm%im#'$ti!n0 O#t1#t c#ent /% In1#t "i&&eenti$' v!'t$ge

    %et#1 *

    Transconductance is calculated by measuring slope of graph at origin.

    At 1mA bias current, gmof proposed OTA was found to be 4.2 mS.19

  • 7/25/2019 Chebyshev filter Design

    20/30

    SIMULATION RESULTS OF TUNABLE OTA IT9

    CASCODE CURRENT MIRRORS CONTD7T$b'e ; 0 C!m1$i%!n !& "i&&eent 1!1etie% !& T#n$b'e OTA $n" T#n$b'e OTA (it) c$%c!"e c#ent mi!%

    20

    ,!1et+

    Re%#'t% !& t)e (!

    "!ne b+

    T#n$b'e OTA

    (it) c$%c!"ec#ent

    mi!%

    ,!(e %#11'+ 57* v 57* /

    Bi$% c#ent ; mA 5 mA

    ,!(e c!n%#m1ti!n 5; m 6 mDC G$in 57566 "B H< "B

    R!#t -- ;H7?H J

    CMRR * "B ?*76; "B

    K,SRR -- 85785"B

    -,SRR -- 857;5"BGB ;7*?H G9:

  • 7/25/2019 Chebyshev filter Design

    21/30

    *T9ORDER C9EBYS9E/ L,F FOR LAN

    9ynthesis of RC adder Net:or; of 7th Order Cheyshe< 1ilter 3

    Fig7 5 0 *t)O"e RLC '$""e &i'te (it) b$nc) c#ent% $n" n!"e v!'t$ge%

    T$b'e 0 S+nt)e%i% !& RLC L$""e Net(! !& *t) O"e C)eb+%)ev Fi'te

    21

    Normalized Filter element values

    (fp= 1/2 Hz and R1, RL= 1 )

    [16]

    Filter element element values

    (fp= 19.77MHz andR1, RL=1/gm= 235 )

    L= LN

    /(2 fp

    gm

    ) and C= (CN

    gm

    )/ (2fp

    )

    CN5 ;75H6 F C5 876 1F

    LN; 57

  • 7/25/2019 Chebyshev filter Design

    22/30

    *T9ORDER C9EBYS9E/ FILTER CONTD7 Acti3 Cic#it %t$te e4#$ti!n% 0

    Fig7 5H0 E4#iv$'ent *t)O"e OTA-C &i'te

    22

  • 7/25/2019 Chebyshev filter Design

    23/30

    Active OTA b$%e" gm-C &i'te cic#it (it) bi$%ing cic#it0

    *t)O"e C)eb+%)ev Fi'te C!nt"7

    Fig7 5*0 Active OTA b$%e" gm-C &i'te cic#it (it) bi$%ing cic#it

    SIMULATION RESULTS OF *T9 ORDER C9EBYS9E/

  • 7/25/2019 Chebyshev filter Design

    24/30

    SIMULATION RESULTS OF *T9ORDER C9EBYS9E/

    FILTER 1re2uency res0onse of 7thorder Cheyshe< filter3"c g$in0 - "B> 1$%%b$n" i11'e%2 Am$=30 57

  • 7/25/2019 Chebyshev filter Design

    25/30

    SIMULATION RESULTS OF FILTER CONTD7 1ilter ,D' analysis at ?%,@ %.?400 in0ut si/nal3 " !"e )$m!nic

    "i%t!ti!n i% -H?"B (it) $n in1#t !& H

  • 7/25/2019 Chebyshev filter Design

    26/30

    SIMULATION RESULTS OF FILTER CONTD7

    Tunin/ the Cutoff 1re2uency :ith OTA ias Tail current "IB(3 T)e

    c#t!&& &e4#enc+ !& t)e &i'te c$n be t#ne" &!m 57 M9: t! ;

  • 7/25/2019 Chebyshev filter Design

    27/30

    SUMMARY OF *T9ORDER C9EBYS9E/ FILTER

    27

    M$in Fi&t) O"e C)eb+%)ev Fi'te

    Sim#'$te" #%ing

  • 7/25/2019 Chebyshev filter Design

    28/30

    CONCLUSION AND FUTURE OR

    An OTA b$%e" gm-C '$""e b$%eb$n" &i'te (it) t#n$b'e c#t!&& )$% been

    %im#'$te" t! meet t)e e4#iement !& LAN7 T)e c#t-!&& &e4#enc+ !& t)e &i'te

    i% 56788M9: $n" it $"!1t% &i&t) !"e c)eb+%)ev-I e%1!n%e7

    F! $ctive im1'ement$ti!n !& t)e &i'te $ T#n$b'e OTA (it) c$%c!"e c#ent

    mi! )$% been %im#'$te"7 B+ #%ing c$%c!"e c#ent mi!%> g$in !& t)e OTA

    )$% been ince$%e"7 A'%! t)e 1!(e c!n%#m1ti!n !& t)e OTA i% e"#ce"7

    Tem1e$t#e In"e1en"ent bi$%ing cic#it (it) &ee"b$c c!nt!' mec)$ni%m c$n

    be im1'emente" &! tem1e$t#e c!m1en%$ti!n.

    28

  • 7/25/2019 Chebyshev filter Design

    29/30

    REFERENCES [1] Shouhei Kousai, Mototsugu Hamada, Rui Ito, and Tetsuro Itakura, A 19.7 MHz, Fifth- order Active-RC Chebyshev

    LPF for Draft IEEE802.11n with Automatic Quality- Factor Tuning Scheme IEEE J. Solid-State Circuits, vol. 42,no. 11, Nov. 2007

    [2] Sherwin Paul R. Almazan, Maria Theresa G. de Leon, A 3rd Order Butterworth Gm-C Filter for WiMAX Receiversin a 90 nm CMOS Process, 2010, 12th International Conference on Computer Modeling and Simulation.

    [3] S. Lee, and C. Cheng, Systematic Design and Modeling of an OTA-C Filter for Portable ECG Detection, IEEETransactions on Biomedical Circuits and Systems, 2009.

    [4] Jirayuth Mahattanakul and Jamron Chutichatuporn, Design Procedure for Two Stage CMOS Op-Amps with NoisePower Balancing Scheme IEEE transaction on circuits and systems-I: Regular paper, Vol. 52, No. 8, pp. 1508-1514,August 2005.

    [5] E. P. Allen, R. D. Holberg, CMOS analog circuit design, Oxford University Press London, Second Edition, 2003.

    [6] Anup Mane, Deepa Yagain, A High CMRR, High Slew Rate, Low Total Harmonic Distortion CMOS OTA for HFApplications, IEEE, International Conference on Emerging Trends in Engineering and Technology, ICETET-09

    [7] Govind Dryanani, Principles of Active Network Synthesis & Design, Wiley.

    [8] Darwin Cheung, Klaas Bulty and Aaron Buchwaldy, 10-MHz 60-dB Dynamic- Range 4th-Order ButterworthLowpass Filter, IEEE press.

    [9] Y. Tsividis and S. C. Fang "MOS Transconductors and integrator with high linearity." Electron. Lett. Vol. 22 pp245-246, 1986

    [10] Z. Czarnul, Y. Tsividis and S. C. Fang, MOS Transconductors and Integrator with high linearity, Electron. Lett.Vol. 22, pp 245-246, 1986.

    [11] Z. Wang and W. Guggenbuhl, A Voltage-Controllable Linear MOS Transconductor Using Bias Offset Technique,IEEE, Log Number 8932695, 1989.

    [12] R. Sarpeshkar, R. F. Lyon, and C. A. Mead, A low-power wide linear range transconductance amplifier, Analog

    Integrated Circuits Signal Processing, vol. 13, pp. 123-151, 1997. [13] Moon Jae Jeong, Shigetaka Takagi, Zdzislaw Czarnul, Nobuo Fujii, Design of a noval linear 3-input CMOS OTA

    and its application to Filter Realization, IEEE, 0-7803-3702-6/96/$5.00, 1996.

    [14] Behzad Razavi, Design of Analog CMOS Integrated Circuits, Edition 2002.

    [15] P. Zhang, T. Nguyen, C. Lam, D. Gambetta, T. Soorapanth, B. Cheng, S. Hart, I. Sever, T. Bourdi, A. Tham, B.Razavi, "A direct-conversion CMOS transceiver for IEEE 802.11a WLANs," ISSCC Dig. Tech. Papers,pp. 354-355,Feb. 2003.

    [16] Jon B. Hagen, Radio-Frequency Electronics, Cambridge University Press Cambridge, Second Edition, 2009.

    29

  • 7/25/2019 Chebyshev filter Design

    30/30

    T9AN YOU

    30