reliabilityinthemepdgonestatesperspective(pierce)(1 2007)

Upload: metatonyco

Post on 06-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    1/17

    Reliability in the MEPDG

    One States Perspective

    Linda Pierce, PE

    State Pavements EngineerWSDOT

    Transportation Research Board86th Annual Meeting

    January 21, 2207

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    2/17

    Introduction

    What level of reliability to use?

    NCHRP 1-40 results

    Reliability and pavement thickness

    Thoughts on the reliability concept inMEPDG

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    3/17

    What values to use? 1993 AASHTO Guide definition

    The actual number of ESALs to a terminalserviceability level is less than the predictedESALs

    MEPDG definition Each key distresses will be less than the critical

    distress level over the design period

    The more important the project (consequencesof failure) the higher the reliability

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    4/17

    MEPDG Flow Diagram

    Image courtesy of Scott Wilson Pavement Engineering LTD, NCHRP 1-40A(03) Final Report

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    5/17

    MEPDG Reliability Process

    1. Input design parameters (traffic,

    climate, structure, material properties)

    2. User defines target distress conditions

    at the end of the design period3. User defines reliability level

    4. MEPDG estimates distress at the end

    of the design year and determinespass or fail condition

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    6/17

    MEPDG Recommended Values

    50-7550-75Local

    70-8075-85Collectors75-9080-95Principal Arterial

    80-9585-97Interstate

    RuralUrbanFunctional Class

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    7/17

    Distress Types

    Fatigue cracking (chemically

    stabilized layer)

    Minimum and maximum

    crack spacing

    Rutting HMA onlyLoad transfer (cracks)

    Rutting total pavementCrack width (CRCP)Thermal crackingPunchouts

    Bottom up crackingFaulting

    Top down crackingTransverse crackingTerminal IRITerminal IRI

    Flexible PavementRigid Pavement

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    8/17

    WSDOT Recommendation Until local calibration/validation can be

    completed New Construction

    75%Minor Arterial and Collector

    85%Principal Arterial

    95%Interstate

    ReliabilityFunctional Class

    Rehabilitation

    Reliability = 50 percent

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    9/17

    NCHRP 1-40 Results

    Rehabilitation design may be conducedat a greater level

    Traffic, material properties, subgrade

    moisture conditions, pavement distress canbe measured in the lab and field

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    10/17

    Global Calibration Hypothesis

    Image courtesy of ARA

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    11/17

    NCHRP 1-40 Results For some deterioration modes there is more

    calibration data at low levels of distress Variability for higher distress levels is likely to

    be less reliable (based on fewer data points)

    Until more calibration data (at varying distresslevels) is available, it is difficult to asses theeffects of reduced input variability and

    therefore, reliability of the output parameters

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    12/17

    NCHRP 1-40 Results

    The same standard deviations are used

    for all design levels (except for thermalcracking)

    No improvement in reliability when moreaccurate input parameters are used

    Investigate the use of

    Monte Carlo simulation techniques Other alternative methods

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    13/17

    NCHRP 1-40 Results

    Insufficient data in the LTPP database to

    determine the effect of input level on thecalibration error

    Except for thermal cracking properties

    Need to have accurate measure of pasttraffic loadings

    Local calibration needed to confirm thenational calibration models

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    14/17

    NCHRP 9-30 Results

    Use of performance data from carefully

    controlled experiments (WesTrack,MnRoad, NCAT, FHWA-ALF) are moreuseful for model validation/calibration

    Recalibrate MEPDG

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    15/17

    Reliability and Thickness Design

    HMA Example

    Level 1 and 3 analysis

    40 year design

    Reliability levels: 50 and 90

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    16/17

    Reliability and Thickness Design

    Fail19.770.340.25Permanent Deformation (AC Only) (in):903

    Fail02112100AC Thermal Fracture (ft/mi):903

    Pass99.99940.9100AC Bottom Up Cracking (%):903

    Fail13.23226.5172Terminal IRI (in/mi)903

    Fail19.770.340.25Permanent Deformation (AC Only) (in):503

    Fail02112100AC Thermal Fracture (ft/mi):503

    Pass99.99940.9100AC Bottom Up Cracking (%)503

    Fail13.23226.5172Terminal IRI (in/mi)503Comment

    Reliability

    Predicted

    Distress

    Predicted

    Distress

    TargetPerformance CriteriaR

    Input

    Level

  • 8/3/2019 ReliabilityintheMEPDGonestatesperspective(Pierce)(1 2007)

    17/17

    Thoughts on the ReliabilityConcept

    Process used in the MEPDG is a starting

    point Local calibration is essential