references - springer978-3-319-69847-2/1.pdf · 242 references 17. j.c. butcher, on the attainable...

21
References 1. A. Abdulle, W. E, B. Engquist, W. Ren, E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012) 2. J.H. Argyris, Energy theorems and structural analysis, part 1. Aircraft Eng. 26, 383–387 (1954) 3. W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17–29 (1951) 4. G.A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 45–59 (1977) 5. F. Bashforth, J.C. Adams, An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, with an Explanation of the Method of Integration Employed in Constructing the Tables which Give the Theoretical Forms of Such Drops (Cambridge University Press, Cambridge, 1883) 6. R. Beatson, L. Greengard, A short course on fast multipole methods, in Proceedings of Wavelets, Multilevel Methods and Elliptic PDEs (Oxford University Press, Oxford, 1997), pp. 1–37 7. M. Benzi, Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002) 8. J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994) 9. G. Beyklin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms I. Commun. Pure Appl. Math. 44, 141–183 (1991) 10. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637– 654 (1973) 11. R.N. Bracewell, Strip integration in radio astronomy. Aust. J. Phys. 9, 192–217 (1956) 12. A. Brandt, Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems, in Proceedings of 3rd International Conference on Numerical Methods in Fluid Mechanics. Lecture Notes in Physics, vol. 18 (Springer, Berlin, 1973), pp. 82–89 13. A. Brandt, Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977) 14. C. Brezinski, D. Tournès, André-Louis Cholesky; Mathematician, Topographer and Army Officer (Birkhäuser, Basel, 2014) 15. R. Bulirsch, J. Stoer, Fehlerabschätzungen und Extrapolation mit rationalen Funktionen bei Verfahren vom Richardson-Typus. Numer. Math. 6, 413–427 (1964) 16. J.C. Butcher, Coefficients for the study of Runge–Kutta integration processes. J. Aust. Math. Soc. 3, 185–201 (1963) © Springer International Publishing AG, part of Springer Nature 2018 B. Gustafsson, Scientific Computing, Texts in Computational Science and Engineering 17, https://doi.org/10.1007/978-3-319-69847-2 241

Upload: others

Post on 29-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

References

1. A. Abdulle, W. E, B. Engquist, W. Ren, E. Vanden-Eijnden, The heterogeneous multiscalemethod. Acta Numer. 21, 1–87 (2012)

2. J.H. Argyris, Energy theorems and structural analysis, part 1. Aircraft Eng. 26, 383–387(1954)

3. W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalueproblem. Quart. Appl. Math. 9, 17–29 (1951)

4. G.A. Baker, Finite element methods for elliptic equations using nonconforming elements.Math. Comput. 31, 45–59 (1977)

5. F. Bashforth, J.C. Adams, An Attempt to Test the Theories of Capillary Action by Comparingthe Theoretical and Measured Forms of Drops of Fluid, with an Explanation of the Method ofIntegration Employed in Constructing the Tables which Give the Theoretical Forms of SuchDrops (Cambridge University Press, Cambridge, 1883)

6. R. Beatson, L. Greengard, A short course on fast multipole methods, in Proceedings ofWavelets, Multilevel Methods and Elliptic PDEs (Oxford University Press, Oxford, 1997),pp. 1–37

7. M. Benzi, Preconditioning techniques for large linear systems: a survey. J. Comput. Phys.182, 418–477 (2002)

8. J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J.Comput. Phys. 114, 185–200 (1994)

9. G. Beyklin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms I.Commun. Pure Appl. Math. 44, 141–183 (1991)

10. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

11. R.N. Bracewell, Strip integration in radio astronomy. Aust. J. Phys. 9, 192–217 (1956)12. A. Brandt, Multi-level adaptive technique (MLAT) for fast numerical solution to boundary

value problems, in Proceedings of 3rd International Conference on Numerical Methods inFluid Mechanics. Lecture Notes in Physics, vol. 18 (Springer, Berlin, 1973), pp. 82–89

13. A. Brandt, Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31,333–390 (1977)

14. C. Brezinski, D. Tournès, André-Louis Cholesky; Mathematician, Topographer and ArmyOfficer (Birkhäuser, Basel, 2014)

15. R. Bulirsch, J. Stoer, Fehlerabschätzungen und Extrapolation mit rationalen Funktionen beiVerfahren vom Richardson-Typus. Numer. Math. 6, 413–427 (1964)

16. J.C. Butcher, Coefficients for the study of Runge–Kutta integration processes. J. Aust. Math.Soc. 3, 185–201 (1963)

© Springer International Publishing AG, part of Springer Nature 2018B. Gustafsson, Scientific Computing, Texts in Computational Scienceand Engineering 17, https://doi.org/10.1007/978-3-319-69847-2

241

Page 2: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

242 References

17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417(1965)

18. J.C. Butcher, Numerical Methods for Ordinary Differential Equations. Runge-Kutta andGeneral Linear Methods (Wiley, Hoboken, 2003)

19. L. Cesari, Sulla risoluzione dei sistemi di equazioni lineari per approssimazioni successive.Atti Accad. Nazionale Lincei R. Classe Sci. Fis. Mat. Nat. 25, 422 (1937)

20. J.-L. Chabert (ed.), A History of Algorithms; From the Pebble to the Microchip (Springer,Berlin, 1999)

21. J.G. Charney, R. Fjörtoft, J. von Neumann, Numerical integration of the barotropic vorticityequation. Tellus 2, 237–254 (1950)

22. R.W. Clough, The finite element method in plane stress analysis, in Proceedings of 2nd ASCEConference on Electronic Computation, Pittsburgh, PA (1960)

23. R.W. Clough, Original formulation of the finite element method, in Proceedings of ASCEStructures Congress Session on Computer Utilization in Structural Engineering, San Fran-cisco (1989), pp. 1–10

24. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series.Math. Comput. 19, 297–301 (1965)

25. A. Cormack, Representation of a function by its line integrals, with some radiologicalapplications. J. Appl. Phys. 34, 2722–2726 (1963)

26. A. Cormack, Representation of a function by its line integrals, with some radiologicalapplications. II. J. Appl. Phys. 35, 2908–2912 (1964)

27. R. Courant, Variational methods for the solution of problems of equilibrium and vibrations.Bull. Am. Math. Soc. 49, 1–23 (1943)

28. R. Courant, K.O. Friedrichs, H. Levy, Über die partiellen Differenzengleichungen in derMathematischen Physik. Math. Ann. 100, 32–74 (1928)

29. R. Courant, E. Isaacson, M. Rees, On the solution of nonlinear hyperbolic differentialequations by finite differences. Commun. Pure Appl. Math. 5, 243–255 (1952)

30. R. Courant, K.O. Friedrichs, H. Levy, On the partial difference equations of mathematicalphysics. IBM J. Res. Dev. 11, 215–234 (1967)

31. C.F. Curtiss, J.O. Hirschfelder, Integration of stiff equations. Proc. Nat. Acad. Sci. USA 638,235–243 (1952)

32. G. Dahlquist, Convergence and stability in the numerical integration of ordinary differentialequations. Mat. Scand. 4, 33–53 (1956)

33. G. Dahlquist, A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)34. G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton,

1963)35. I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl.

Math. 41, 909–996 (1988)36. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992)37. C. de Boor, On calculating with B-splines. J. Approx. Theory 6, 50–62 (1972)38. C. de Boor, A Practical Guide to Splines (Springer, Berlin, 1978)39. P. Debye, Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und

unbeschränkt veränderliche Werte des Index. Math. Ann. 67, 535–558 (1904)40. B. Delaunay, Sur la sphère vide. Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–

800 (1934)41. J. Dongarra, C. Moler, LINPACK: Users’ Guide (SIAM, Philadelphia, 1979)42. J. Douglas, On the numerical integration of ∂2u/∂x2+∂2u/∂y2 = ∂u/∂t by implicit methods.

J. Soc. Ind. Appl. Math. 3, 42–65 (1955)43. J. Douglas, H.H. Rachford, On the numerical solution of heat conduction problems in two

and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)44. P.G. Drazin (ed.), Collected Papers of Lewis Fry Richardson, vol. 1 (Cambridge University

Press, Cambridge, 1993)

Page 3: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

References 243

45. M. Dryja, An algorithm with a capacitance matrix for a variational-difference scheme, inVariational-Difference Methods in Mathematical Physics, ed. G.I. Marchuk (Novosibirsk,USSR Academy of Sciences, 1981), pp. 63–73

46. M. Dryja, O. Widlund, Some domain decomposition algorithms for elliptic problems, inProceedings of Iterative Methods for Large Linear Systems, Austin 1988, ed. by L. Hayes,D. Kincaid (Academic Press, New York, 1989), pp. 273–291

47. M. Engeli, T. Ginsburg, H. Rutishauser, H. Stiefel, Refined Iterative Methods for Computationof the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems (Birkhäuser,Basel, 1959)

48. B. Engquist (ed.), Encyclopedia of Applied and Computational Mathematics (Springer,Berlin, 2015)

49. B. Engquist, A. Majda, Absorbing boundary conditions for the numerical simulation of waves.Math. Comput. 31, 629–651 (1977)

50. L. Euler, Institutionum Calculi Integralis, chap.7 (Impensis Academiae Imperialis Scien-tiarum, Petropoli, 1768)

51. R.P. Fedorenko, A relaxation method for solving elliptic difference equations. Z. Vycisl. Mat.i Mat. Fiz. 1, 922–927 (1961) (Russian)

52. R.P. Fedorenko, The speed of convergence of one iterative process. USSR Comput. Math.Math. Phys. 4, 227–235 (1964)

53. J. Fourier, Théorie analytique de la chaleur (Firmin Didot Père et Fils, Paris, 1822)54. J. Fourier, Histoire de l’Académie, partie mathématique (1824), in Mémoires de l’Académie

des Sciences de l’Institut de France, vol. 7 (Gauthier–Villars, Paris, 1827)55. L. Fox, E.T. Goodwin, Some new methods for the numerical integration of ordinary

differential equations. Proc. Camb. Phil. Soc. 45, 373–388 (1949)56. J.G.F. Francis, The qr transformation, I. Computer J. 4, 265–271 (1961)57. J.G.F. Francis, The qr transformation, II. Computer J. 4, 332–345 (1962)58. S. Frankel, Convergence rates of iterative treatments of partial differential equations. Math.

Tables Aids Comput. 4, 65–75 (1950)59. D. Gabor, Theory of communication. J. IEEE 93, 429–457 (1946)60. B.G. Galerkin, Beams and plates. Using series for some problems in the elastic equilibrium

of rods and plates. Eng. Bull. (Vestnik Inzhenerov) 19, 897–908 (1915) (in Russian)61. M.J. Gander, G. Wanner, From Euler, Ritz, and Galerkin to modern computing. SIAM Rev.

54, 627–666 (2012)62. C.F. Gauss, Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium

(Perthes, Hamburg, 1809)63. C.F. Gauss, Methodus nova integralium valores per approximationem inveniendi. Commen-

tationens Sociatatis regiae scientarium Göttingensis recentiores 3, 39–76 (1814)64. C.F. Gauss, Nachlass: theoria interpolationis methodo nova tractata (Königliche Gesellschaft

der Wissenschaften, Göttingen, 1866), pp. 265–33065. C.W. Gear, The numerical integration of ordinary differential equations. Math. Comput. 21,

146–156 (1967)66. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice

Hall, Englewood Cliffs, 1971)67. C.W. Gear, Numerical solution of ordinary differential equations; is there anything left to do?

SIAM Rev. 23, 10–24 (1981)68. J.W. Gibbs, Fourier series. Nature 59, 78–79 (1898)69. J.W. Gibbs, Fourier series. Nature 59, 233–234 (1899)70. S.K Godunov, Difference methods for the numerical computation of discontinuous solutions

of equations of hydrodynamics. Mat. Sb. N. S. 47(89), 3, 271–306 (1959)71. S.K Godunov, V.S. Ryabenkii, Special criteria for stability for boundary-value problems for

non-self-adjoint difference equations. Uspekhi Mat. Nauk. 18, 3–14 (1963)72. H.H. Goldstine, A History of Numerical Analysis from the 16th Through the 19th Century

(Springer, Berlin, 1977)

Page 4: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

244 References

73. G.H. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a matrix. SIAMJ. Numer. Anal. 2, 205–224 (1965)

74. G.H. Golub, C. Reinsch, Singular value decomposition and least squares solution. Numer.Math. 14, 403–420 (1970)

75. G.H. Golub, J.H. Welsch, Calculation of Gauss quadrature rules. Math. Comput. 23, 221–230(1969)

76. D. Gottlieb, The stability of pseudospectral–Chebyshev methods. Math. Comput. 36, 107–118 (1981)

77. D. Gottlieb, B. Gustafsson, P. Forssén, On the direct Fourier method for computer tomogra-phy. IEEE Trans. Med. Imag. 19, 223–232 (2000)

78. W.B. Gragg, On extrapolation algorithms for ordinary initial value problems. SIAM. J.Numer. Anal. 2, 384–403 (1965)

79. L. Greengard, V. Rokhlin, A fast algorithm for particle simulation. J. Comput. Phys. 73, 325–348 (1987)

80. A. Grossman, J. Morlet, Decomposition of Hardy functions into square integrable waveletsof constant shape. SIAM J. Math. Anal. 15, 2473–2479 (1984)

81. B. Gustafsson, L. Hemmingsson-Frändén, A fast domain decomposition high order Poissonsolver. J. Sci. Comput. 14, 223–243 (1999)

82. B. Gustafsson, H.-O. Kreiss, A. Sundström, Stability theory of difference approximations formixed initial boundary value problems II. Math. Comput. 26, 649–686 (1972)

83. A. Haar, Zur Theorie der orthogonalen Funktionensysteme, (Erste Mitteilung). Math. Ann.2669, 331–371 (1910)

84. W. Hackbusch, Multi-Grid Methods and Applications (Springer, Berlin, 1985)85. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential–

Algebraic Problems, Springer Series in Computational Mathematics, 2nd edn. (Springer,Berlin, 1996)

86. W.J. Hehre, R.F. Stewart, J.A. Pople, Self-consistent molecular-orbital methods. I. Use ofGaussian expansions of Slater-type atomic orbitals. J. Chem. Phys. 51, 2657–2664 (1969)

87. M.T. Heideman, D.H. Johnson, C.S. Burrus, Gauss and the history of the fast Fouriertransform. Arch. Hist. Exact Sci. 34, 265–277 (1985)

88. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (Wiley, Hoboken,1962)

89. M. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res.Natl. Bur. Stand. 49, 409–438 (1952)

90. J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods Algorithms, Analysisand Applications. Texts in Applied Mathematics, vol. 54 (Springer, Berlin, 2008)

91. J.S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems.Cambridge Monographs on Applied and Computational Mathematics (Cambridge UniversityPress, Cambridge, 2007)

92. K. Heun, Neue Methode zur Approximativen Integration der Differentialgleichungen einerunabhängigen Veränderlichen (New methods for approximate integration of differentialequations of one independent variable). Zeit. Math. Phys. 45, 23–38 (1900)

93. G.N. Hounsfield, Computerized transverse axial scanning (tomography): part I. Descriptionof system. Br. J. Radiol. 46, 1016–1022 (1973)

94. C.G.J. Jacobi, Über eine neue Aufiösungsart der bei der Methode der kleinsten Quadratevorkommenden linearen Gleichungen. Astron. Nachrichten 22, 297–298 (1845)

95. E.J. Kansa, Multiquadratics–a scattered data approximation scheme with applications tocomputational fluid dynamics II. Solutions to parabolic, hyperbolic and elliptic partialdifferential equations. Comput. Math. Appl. 19, 147–161 (1990)

96. L. Kantorovich, The Mathematical Method of Production Planning and Organization(Leningrad University Press, Leningrad, 1939)

97. H.-O. Kreiss, Über die Lösung von Anfangswertaufgaben für partielle Differential-gleichungen. Trans. R. Inst. Technol. 166 (1960)

Page 5: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

References 245

98. H.-O. Kreiss, Über die Stabilitätsdefinition für Differentialgleichungen die partielle Differen-tialgleichungen approximieren. BIT 2, 153–181 (1962)

99. H.-O. Kreiss, On difference approximations of the dissipative type for hyperbolic differentialequations. Commun. Pure Appl. Math. 17, 335–353 (1964)

100. H.-O. Kreiss, Stability theory for difference approximations of mixed initial boundary valueproblems. I. Math. Comput. 22, 703–714 (1968)

101. H.-O. Kreiss, Initial boundary value problems for hyperbolic systems. Commun. Pure Appl.Math. 23, 277–298 (1970)

102. H.-O. Kreiss, J. Oliger, Comparison of accurate methods for the integration of hyperbolicproblems. Tellus 24, 199–215 (1972)

103. A.N. Krylov, On the numerical solution of the equation by which in technical questionsfrequencies of small oscillations of material systems are determined. Izvestiya AkademiiNauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 491–539 (1931)

104. V.N. Kublanovskaya, On some algorithms for the solution of the complete eigenvalueproblem. USSR Comput. Math. Math. Phys. 1, 555–570 (1961)

105. C. Lanczos, Trigonometric interpolation of empirical and analytical functions. J. Math. Phys.17, 123–199 (1938)

106. C. Lanczos, Solutions of systems of linear equations by minimized iterations. J. Res. Natl.Bur. Stand. 49, 33–53 (1952)

107. E. Larsson, B. Fornberg, A numerical study of some radial basis function based solutionmethods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)

108. E. Larsson, S.M. Gomes, A. Heryudono, A. Safdari-Vaighani, Radial basis function methodsin computational finance, in Proceedings of CMMSE13, Almeria, Spain (2013), 12 pp.

109. P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation.Commun. Pure Appl. Math. 7, 159–193 (1954)

110. P.D. Lax, Hyperbolic systems of conservation laws, II. Commun. Pure Appl. Math. 10, 537–566 (1957)

111. P.D. Lax, John von Neumann: the early years, the years at Los Alamos, and the road tocomputing. SIAM News 38(2) (2005)

112. P.D. Lax, R.D. Richtmyer, Survey of the stability of linear finite difference equations.Commun. Pure Appl. Math. 9, 267–293 (1956)

113. A.-M. Legendre, Nouvelles méthodes pour la détermination des orbites des comètes (Newmethods for the determination of the orbits of comets) (Didot, Paris, 1805)

114. S.J. Leon, Å. Björck, W. Gander, Gram–Schmidt orthogonalization: 100 years and more.Numer. Linear Algebra Appl. 20, 492–532 (2013)

115. P.-L. Lions, On the Schwarz alternating method I, in First International Symposium onDomain Decomposition Methods for Partial Differential Equations, ed. by R. Glowinski, G.Golub, G.A. Meurant, J. Périaux (1988), pp. 1–42

116. P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1: Compressible Models (OxfordUniversity Press, New York, 2013)

117. P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. II: Incompressible Models (OxfordUniversity Press, New York, 2013)

118. S.H. Lo, A new mesh generation scheme for arbitrary planar domains. Int. J. Numer. Math.Eng. 21, 1403–1426 (1985)

119. N. Metropolis, S. Ulam, The Monte Carlo method. J. Am. Stat. Assoc. 44, 335–341 (1949)120. S.G. Mikhlin, On the Schwarz algorithm. Doklady Akademii Nauk SSSR 177, 569–571

(1951)121. E.H. Moore, On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26,

394–395 (1920)122. F.R. Moulton, New Methods in Exterior Ballistics (University of Chicago Press, Chicago,

1926)123. I. Newton, Methodus differentialis, in Analysis Per Quantitatum Series, Fluxiones, ac

Differentias: cum Enumeratione Linearum Tertii Ordinis, London (1711)

Page 6: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

246 References

124. E.J. Nyström, Über die numerische Integration von Differentialgleichungen. Acta Soc. Sci.Fennicae 50, 1–55 (1925)

125. S. Orszag, Numerical methods for the simulation of turbulence. Phys. Fluids Suppl. II 12,250–257 (1969)

126. S.A. Orszag, Numerical simulation of incompressible flows within simple boundaries I.Galerkin (spectral) representations. Stud. Appl. Math. 50, 293–327 (1971)

127. S.A. Orszag, Comparison of pseudospectral and spectral approximation. Stud. Appl. Math.51, 253–259 (1972)

128. S. Osher, J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms basedon Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

129. S. Osher, C.W. Shu, High order essentially non-oscillatory schemes for Hamilton–Jacobiequations. SIAM J. Numer. Anal. 28, 907–922 (1991)

130. A.T. Patera, A spectral element method for fluid dynamics: laminar flow in a channelexpansion. J. Comput. Phys. 554, 468–488 (1984)

131. D.W. Peaceman, H.H. Rachford, The numerical solution of parabolic and elliptic differentialequations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

132. R. Penrose, A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51, 406–413 (1955)133. J. Peraire, M. Vahdati, K. Morgan, O. Zienkiewicz, Adaptive remeshing for compressible flow

computations. J. Comput. Phys. 72, 449–466 (1987)134. V. Pereyra, On improving an approximate solution of a functional equation by deferred

corrections. Numer. Math. 8, 376–391 (1966)135. H. Poincaré, Les méthodes nouvelles de la mécanique céleste, vol. 1 (Gauthier–Villars, Paris,

1892)136. B. Rayleigh, J.W. Strutt, The Theory of Sound, vol. II (MacMillan, London, 1896)137. W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation. Los

Alamos Scientific Laboratory, Tech. Report LA-UR-73-479, 1973138. L.F. Richardson, The approximate arithmetical solution by finite differences of physical

problems involving differential equations, with an application to the stresses in a masonrydam. Phil. Trans. R. Soc. A 210, 307–357 (1911)

139. W. Ritz, Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematis-chen Physik. J. Reine Angew. Math. 135, 1–61 (1908)

140. W. Ritz, Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern.Ann. Phys. 18, 737–807 (1909)

141. V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions. J.Comput. Phys. 60, 187–207 (1985)

142. C. Runge, Über die numerische Auflösung von Differentialgleichungen (on the numericalsolution of differential equations. Math. Ann. 46, 167–178 (1895)

143. C. Runge, Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordi-naten. Z. Math. Phys. 46, 224–243 (1901)

144. H. Rutishauser, Über die Instabilität von Methoden zur Integration gewöhnlicher Differential-gleichungen. Z. Angew. Math. Phys. 3, 65–74 (1952)

145. H. Rutishauser, Solution of eigenvalue problems with the lr-transformation. NBS Appl. Math.Ser. Phil. Trans. R. Soc. A 49, 47–81 (1958)

146. Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solvingnonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

147. M. Saigey, Problèmes d’arithmétique et exercises de calcul du second degré avec les solutionsraisonnées (Hachette, Paris, 1859)

148. J.B. Scarborough, Numerical Mathematical Analysis (The Johns Hopkins Press, Baltimore,1930)

149. I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analyticfunctions. Quart. Appl. Math. 4, 45–99, 112–141 (1946)

150. H.A. Schwarz, Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschriftder Naturforschenden Gesellschaft Zürich 15, 272–286 (1870)

Page 7: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

References 247

151. G.W. Stewart, On the early history of the singular value decomposition. SIAM Rev. 35, 551–566 (1993)

152. G. Strang, Wavelets. Am. Sci. 82, 250–255 (1994)153. A. Toselli, O.B. Widlund, Domain Decomposition Methods - Algorithms and Theory.

Springer Series in Computational Mathematics (Springer, Berlin, 2005)154. R. Tsai, S. Osher, Level set methods and their applications in image science. Commun. Math.

Sci. 1, 1–20 (2003)155. M.J. Turner, R.W. Clough, H.C. Martin, L.J. Topp, Stiffness and deflection analysis of

complex structures. J. Aero. Sci. 23, 805–823 (1956)156. R. von Mises, H. Pollaczek-Geiringer, Praktische Verfahren der Gleichungsauflösung.

ZAMM 9, 152–164 (1929)157. J. von Neumann, Proposal and analysis of a numerical method for the treatment of

hydrodynamic shock problems. National Defense and Research Committee Report AM551,1944

158. J. von Neumann, R. Richtmyer, A method for numerical calculation of hydrodynamic shocks.J. Appl. Phys. 21, 232–237 (1950)

159. L. von Sydow et al. BENCHOP–the BENCHmarking project in option pricing. Int. J. Comput.Math. 92, 2361–2379 (2015)

160. K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Funktioneneiner reellen Veränderlichen. Sitzungsberichte der Königlich Preussischen Akademie derWissenschaften zu Berlin, II: Erste Mitteilung (Part 1) 633–639, Zweite Mitteilung (Part 2)789–805, 1885

161. E. Weinan, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003)

162. E.T. Whittaker, G. Robinson, The Calculus of Observations. A Treatise on NumericalMathematics (Blackie & Son, London, 1924)

163. O.C. Zienkiewicz, Y.K. Cheung, Finite elements in the solution of field problems. TheEngineer 220, 507–510 (1965)

Page 8: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

Index

Abel Prize, 115Absorbing boundary conditions, 216Adams, 61Adams methods, 61Adams–Moulton methods, 63, 67ADI, see Alternating-direction implicit methodAdvancing front method, 175Algebraic multigrid methods, 194ALGOL, 139Alternating-direction implicit (ADI) method,

106Amplification factor, 65, 115Archimedes, 5, 10, 14Arnoldi, 131Arnoldi method, 131Artificial viscosity, 114Assembly language, 139A-stability, 96, 98

Bôcher, 55Babylonian collection, 6Babylonian method, 8Backward differentiation methods, 97, 143Backwards error analysis, 127Bashforth, 63Beltrami, 200Berenger, 219BESK, 93Birkhoff, 126Björck, 95Black, 228Black–Scholes equation, 229Brandt, 193Bulirsch, 146

Burgers’ equation, 112Butcher, 144Butcher tableau, 144

C++, 140CDC 6600, 134CDC 7600, 134CDC STAR 100, 134CFL-condition, 81CFL-number, 81Characteristic equation, 94Chebyshev, 50Chebyshev polynomial, 50Chinese mathematics, 15Cholesky, 43Cholesky factorization, 43Clairaut, 32Cloud computing, 138Collocation methods, 164, 186Compiler, 139Computational chemistry, 237Computational engineering, 238Computational physics, 236Conjugate direction method, 205Conservative form, 117Cosine-transform, 57Cotes, 33, 34Courant, 73, 79, 114Courant Institute, 73Courant number, 81Crank, 100Crank–Nicolson method, 76, 105Cray X-MP, 135Cray Y-MP, 135

© Springer International Publishing AG, part of Springer Nature 2018B. Gustafsson, Scientific Computing, Texts in Computational Scienceand Engineering 17, https://doi.org/10.1007/978-3-319-69847-2

249

Page 9: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

250 Index

Cray-1, 134Cray-2, 135Curtiss, 96

Dahlquist, 95, 96Dahlquist barrier, 98d’Alembert’s formula, 80Damped Jacobi method, 189Dantzig, 85Daubechies, 159de Boor, 155Debye, 88Deferred correction methods, 214Delaunay triangulation, 174Determinant condition, 152Difference methods ODE, 94Difference methods PDE, 99Differential–algebraic equations, 99Dirichlet, 52Dirichlet boundary conditions, 106Discontinuous Galerkin methods, 171Discrete Fourier series, 101Discrete Fourier transform, 57, 184Dissipative methods, 119Domain decomposition, 210Domain of dependence, 80Douglas Jr., 106Dryja, 215

Eckert, 93EDVAC, 93EISPACK, 140Engquist, 197, 216ENIAC, 92ENO methods, 231Equivalence theorem, 109Euclid, 10Euler, 60Euler backward method, 60, 97Euler equation, 167Euler method, 58, 96Explicit methods, 59

Fast Fourier transform, 175Fedorenko, 189FEM, 72, 165Fields Medal, 142Financial mathematics, 228Finite element methods, 72, 165Finite volume method, 118Fixed point method, 19

Fluid dynamics, 111FMM, 195FORTRAN, 139Fourier, 51

analysis, 99coefficients, 53method, 185series, 51transform, 56

Fourier–Motzkin algorithm, 83Friedrichs, 79, 114Fujitsu, 135

Galerkin, 70Galerkin method, 71, 171Gauss, 35, 40Gaussian elimination, 42Gauss–Lobatto points, 50Gauss–Seidel method, 45Gear, 145Generalized eigenvalue, 152Generalized Minimal Residual Method, 208Gibbs, 55Gibbs phenomenon, 55, 182Givens, 130Givens method, 124GKS-theory, 152GMRES, 208Godunov, 117Godunov method, 118Godunov–Ryabenkii condition, 150Goldstine, 93Golub, 202Gottlieb, 186Gragg, 146Gram, 122Gram–Schmidt orthogonalization, 122Gravity waves, 77, 98Greengard, 195Green’s formula, 73Gregory, 48Grid generation, 174

Haar, 158Haar wavelet, 160Hackbusch, 193Heat equation, 100Henrici, 146Hermite, 28Heron, 8Heron’s method, 8Hessenberg form, 131

Page 10: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

Index 251

Hestenes, 203Heterogeneous multiscale methods, 197Heun, 64High Performance Computer (HPC), 136Hirschfelder, 96Hitachi SR2201, 136HMM, 197Horner’s scheme, 16Householder transformation, 123HPC, see High Performance ComputerHui, 16, 42Huygens, 65Hyperbolic problem, 99

IBM 704, 139IBM 7090, 134ILLIAC-IV, 135Implicit methods, 59, 105Initialization, 78Iterative methods, 7, 125

Jacobi, 24Jacobian, 24Jacobi method, 45Jacobi rotation, 129Jameson, 238Java, 140Jordan, 200

Kantorovich, 85Kepler, 17, 19Kepler’s equation, 19Kopernikus, 17Kreiss, 109, 150Krylov, 206Krylov space methods, 131, 203, 205k-step method, 62Kutta, 64

Lagrange, 27, 88function, 88interpolation, 28multiplier method, 88

Lanczos, 186Lanczos method, 131Laplace operator, 164Lax, 108, 113Lax–Friedrichs scheme, 115Le Verrier, 61Leap-frog scheme, 64, 76, 102Least squares method, 36

Legendre, 37Legendre polynomials, 40, 49Leibniz, 22, 87Level set methods, 229Lewy, 79Linearization, 8Linear programming, 85LINPACK, 137, 140Lions, Jacques–Louis, 142Lions, Pierre–Louis, 142Longley, 18LR algorithm, 130LU decomposition, 43

Machine code, 139MacLaurin, 48MacLaurin series, 48Macroscale, 197Majda, 216Manhattan project, 90Mark I, 91Mass matrix, 171MATLAB, 140Matrix theorem, 109Mauchly, 93Maxwell equations, 219Method of lines, 147Methods of Fluxions, 46Microprocessor, 135Microscale, 197Millennium Prize, 142Mises, 129Moler, 140Monte Carlo-methods, 221Moore, 200Moore–Penrose pseudo-inverse, 200Motzkin, 82Moulton, 63Multigrid methods, 188Multipole methods, 195Multiscale methods, 188Multistep methods, 62, 98

NASA, 94Navier–Stokes equations, 142Newton, 20, 87Newton–Cotes formulas, 34Newton methods, 20Newton–Raphson method, 23, 87Nicolson, 100Nobel Memorial Prize, 228Nobel Prize, 69, 87, 88, 180

Page 11: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

252 Index

Nonconforming elements, 173Nonlinear optimization, 87Nonlinear problems, 141Nonreflecting boundary conditions, 221Numerical domain of dependence, 80Numerical wind tunnel, 136

ODE, 58, 94, 143Open boundaries, 215Operator splitting, 105Optimization, 81Orthogonal functions, 39Orthogonalization, 121Orthogonal polynomials, 39, 48Ossendrijver, 8

Parabolic problems, 100Parallel computer, 136Parallel vector computer, 135Parasitic solution, 78Partial differential equations (PDE), 68, 99,

148PDE, see Partial differential equationsPeaceman, 106Penrose, 200Pereyra, 214Perfectly Matched Layer (PML), 220Personal computer, 138Piazzi, 36Picard theorem, 141Piecewise polynomials, 154Pivoting, 43PML, see Perfectly Matched LayerPoincaré, 65Poisson equation, 72Pollaczek–Geiringer, 129Pope, 21Power method, 129Preconditioning, 208Programming, 139Pseudo-differential operator, 217Pseudo-inverse, 200Pseudo-random numbers, 227Pythagoras, 6Pythagorean theorem, 6

QR-algorithm, 131

Rachford, 106Radial basis functions, 163Random numbers, 224

Random walk, 225Raphson, 22Rayleigh–Ritz method, 69Recursion formula, 101Richardson, 66, 67, 75Richardson extrapolation, 65, 146Richtmyer, 108Riemann, 5

function, 5hypothesis, 5problem, 117

Ritz, 69Ritz–Galerkin method, 69, 71Rokhlin, 195Runge, 30, 64

function, 30phenomenon, 31

Runge–Kutta methods, 64, 144Rutishauser, 94, 130

Saigey, 66Scarborough, 18Schmidt, 122Schoenberg, 31, 154Scholes, 228Schur complement method, 213Schwarz, 210Schwarz alternating method, 211Scientific computing, 92Series expansion, 46Shepp–Logan phantom, 182Shock capturing method, 113Shock fitting methods, 119Shocks, 111Shoujing, 16Similarity transformation, 128Simplex method, 85Simpson, 34Simpson’s rule, 34Sine-transform, 57Singular value decomposition (SVD), 199SOR method, 126Spectral element methods, 187Splines, 154Stability ODE, 94Stability PDE, 108Steepest descent, 87, 203Stiefel, 203Stiff ODE, 96Stoer, 146Sunway TaihuLight, 136SVD, see Singular value decompositionSymbolic processing, 140

Page 12: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

Index 253

Taylor, 47Taylor series, 47Tianhe-2, 137Time-dependent PDE, 111Trapezoidal method, 34, 67, 98Trigonometric interpolation, 31, 57Turing, 89Turing Award, 138Turing’s machine, 90Turner, 166Two-grid methods, 192Two-step methods, 101

Ulam, 221Upwind scheme, 118

Variational problem, 69Vector processor, 134von Neumann, 90von Neumann condition, 99, 104von Seidel, 45

Wavelets, 158Weather prediction, 77, 102Weierstrass, 30Weierstrass theorem, 30Weinan, 197Well posed, 108Welsch, 35Wendroff, 116Whittaker, 18Widlund, 215Wilbraham, 55Wilkinson, 127

Xerox Alto, 138

Yeh, 16Young, 126

Zienkiewicz, 169

Page 13: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

Editorial Policy

1. Textbooks on topics in the field of computational science and engineering will beconsidered. They should be written for courses in CSE education. Both graduate andundergraduate textbooks will be published in TCSE. Multidisciplinary topics and mul-tidisciplinary teams of authors are especially welcome.

2. Format: Only works in English will be considered. For evaluation purposes, manuscriptsmay be submitted in print or electronic form, in the latter case, preferably as pdf- or zippedps-files. Authors are requested to use the LaTeX style files available from Springerat: http://www.springer.com/authors/book+authors/helpdesk?SGWID=0-1723113-12-971304-0 (Click on −→ Templates −→ LaTeX −→ monographs)Electronic material can be included if appropriate. Please contact the publisher.

3. Those considering a book which might be suitable for the series are strongly advised tocontact the publisher or the series editors at an early stage.

General Remarks

Careful preparation of manuscripts will help keep production time short and ensure asatisfactory appearance of the finished book.

The following terms and conditions hold:

Regarding free copies and royalties, the standard terms for Springer mathematics textbookshold. Please write to [email protected] for details.

Authors are entitled to purchase further copies of their book and other Springer books fortheir personal use, at a discount of 33.3% directly from Springer-Verlag.

Page 14: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

Series Editors

Timothy J. BarthNASA Ames Research CenterNAS DivisionMoffett Field, CA 94035, [email protected]

Michael GriebelInstitut für Numerische Simulationder Universität BonnWegelerstr. 653115 Bonn, [email protected]

David E. KeyesMathematical and Computer Sciencesand EngineeringKing Abdullah University of Scienceand TechnologyP.O. Box 55455Jeddah 21534, Saudi [email protected]

and

Department of Applied Physicsand Applied MathematicsColumbia University500 W. 120 th StreetNew York, NY 10027, [email protected]

Risto M. NieminenDepartment of Applied PhysicsAalto University School of Scienceand Technology00076 Aalto, [email protected]

Dirk RooseDepartment of Computer ScienceKatholieke Universiteit LeuvenCelestijnenlaan 200A3001 Leuven-Heverlee, [email protected]

Tamar SchlickDepartment of Chemistryand Courant Instituteof Mathematical SciencesNew York University251 Mercer StreetNew York, NY 10012, [email protected]

Editors for Computational Scienceand Engineering at Springer:

For Lecture Notes in ComputationalScience and EngineeringJan [email protected]

For Texts in Computational Scienceand Engineering andMonographs in ComputationalScience and EngineeringMartin [email protected]

Springer-VerlagMathematics EditorialTiergartenstr. 1769121 HeidelbergGermany

Page 15: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

Texts in Computational Scienceand Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and DiffpackProgramming. 2nd Edition

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and Octave. 4th Edition

3. H. P. Langtangen, Python Scripting for Computational Science. 3rd Edition

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python. 5th Edition

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific Computing.

8. B. Gustafsson, Fundamentals of Scientific Computing.

9. M. Bader, Space-Filling Curves.

10. M. Larson, F. Bengzon, The Finite Element Method: Theory, Implementation and Applications.

11. W. Gander, M. Gander, F. Kwok, Scientific Computing: An Introduction using Maple and MATLAB.

12. P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology.

13. M. H. Holmes, Introduction to Scientific Computing and Data Analysis.

14. S. Linge, H. P. Langtangen, Programming for Computations - A Gentle Introduction to NumericalSimulations with MATLAB/Octave.

15. S. Linge, H. P. Langtangen, Programming for Computations - A Gentle Introduction to NumericalSimulations with Python.

16. H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs - A Modern Software Approach.

17. B. Gustafsson, Scientific Computing - A Historical Perspective.

18. J.A. Trangenstein, Scientific Computing - Vol. I. – Linear and Nonlinear Equations.

19. J.A. Trangenstein, Scientific Computing - Vol. II. – Eigenvalues and Optimization.

20. J.A. Trangenstein, Scientific Computing - Vol. III. – Approximation and Integration.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/5151

Monographs in Computational Scienceand Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing the ElectricalActivity in the Heart.

For further information on this book, please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/7417

Page 16: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

Lecture Notesin Computational Scienceand Engineering

1. D. Funaro, Spectral Elements for Transport-Dominated Equations.

2. H.P. Langtangen, Computational Partial Differential Equations. Numerical Methods and DiffpackProgramming.

3. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (eds.), ComputationalMolecular Dynamics: Challenges, Methods, Ideas.

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory andNumerics for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and ComputationalApproach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Comput-ing.

9. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics.

10. H.P. Langtangen, A.M. Bruaset, E. Quak (eds.), Advances in Software Tools for Scientific Comput-ing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory,Computation and Applications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in PracticalApplications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice QuantumChromodynamics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, andApplications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation inContinuum Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory andApplications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods.

Page 17: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules: Challenges andApplications.

25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods inComputational Fluid Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.), ComputationalElectromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial DifferentialEquations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-Constrained Optimization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational WavePropagation. Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Computa-tional Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial DifferentialEquations. Numerical Methods and Diffpack Programming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and NumericalResults for a Class of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing - CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reductionto the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decomposi-tion Methods in Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element ToolboxALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science and Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems.

47. A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel (eds.),New Algorithms for Macromolecular Simulation.

Page 18: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation:Applications, Theory, and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on ParallelComputers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.

53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds for Data Visualiza-tion and Dimension Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.), Domain DecompositionMethods in Science and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial DifferentialEquations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and Validation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic Boundary ValueProblems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.), Advances in AutomaticDifferentiation.

65. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Modeling and Simulation in Science.

67. I.H. Tuncer, Ü. Gülcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computational Fluid Dynamics2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 – Boundary and InteriorLayers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decomposition Methods inScience and Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction II - Modelling, Simulation,Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Computational FluidDynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis.

Page 19: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for Partial DifferentialEquations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance.

78. Y. Huang, R. Kornhuber, O.Widlund, J. Xu (eds.), Domain Decomposition Methods in Science andEngineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Techniques for GlobalAtmospheric Models.

81. C. Clavero, J.L. Gracia, F.J. Lisbona (eds.), BAIL 2010 – Boundary and Interior Layers, Computa-tional and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of Multiscale Problems.

84. A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differential Equations by the FiniteElement Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis - Durham 2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W. Wang (eds.), Thermo-Hydro-Mechanical-Chemical Processesin Fractured Porous Media - Benchmarks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), Recent Advances in AlgorithmicDifferentiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

89. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VI.

90. C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for MultiscaleProblems.

91. R. Bank, M. Holst, O. Widlund, J. Xu (eds.), Domain Decomposition Methods in Science andEngineering XX.

92. H. Bijl, D. Lucor, S. Mishra, C. Schwab (eds.), Uncertainty Quantification in Computational FluidDynamics.

93. M. Bader, H.-J. Bungartz, T. Weinzierl (eds.), Advanced Computing.

94. M. Ehrhardt, T. Koprucki (eds.), Advanced Mathematical Models and Numerical Techniques forMulti-Band Effective Mass Approximations.

95. M. Azaïez, H. El Fekih, J.S. Hesthaven (eds.), Spectral and High Order Methods for PartialDifferential Equations ICOSAHOM 2012.

96. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers and Challenges in WarmDense Matter.

97. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Munich 2012.

98. J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund (eds.), Domain DecompositionMethods in Science and Engineering XXI.

99. R. Abgrall, H. Beaugendre, P.M. Congedo, C. Dobrzynski, V. Perrier, M. Ricchiuto (eds.), HighOrder Nonlinear Numerical Methods for Evolutionary PDEs - HONOM 2013.

100. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VII.

Page 20: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

101. R. Hoppe (ed.), Optimization with PDE Constraints - OPTPDE 2014.

102. S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab,H. Yserentant (eds.), Extraction of Quantifiable Information from Complex Systems.

103. A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (eds.), Numerical Mathematics andAdvanced Applications - ENUMATH 2013.

104. T. Dickopf, M.J. Gander, L. Halpern, R. Krause, L.F. Pavarino (eds.), Domain DecompositionMethods in Science and Engineering XXII.

105. M. Mehl, M. Bischoff, M. Schäfer (eds.), Recent Trends in Computational Engineering - CE2014.Optimization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems.

106. R.M. Kirby, M. Berzins, J.S. Hesthaven (eds.), Spectral and High Order Methods for PartialDifferential Equations - ICOSAHOM’14.

107. B. Jüttler, B. Simeon (eds.), Isogeometric Analysis and Applications 2014.

108. P. Knobloch (ed.), Boundary and Interior Layers, Computational and Asymptotic Methods – BAIL2014.

109. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Stuttgart 2014.

110. H. P. Langtangen, Finite Difference Computing with Exponential Decay Models.

111. A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels and ReceptorsUsing Markov Models.

112. B. Karazösen, M. Manguoglu, M. Tezer-Sezgin, S. Göktepe, Ö. Ugur (eds.), Numerical Mathemat-ics and Advanced Applications - ENUMATH 2015.

113. H.-J. Bungartz, P. Neumann, W.E. Nagel (eds.), Software for Exascale Computing - SPPEXA 2013-2015.

114. G.R. Barrenechea, F. Brezzi, A. Cangiani, E.H. Georgoulis (eds.), Building Bridges: Connectionsand Challenges in Modern Approaches to Numerical Partial Differential Equations.

115. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VIII.

116. C.-O. Lee, X.-C. Cai, D.E. Keyes, H.H. Kim, A. Klawonn, E.-J. Park, O.B. Widlund (eds.), DomainDecomposition Methods in Science and Engineering XXIII.

117. T. Sakurai, S. Zhang, T. Imamura, Y. Yusaku, K. Yoshinobu, H. Takeo (eds.), Eigenvalue Problems:Algorithms, Software and Applications, in Petascale Computing. EPASA 2015, Tsukuba, Japan,September 2015.

118. T. Richter (ed.), Fluid-structure Interactions. Models, Analysis and Finite Elements.

119. M.L. Bittencourt, N.A. Dumont, J.S. Hesthaven (eds.), Spectral and High Order Methods for PartialDifferential Equations ICOSAHOM 2016.

120. Z. Huang, M. Stynes, Z. Zhang (eds.), Boundary and Interior Layers, Computational and Asymp-totic Methods BAIL 2016.

121. S.P.A. Bordas, E.N. Burman, M.G. Larson, M.A. Olshanskii (eds.), Geometrically Unfitted FiniteElement Methods and Applications. Proceedings of the UCL Workshop 2016.

Page 21: References - Springer978-3-319-69847-2/1.pdf · 242 References 17. J.C. Butcher, On the attainable order of Runge–Kutta methods. Math. Comput. 19, 408–417 (1965) 18. J.C. Butcher,

122. A. Gerisch, R. Penta, J. Lang (eds.), Multiscale Models in Mechano and Tumor Biology. Modeling,Homogenization, and Applications.

123. J. Garcke, D. Pflüger, C.G. Webster, G. Zhang (eds.), Sparse Grids and Applications – Miami 2016.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/3527