qual slides

Upload: wlogwlog

Post on 05-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Qual Slides

    1/12

    Qualifying Oral Examination

    Where am I?

  • 7/31/2019 Qual Slides

    2/12

    Localization Mapping

    Elfes & Moravec Occupancy GridsICRA$85, Computer %89

    Kuipers & Byun ! Topological MapsRobotics & Autonomous Systems 1991

    Map/Scan MatchingLu & Milios !!AR$97, Cox et al, IEEE Robotics & Automation 91

    Geometric BeaconsLeonard & Durrant!

    WhyteIEEE Robotics & Automation

    %91

    ParticleFilters

    D. FoxPhDThesis

    Bonn 1998

  • 7/31/2019 Qual Slides

    3/12

    Simultaneous Localization And Mapping

    p(st,|zt, u

    t, n

    t)

    Robot Location

    MapFeatures

    Observations

    Control Inputs

    Data Associations

    z1

    z2

    z3

    zn

    .

    .

    .

    .

    .

    .

    n1

    n2

    n3

    nn

    u1

    u2

    u3

    un

    .

    .

    .

    123

    n

    .

    .

    .

    [x,y,]

    [p, q]

    p(st,|zt, u

    t, n

    t)

    Probability of robot being at position st

    within environment represented as map

    ut

    zt

    nt : f(zi) i

    given knowledge of the observations

    the control inputs 'commanded motion(

    and Data Associations =

    p(zt|st,, z

    t1, ut, nt)p(st,|zt1, ut, nt)dst

    = p(zt|st,, nt)

    p(st|st1, u

    t)p(st1,|zt1, ut1, nt1)dst1}

    Measurement Model

    }

    Motion Model

    Normalizing constantensures that the resulting posterior is a probability

    p(st,|zt, u

    t, n

    t) Using Bayes Rule, Markov Assumption &Simplifying

  • 7/31/2019 Qual Slides

    4/12

    t = [st, 1, 2, . . . , n]

    t = E[tT

    t ]

    p(st,|zt, ut, nt) N(t,t)

    N(,2) = 122

    e(x)2

    22

    Kalman Filter approximates the posterior as a Gaussian

    Mean 'state vector( contains robot location and mappoints

    Covariance Matrix estimates uncertainties andrelationships between each element in state vector

    O(n3)

    O(nlog27) O(n2.807)Strictly speaking, matrix inversion is actually

    p(xt) = {xi, wi}

  • 7/31/2019 Qual Slides

    5/12

    p(st,|zt, u

    t, n

    t) p(st,|zt, ut, nt)

    Estimates slightly di)erent posterior

    Robot Trajectory or Paths instead of simply pose

    This allows for a re!formulation as a Rao!Blackwellised ParticleFilter

    p(st,|zt, ut, nt)= p(st|zt, ut, nt)N

    n=1

    p(n|st, z

    t, u

    t, n

    t)}}

    Particle FilterN Separate Kalman Filters

    Map per Particle!

    1

    , T1

  • 7/31/2019 Qual Slides

    6/12

  • 7/31/2019 Qual Slides

    7/12

    nt : f(zi) i

  • 7/31/2019 Qual Slides

    8/12

    P(X Y) = P(X|Y)P(Y)

    P(X Y) = P(Y|X)P(X)

    P(X|Y) =P

    (X Y

    )P(Y)

    P(Y) = 0

    P(Y|X) =P X Y

    P(X)P(X) = 0

    P(X, Y) = P(X|Y)P(Y) = P(Y|X)P(X)

    P(X|Y) =P(Y|X)P(X)

    P(Y)

    E[x

    ] =+

    xp(x

    )dx E

    [[xE

    [x

    ]]

    r

    ] =+

    (xE

    [x

    ])

    rp(x

    )dx

    E[c] = cE[E[x]] = E[x]E[x + y] = E[x] + E[y]

    E[xy] = E[x]E[y]

    Expected Value Rules

    Generalized Central MomentMean

  • 7/31/2019 Qual Slides

    9/12

    p(xt+1|x0, x1, . . . , xt) = p(xt+1|xt)

    p(xt+1) =

    p(xt+1|xt)p(xt)dxt

    Probability of variable at time t+1 can be computed as

    set of particles do notrelate to reality

    informative particles nowlost due to resampling

    not enough particles ortoo many copies of

    same particleintroduced

  • 7/31/2019 Qual Slides

    10/12

    R1 R2

    L1 L2

    R1 R2

    L1 L2

    Implicit Relationship

    SEIF

    Covariance Matrix Information Matrix

    Eustice RSS05Map of Titanic

  • 7/31/2019 Qual Slides

    11/12

  • 7/31/2019 Qual Slides

    12/12

    Courtesy of D. Fox

    Courtesy of D. Hahnel