proofs from simulations and modular annotations€¦ · discrepancy of the system if for any two...

15
Proofs from Simulations and Modular Annotations Zhenqi Huang and Sayan Mitra Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Upload: others

Post on 19-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Proofs from Simulations and Modular Annotations

Zhenqi Huang and Sayan Mitra

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Page 2: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Background

β€’ Invariant verification for dynamical systems. β€’ Through computing the set of state the system can reach (reach set)

β€’ Exact Reach set computation is in general undecidable β‡’ Over-approximation

β€’ Static analysis and symbolic approaches β€’ E.g. SpaceEx, PHAVer, CheckMate, d/dt

β€’ Dynamic+Static analysis using numerical simulations β€’ E.g. S-TaLiRo, Breach, C2E2

2 HSCC 2014, Berlin

Page 3: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Simulation-based Reachability

β€’ π‘₯ = 𝑓 π‘₯ , Θ βŠ† 𝑅𝑛

β€’ Denote πœ‰(πœƒ, 𝑑) as a trajectory from πœƒ ∈ Θ

β€’ Simulation-based Verification β€’ Finite cover of Θ ( ).

β€’ Simulate from the center of each cover.

β€’ Bloat the simulation with some factor, such that the bloated tube contains all trajectories starting from the cover.

β€’ Union of all such tubes gives an over-approximation of reach set

β€’ In [1], we expect the bloating factor to be given by the user as an annotation to the model

3 HSCC 2014, Berlin [1] Duggirala, Mitra, Viswannathan. EMSOFT2013

Page 4: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Annotation: Discrepancy Function

Definition. Functions V: 𝑋 Γ— 𝑋 β†’ ℝβ‰₯0 and 𝛽: ℝβ‰₯0 Γ— 𝑇 β†’ ℝβ‰₯0 define a

discrepancy of the system if for any two states πœƒ1 and πœƒ2 ∈ Θ, For any 𝑑,

V πœ‰ πœƒ, 𝑑 , πœ‰ πœƒβ€², 𝑑 ≀ 𝛽 |πœƒ βˆ’ πœƒβ€²|, 𝑑

where, 𝛽 β†’ 0 as πœƒ β†’ πœƒβ€²

β€’ Stability not required

β€’ Discrepancy can be found automatically for

linear systems

β€’ For nonlinear systems, several template-based

heuristics were proposed

𝑉(πœ‰(πœƒ, 𝑑), πœ‰(πœƒβ€², 𝑑))

πœƒβ€²

πœ‰(πœƒβ€², 𝑑) πœƒ

πœ‰(πœƒ, 𝑑)

4

HSCC 2014, Berlin

Page 5: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Key challenge: Finding Discrepancy

Functions for Large Models

HSCC 2014, Berlin 5

Page 6: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Models of Cardiac Cell Networks β€’ Find quadratic contraction metric [2]:

β€’ 𝐽(𝑣,𝑀) = 0.5 βˆ’ 3𝑣2 βˆ’11 βˆ’1

β€’ Search for 𝛽 ∈ β„œ and the coefficients of

𝑅 𝑣,𝑀 = π‘Žπ‘–π‘— 𝑣

𝑖𝑀𝑗 𝑏𝑖𝑗 𝑣𝑖𝑀𝑗

𝑏𝑖𝑗 𝑣𝑖𝑀𝑗 𝑐𝑖𝑗 𝑣

𝑖𝑀𝑗,

s.t. 0 ≀ 𝑖 + 𝑗 ≀ 2, 𝑅 ≻ 0, and 𝐽𝑇𝑅 + 𝑅𝐽 + 𝑅 β‰Ί βˆ’π›½π‘€

Cardiac Cell

𝑣 = 0.5 𝑣 βˆ’ 𝑣3 βˆ’ 𝑀 + 𝑒𝑀 = 𝑣 βˆ’ 𝑀 + 0.7

β€’ FitzHugh–Nagumo (FHN) model [1] β€’ Invariant property

β€’ Threshold of voltage β€’ Periodicity of behavior

6 HSCC 2014, Berlin

𝑉 𝛽

Pacemaker

[1] FitzHugh. Biophysical J. 1961 [2] Aylward,Parrilo, Slotine. Automatica. 2008

𝑑𝑅(πœ‰ πœƒ, 𝑑 , πœ‰ πœƒβ€², 𝑑 ) ≀ π‘’βˆ’π›½π‘‘π‘‘π‘…(πœƒ, πœƒβ€²)

𝑒

Page 7: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Scalability of Finding Annotation

Pace Maker

Pace Maker Cardiac

Cell

Cardiac Cell

Cardiac Cell

Cardiac Cell

Cardiac Cell

7 HSCC 2014, Berlin

?

𝐿 = 𝐿1 Γ— |𝐿2|

[1] Grosu, et al. CAV2011 [1]

Page 8: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Input-to-State (IS) Discrepancy

8

Definition. Functions 𝑉: 𝑋1 Γ— 𝑋1 β†’ ℝβ‰₯0, 𝛽: ℝβ‰₯0 Γ— ℝβ‰₯0 β†’ ℝβ‰₯0and 𝛾:ℝβ‰₯0 β†’ ℝβ‰₯0 define a IS discrepancy of the system:

𝑉1 πœ‰1 πœƒ1, 𝑒1, 𝑑 , πœ‰ πœƒ1β€², 𝑒1β€², 𝑑 ≀ 𝛽1 |πœƒ1 βˆ’ πœƒ1β€²|, 𝑑 + 𝛾1 |𝑒1 𝑠 βˆ’ 𝑒1β€² 𝑠 | 𝑑𝑠

𝑇

0

and 𝛾1 β‹… β†’ 0 as 𝑒1 β†’ 𝑒1β€² (πœ‰1, πœ‰2) and (πœ‰1

β€² , πœ‰2β€²) are a pair of trajectories of the overall ring:

𝑉1 πœ‰1 𝑑 , πœ‰1β€² 𝑑 ≀ 𝛽1 πœƒ1 βˆ’ πœƒ1

β€² , 𝑑 + 0𝑑𝛾1(|πœ‰2(𝑠) βˆ’ πœ‰2

β€² (𝑠)|)𝑑𝑠

𝑉2 πœ‰2 𝑑 , πœ‰2β€² 𝑑 ≀ 𝛽2 πœƒ2 βˆ’ πœƒ2β€² , 𝑑 + 0

𝑑𝛾2(|πœ‰1(𝑠) βˆ’ πœ‰1

β€²(𝑠)|)𝑑𝑠

𝐴1 π‘₯ 1 = 𝑓1(π‘₯1, 𝑒1)

𝐴2 π‘₯ 2 = 𝑓2(π‘₯2, 𝑒2)

𝑒2 = πœ‰1 𝑒1 = πœ‰2

𝑒1 πœ‰1 𝐴1 π‘₯ 1 = 𝑓1(π‘₯1, 𝑒1)

HSCC 2014, Berlin

Page 9: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

More on IS Discrepancy

β€’ IS Discrepancy:

𝑉 πœ‰ πœƒ, 𝑒, 𝑑 , πœ‰ πœƒβ€², 𝑒′, 𝑑 ≀ 𝛽 πœƒ βˆ’ πœƒβ€² , 𝑑 + 𝛾( 𝑒 𝑠 βˆ’ 𝑒′ 𝑠 )𝑑𝑠𝑑

0

β€’ Incremental integral input-to-state stability [1], except no stability property is required.

β€’ Most methods of finding discrepancy of π‘₯ = 𝑓(π‘₯) can be modified to find IS discrepancy systems with linear input π‘₯ = 𝑓 π‘₯ + 𝐡𝑒.

9 HSCC 2014, Berlin [1] Angeli D. TAC. 2009

Page 10: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

IS Discrepancy ⟹ Reachability

β€’ We will build a reduced model 𝑀(𝛿) with a unique trajectory πœ‡(𝑑) using the IS Discrepancy.

β€’ Theorem: π‘…π‘’π‘Žπ‘β„Ž(𝐡𝛿𝑉 πœƒ , 𝑇) βŠ† π΅πœ‡ 𝑑

𝑉 (πœ‰(πœƒ, 𝑑))π‘‘βˆˆ[0,𝑇]

β€’ Theorem: for small enough 𝛿 and precise enough simulation, the over-approximation can be computed arbitrarily precise.

πœƒ

πœ‰(πœƒ, 𝑑) πœ‡(𝑑)

𝛿

10 HSCC 2014, Berlin

Page 11: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Construction of the Reduced Model

β€’ Reduced model 𝑀 𝛿

β€’ π‘₯ = 𝑓𝑀(π‘₯) with π‘₯ = βŸ¨π‘š1, π‘š2, π‘π‘™π‘˜βŸ©

β€’

π‘š1π‘š2

π‘π‘™π‘˜

=

𝛽1 𝛿,π‘π‘™π‘˜ +𝛾1 (π‘š2)

𝛽2 𝛿,π‘π‘™π‘˜ +𝛾2 (π‘š1)

1

β€’ π‘šπ‘– 0 = 𝛽𝑖 𝛿, 0 , π‘π‘™π‘˜ 0 = 0

β€’ 𝑀(𝛿) has a unique trajectory πœ‡(𝑑).

πœ‰1, 𝑒2

πœ‰2, 𝑒1

11 HSCC 2014, Berlin

Page 12: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Reduced Model ⟹ Bloating Factor

β€’ Lemma: |πœƒ1 βˆ’ πœƒ1β€² | ≀ 𝛿, and |πœƒ2 βˆ’ πœƒ2

β€² | ≀ 𝛿 ⟹ 𝑉1 πœ‰1 𝑑 , πœ‰1

β€² 𝑑 ≀ π‘š1(𝑑), and 𝑉2 πœ‰2 𝑑 , πœ‰2β€² 𝑑 ≀ π‘š2(𝑑).

12

The IS Discrepancy functions:

𝑉1 πœ‰1 𝑑 , πœ‰1β€² 𝑑 ≀ 𝛽1 πœƒ1 βˆ’ πœƒ1

β€² , 𝑑 + 0𝑑𝛾1(|πœ‰2(𝑠) βˆ’ πœ‰2

β€² (𝑠)|)𝑑𝑠

𝑉2 πœ‰2 𝑑 , πœ‰2β€² 𝑑 ≀ 𝛽2 πœƒ2 βˆ’ πœƒ2β€² , 𝑑 + 0

𝑑𝛾2(|πœ‰1(𝑠) βˆ’ πœ‰1

β€²(𝑠)|)𝑑𝑠

The ODE of the reduced model 𝑀(𝛿) :

π‘š1

π‘š2

π‘π‘™π‘˜

=𝛽1 𝛿, π‘π‘™π‘˜ + 𝛾1 (π‘š2)

𝛽2 𝛿, π‘π‘™π‘˜ + 𝛾2 (π‘š1)1

πœƒ

πœ‰(πœƒ, 𝑑) πœ‡(𝑑)

𝛿

β€’ Thus, bloating πœ‰(πœƒ, 𝑑) by πœ‡(𝑑) gives an over-approximation of reach set from a ball.

HSCC 2014, Berlin

Page 13: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Simulation & Modular Annotation ⟹ Proof

13

Simulation Engine

Reach set over-

approximation

Reduced Model

Pace Maker

Trajectory

Bloating factor

IS Discrepancy

HSCC 2014, Berlin

Sat Inv?

Proof

Counter Example

Refinement

Page 14: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Soundness and Relative Complete

β€’ Robustness Assumption: β€’ Invariant is closed.

β€’ If an initial set Θ satisfies the invariant, βˆƒπœ– > 0, such that all trajectories are at least πœ– distance from the boundary of the invariant.

β€’ Theorem: the Algorithm is sound and relatively complete

β€’ We verify systems with upto 30 dimensions in minutes.

14 HSCC 2014, Berlin

System # Variables # Module # Init. cover Run Time

Lin. Sync 24 6 128 135.1

Nonli. WT 30 6 128 140.0

Nonli. Robot 6 2 216 166.8

Page 15: Proofs from Simulations and Modular Annotations€¦ · discrepancy of the system if for any two states πœƒ1 and πœƒ2∈Θ, For any , Vπœ‰πœƒ, ,πœ‰πœƒβ€², ≀ |πœƒβˆ’πœƒβ€²|,

Conclusion

β€’ A scalable technique to verify nonlinear dynamical systems using modular annotations

β€’ Modular annotations are used to construct a reduced model of the overall system whose trajectory gives the discrepancy of trajectories

β€’ Sound and relatively complete β€’ Ongoing: extension to hybrid, cardiac cell network with 5 cells each has 4

continuous var. and 29 locations β€’ Thank you for your attention!

15 HSCC 2014, Berlin