introduction to power system analysis - tcipgย ยท power flow analysis g bus transmission line g...

30
Introduction to Power System Analysis Hui Lin, Siming Guo

Upload: others

Post on 17-Aug-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Introduction to Power System Analysis

Hui Lin, Siming Guo

Page 2: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Agenda

โ€ข Power System Notation

โ€ข Power Flow Analysis

โ€ข Hands on Matpower and PowerWorld

Page 3: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Simple Power System

Every power system has three major components

โ€“ generation: source of power, ideally with a specified power, voltage, and frequency

โ€“ load: consumes power; ideally with constant power consumption

โ€“ transmission system: transmits power; ideally as a perfect conductor

Page 4: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Complications

โ€ข No ideal voltage sources exist

โ€ข Loads are seldom constant, and we need to balance supply and demand in real time

โ€ข Transmission system has resistance, inductance, capacitance and flow limitations

โ€ข Simple system has no redundancy so power system will not work if any component fails

Page 5: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Notation - Power

โ€ข Power: Instantaneous consumption of energy

โ€ข Power Units

โ€ข Watts = voltage x current for dc (W)

โ€ข kW โ€“ 1 ร— 103 Watt

โ€ข MW โ€“ 1 ร— 106 Watt

โ€ข GW โ€“ 1 ร— 109 Watt

โ€ข Installed U.S. generation capacity is about 900 GW ( about 3 kW per person)

โ€ข Maximum load of Champaign/Urbana about 300 MW

Page 6: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Notation - Energy

โ€ข Energy: Integration of power over time; energy is what people really want (and pay for) from a power system

โ€ข Energy Units

โ€ข Joule = 1 Watt-second (J)

โ€ข kWh โ€“ Kilowatthour (3.6 x 106 J)

โ€ข Btu โ€“ 1055 J; 1 MBtu=0.292 MWh

โ€ข U.S. electric energy consumption is about 3600 billion kWh (about 13,333 kWh per person, which means on average we each use 1.5 kW of power continuously)

Page 7: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Review of Phasors

Goal of phasor analysis is to simplify the analysis of constant frequency ac systems

v(t) = Vmax cos(wt + qv)

i(t) = Imax cos(wt + qI)

Root Mean Square (RMS) voltage of sinusoid

2 max

0

1( )

2

TV

v t dtT

Page 8: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Complex Power

max

max

max max

( ) ( ) ( )

v(t) = cos( )

(t) = cos( )

1cos cos [cos( ) cos( )]

2

1( ) [cos( )

2

cos(2 )]

V

I

V I

V I

p t v t i t

V t

i I t

p t V I

t

w q

w q

q q

w q q

Power

Page 9: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Complex Power, contโ€™d

max max

0

max max

1( ) [cos( ) cos(2 )]

2

1( )

1cos( )

2

cos( )

= =

V I V I

T

avg

V I

V I

V I

p t V I t

P p t dtT

V I

V I

q q w q q

q q

q q

q q

Power Factor

Average

P

Angle

ower

Page 10: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Phasor Representation

Eulerโ€™s identity: ๐‘’๐‘—๐œƒ = cos ๐œƒ + ๐‘— sin ๐œƒ

Phasor notation is developed by

rewriting using Eulerโ€™s identity

๐‘ฃ ๐‘ก = 2๐‘‰cos(๐œ”๐‘ก + ๐œƒ๐‘‰)

๐‘ฃ ๐‘ก = ๐‘Ÿ๐‘’[ 2๐‘‰๐‘’๐‘—๐œ”๐‘ก๐‘’๐œƒ๐‘‰]

Page 11: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Phasor Representation, contโ€™d

The RMS, cosine-reference phasor is:

๐‘‰ = ๐‘‰๐‘’๐‘—๐œƒ = ๐‘‰โˆ ๐œƒ๐‘‰

๐‘‰ = ๐‘‰(cos ๐œƒ๐‘‰ + ๐‘—sin ๐œƒ๐‘‰)

๐ผ = ๐ผ(cos ๐œƒ๐ผ + ๐‘— sin ๐œƒ๐ผ)

Page 12: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Complex Power

๐‘† = ๐‘‰ ๐ผ โˆ—

= ๐‘‰๐ผ๐‘’๐‘—(๐œƒ๐‘‰โˆ’๐œƒ๐ผ)

= ๐‘‰๐ผ cos ๐œƒ๐‘‰ โˆ’ ๐œƒ๐ผ + ๐‘— sin ๐œƒ๐‘‰ โˆ’ ๐œƒ๐ผ

= ๐‘ƒ + ๐‘—๐‘„

๐‘ƒ: real power (W, kW, MW)

Q: reactive power (var, kvar, Mvar)

S: complex power (va, kva, Mva)

Power factor (pf): cos (๐œƒ๐‘‰ โˆ’ ๐œƒ๐ผ)

If current leads voltage, then pf is leading

If current lags voltage then pf is lagging

Page 13: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Power Flow Analysis

G

Bus Transmission Line

G Generators Loads

(๐‘‰1, ๐œƒ1) (๐‘‰2, ๐œƒ2)

(๐‘‰3, ๐œƒ3)

โ€ข The power flow analysis is the process of solving the steady state of the power system

โ€“ Steady state: voltage magnitude and angle for each bus

โ€“ Generator: modeled as constant power delivery

โ€“ Loads: modeled as constant power consumption

โ€“ Transmission line: modeled as constant impedance

Page 14: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Power Flow Analysis

๐‘†๐บ โˆ’ ๐‘†๐ท = ๐‘‰ ๐‘–๐ผ ๐‘–โˆ—

(๐‘‰ , ๐ผ : the voltage and the current that injects into bus i)

๐ผ ๐‘– = ๐ผ ๐‘–๐‘˜๐‘˜

๐ผ ๐‘–๐‘˜ =๐‘‰ ๐‘–โˆ’๐‘‰ ๐‘˜

๐‘๐‘–๐‘˜

(k takes indices of all buses that connected to bus i; Zik

specifies the impedance of transmission line connecting

bus i and bus k)

Bus i

To other buses

SGSD

Page 15: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Y-Bus (admittance matrix)

๐ผ๐‘– = ๐‘‰๐‘–โˆ’๐‘‰๐‘˜

๐‘๐‘–๐‘˜๐‘˜ = ๐‘‰๐‘– โˆ’ ๐‘‰๐‘˜ ๐‘ฆ๐‘–๐‘˜๐‘˜

= โˆ’๐‘ฆ๐‘–1๐‘‰1 + โˆ’๐‘ฆ๐‘–2๐‘‰2 +,โ€ฆ , ๐‘ฆ๐‘–๐‘˜ ๐‘‰๐‘–๐‘˜ +,โ€ฆ+ โˆ’๐‘ฆ๐‘–๐‘› ๐‘‰๐‘›

= โˆ’๐‘ฆ๐‘–1 โˆ’๐‘ฆ๐‘–2 โ€ฆ ๐‘ฆ๐‘–๐‘˜๐‘˜ โ€ฆ โˆ’๐‘ฆ๐‘–๐‘›

๐‘‰1

๐‘‰2

โ‹ฎ๐‘‰๐‘–

โ‹ฎ๐‘‰๐‘›

Page 16: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Y-Bus (admittance matrix), contโ€™d

Write ๐ผ๐‘— for all buses together: ๐ผ = ๐‘Œ๐‘‰ , where

(๐ผ = [๐ผ1, ๐ผ2, โ€ฆ , ๐ผ๐‘›], ๐‘‰ = [๐‘‰1, ๐‘‰2, โ€ฆ , ๐‘‰๐‘›])

Construction of Y:

๐‘Œ๐‘–๐‘– = ๐‘ฆ๐‘–๐‘˜๐‘˜ ๐‘Œ๐‘–๐‘˜ = ๐‘Œ๐‘˜๐‘– = โˆ’๐‘ฆ๐‘–๐‘˜

๐‘Œ = ๐บ + ๐‘—๐ต

So we have: ๐ผ๐‘– = (๐‘Œ๐‘–๐‘˜๐‘‰๐‘˜)๐‘˜

Page 17: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Power Flow Equation at Bus j

๐‘†๐บ โˆ’ ๐‘†๐ท = ๐‘‰๐‘– ๐ผ๐‘–

โˆ—

๐‘†๐บ โˆ’ ๐‘†๐ท = ๐‘‰๐‘– ๐ผ๐‘–

โˆ—= ๐‘‰๐‘–

๐‘Œ๐‘–๐‘˜๐‘‰๐‘˜๐‘˜โˆ—

= ๐‘‰๐‘–๐‘’๐‘—๐œƒ๐‘– ๐บ๐‘–๐‘˜ + ๐‘—๐ต๐‘–๐‘˜ ๐‘‰๐‘˜๐‘˜ ๐‘’๐‘—๐œƒ๐‘˜

โˆ—

= ๐‘‰๐‘–๐‘’๐‘—๐œƒ๐‘– ๐‘‰๐‘˜ ๐บ๐‘–๐‘˜ โˆ’ ๐‘—๐ต๐‘–๐‘˜ ๐‘’โˆ’๐‘—๐œƒ๐‘˜

๐‘˜

= ๐‘‰๐‘–๐‘‰๐‘˜๐‘˜ ๐บ๐‘–๐‘˜ โˆ’ ๐‘—๐ต๐‘–๐‘˜ ๐‘’๐‘—(๐œƒ๐‘–โˆ’๐œƒ๐‘˜)

= ๐‘‰๐‘–๐‘‰๐‘˜๐‘˜ ๐บ๐‘–๐‘˜ cos ๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜ + ๐ต๐‘–๐‘˜sin (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜)

+๐‘— ๐‘‰๐‘–๐‘‰๐‘˜๐‘˜ ๐บ๐‘–๐‘˜sin (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜) โˆ’ ๐ต๐‘–๐‘˜cos (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜)

Bus i

To other buses

SGSD

Page 18: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Power Flow Equation at Bus j

๐‘ƒ๐บ โˆ’ ๐‘ƒ๐ท = ๐‘‰๐‘–๐‘‰๐‘˜๐‘˜ ๐บ๐‘–๐‘˜ cos ๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜ + ๐ต๐‘–๐‘˜sin (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜)

Q๐บ โˆ’ ๐‘„๐ท = ๐‘‰๐‘–๐‘‰๐‘˜๐‘˜ ๐บ๐‘–๐‘˜sin (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜) โˆ’ ๐ต๐‘–๐‘˜cos (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜)

โ€ข Slack bus:

โ€“ ๐‘‰ and ๐œƒ are known, used as a reference

โ€ข PV bus, with generators connected

โ€“ P and V are known

โ€ข PQ bus, with only load units connected

โ€“ P and Q are known

Page 19: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Solving Power Flow Equations

โ€ข Assuming m-1 PV buses

โ€“ Given: ๐‘‰1, ๐œƒ1, ๐‘ƒ๐บ,2, ๐‘‰2, โ€ฆ, ๐‘ƒ๐บ,๐‘š, ๐‘‰๐‘š, ๐‘ƒ๐ท,๐‘š+1, ๐‘„๐ท,๐‘š+1,โ€ฆ,

๐‘ƒ๐ท,๐‘›, ๐‘„๐ท,๐‘›

โ€“ Unknown: ๐‘ƒ๐บ,1, ๐‘„๐บ,1, ๐‘„๐บ,2, ๐œƒ2, โ€ฆ, ๐‘„๐บ,๐‘š, ๐œƒ๐‘š, ๐‘‰๐‘š+1,

๐œƒ๐‘š+1,โ€ฆ, ๐‘‰๐‘›, ๐œƒ๐‘›

Page 20: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Newton-Raphson Methods

Assume (m-1) PV buses among n buses

๐‘ฅ =

๐œƒ2

๐œƒ3

โ‹ฎ๐œƒ๐‘›

๐‘‰๐‘š+1

๐‘‰๐‘š+2

โ‹ฎ๐‘‰๐‘›

๐‘“ ๐‘ฅ =

๐‘ƒ2(๐‘ฅ) โˆ’ ๐‘ƒ๐บ,2 + ๐‘ƒ๐ท,2

๐‘ƒ3(๐‘ฅ) โˆ’ ๐‘ƒ๐บ,3 + ๐‘ƒ๐ท,3

โ‹ฎ๐‘ƒ๐‘›(๐‘ฅ) โˆ’ ๐‘ƒ๐บ,๐‘› + ๐‘ƒ๐ท,๐‘›

๐‘„๐‘š+1(๐‘ฅ) โˆ’ ๐‘„๐บ,๐‘š+1 + ๐‘„๐ท,๐‘š+1

๐‘„๐‘š+2(๐‘ฅ) โˆ’ ๐‘„๐บ,๐‘š+2 + ๐‘„๐ท,๐‘š+2

โ‹ฎ๐‘„๐‘›(๐‘ฅ) โˆ’ ๐‘„๐บ,๐‘› + ๐‘„๐ท,๐‘›

Page 21: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Multi-Variable Example

1

2

2 21 1 2

2 22 1 2 1 2

1 1

1 2

2 2

1 2

xSolve for = such that ( ) 0 where

x

f ( ) 2 8 0

f ( ) 4 0

First symbolically determine the Jacobian

f ( ) f ( )

( ) =f ( ) f ( )

x x

x x x x

x x

x x

x f x

x

x

x x

J xx x

๐‘ฅ ๐‘ก + 1 = ๐‘ฅ ๐‘ก โˆ’ ๐ฝโˆ’1(๐‘ฅ)f(x[t])

Page 22: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Multi-variable Example, contโ€™d

1(2)

(2)

2.1 8.40 2.60 2.51 1.8284

1.3 5.50 0.50 1.45 1.2122

Each iteration we check ( ) to see if it is below our

specified tolerance

0.1556( )

0.0900

If = 0.2 then we wou

x

f x

f x

ld be done. Otherwise we'd

continue iterating.

Page 23: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

N-R Power Flow Solution

1 1 1

1 2

2 2 2

1 2

1 2

The most difficult part of the algorithm is determining

and inverting the n by n Jacobian matrix, ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

n

n

n n n

n

f f f

x x x

f f f

x x x

f f f

x x x

J x

x x x

x x x

J x

x x x

Page 24: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Other Power Flow Solution

Divide the Jacobian matrix into four sub-matrices:

๐ฝ ๐‘ฅ =

๐œ•๐‘ƒ

๐œ•๐œƒ

๐œ•๐‘ƒ

๐œ•๐‘‰๐œ•๐‘„

๐œ•๐œƒ

๐œ•๐‘„

๐œ•๐‘‰

Decoupled power flow:

๐‘€ ๐‘ฅ =

๐œ•๐‘ƒ

๐œ•๐œƒ0

0๐œ•๐‘„

๐œ•๐‘‰

Page 25: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Other Power Flow Solution

Fast decoupled power flow, assuming ๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜ โ‰ˆ 0 ,

๐‘‰๐‘– โ‰ˆ 1, ๐บ๐‘–๐‘˜ โ‰ช ๐ต๐‘–๐‘˜

So we have: ๐œ•๐‘ƒ

๐œ•๐œƒโ‰ˆ โˆ’๐ต = โˆ’

๐ต22 โ€ฆ ๐ต2๐‘›

โ‹ฎ โ‹ฎ โ‹ฎ๐ต๐‘›๐‘› โ€ฆ ๐ต๐‘›๐‘›

๐œ•๐‘„

๐œ•๐‘‰โ‰ˆ โˆ’๐ต =

๐ต๐‘š+1,๐‘š+1 โ€ฆ ๐ต๐‘š+1,๐‘›

โ‹ฎ โ‹ฎ โ‹ฎ๐ต๐‘›,๐‘š+1 โ€ฆ ๐ต๐‘›๐‘›

๐‘€ ๐‘ฅ =โˆ’๐ต 0

0 โˆ’๐ต

Page 26: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

DC Power Flow Analysis

Assumption: small deviation flat voltage profile, ๐‘‰๐‘– โ‰ˆ 1

and ๐œƒ๐‘– โ‰ˆ 0 ๐œ•๐‘ƒ

๐œ•๐œƒโ‰ˆ โˆ’๐ต

The ultimate steady state: ๐‘ƒ = ๐‘ƒ0 + ๐œ•๐‘ƒ, ๐œƒ = ๐œƒ0 + ๐œ•๐œƒ.

In the flat voltage profile, ๐‘ƒ0 = 0, ๐œƒ0 = 0

๐‘ƒ โ‰ˆ โˆ’๐ต ๐œƒ

Page 27: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Matpower

โ€ข http://www.pserc.cornell.edu/matpower/

โ€ข runpf: run power flow analysis

โ€ข runopf: solves an optimal power flow

โ€ข makeYbus: Builds the bus admittance matrix and branch admittance matrices.

Page 28: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

PowerWorld

Page 29: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

PowerWorld, contโ€™d

Page 30: Introduction to Power System Analysis - TCIPGย ยท Power Flow Analysis G Bus Transmission Line G Generators Loads (๐‘‰1,๐œƒ1) (๐‘‰2,๐œƒ2) (๐‘‰3,๐œƒ3) โ€ข The power flow analysis

Thanks