prof. dr. olav hohmeyer german council of environmental advisors (sru) eeac workshop transition to a...

26
Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October 4 th , 2011 Cost-Optimized Pathways to 100% Renewable Electricity by 2050 Scenario Results for EU 27

Upload: hannah-andrews

Post on 26-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

Prof. Dr. Olav Hohmeyer

German Council of Environmental Advisors (SRU)

EEAC Workshop

Transition to a Low Carbon Energy System in Europe

Brussels, October 4th, 2011

Cost-Optimized Pathways to

100% Renewable Electricity by 2050

Scenario Results for EU 27

Page 2: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

2

Structure of the presentation

• The SRU scenarios

• The potential for renewable electricity generation

• Security of supply in 2050

• Installed renewable capacities by country in 2050

• Imports and exports by country in 2050

• The necessary grid connections

• Electricity costs by country 2050

• The transition pathway (the case of Germany)

• The electricity costs during the transition (the case of Germany)

• Conclusions

Page 3: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

3

100% renewable electricityThe eight SRU scenarios

Demand DE 2050: 500 TWh/a

Demand DE 2050: 700 TWh/a

Autonomous Germany Scenario 1.aDE-100 % SV-500

Scenario 1.bDE-100 % SV-700

100% REN production in GermanyExchange with DK/NO

Scenario 2.1.aDE-NO/DK-100 % SV-500

Scenario 2.1.bDE-NO/DK-100 % SV-700

15% Net import max. from DK/NO

Scenario 2.2.aDE-NO/DK-85 % SV-500

Scenario 2.2.bDE-NO/DK-85 % SV-700

15 % Net import from EU-North Africa

Scenario 3.aDE-EUNA-85 % SV-500

Scenario 3.bDE-EUNA-85 % SV-700

Page 4: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

4

The REMix-Europe model of DLR

REMix-Europe (Renewable Energy Mix for Sustainable

Electricity Supply in Europe)

Inventory of REN-resourcesGIS, C

Linear optimization modelGAMS (General Algebraic Modeling

System)

Electricity demandGIS, C

Source: Krewitt 2009

Page 5: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

5

The analyzed region Europe-North Africa

Page 6: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

6

The potential for renewable electricity production in EUNA (TWh/a)

Demand 2050 5% of the potential

Potential

Page 7: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

7

Security of supplyHourly electricity production and storage (DE-DK-NO)

The electricity demand is met in every country every hour!

(Scenario 2.1.a DE/DK/NO)

Page 8: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

8

Installed capacities in all countries in 2050 in GW

Scenario 3.a Capacities in GW installed in all countries in 2050 for 100% renewable electricity supply

Page 9: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

9

Net imports and exports in 2050

Scenario 3.a Net imports and exports of electricity in the different countries in 2050 in TWh/a and in % of annual domestic electricity demand

15% importsexportsBelgium 33%, Luxemburg 66%some imports

Page 10: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

10

The necessary grid capacity The larger picture in 2050

Scenario 3.a

DK

NO

SE

PL

FR

UKIE

ES

PT

DE

CH/LI

AT

IT

CZ

NL

BE

LU

EE/LT/LV

AL/CS/MK

BA/HR/SI

BG

CY

FI

GR

HU

SK

MT

RO

TR

U/MD

BY

DZMA

TN

LY EG

20,3

Maximale Transportkapazitäten in GW (Szenario 3a)

26,8

52,2

115,7

20,35,1

2,2 4,089,4

73,4

48,7

45,1

14,4

16,8

18,5

26,911,3

20,5

86,8

81,6

40,921,9

17,1

19,1

8,9

12,2

8,3

9,0

42,3

4,9

18,5

3,7

9,1

4,7

3,0

61,4

11,2

3,6

8,6

5,4

3,7

18,9

5,6

2,1

2,1

3,0

6,2

6,62,6

4,6

5,5

9,43,4

4,9

10,1

8,8

Maximum transmission capacities for all countries

Page 11: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

11

The necessary grid capacity The larger picture in 2050

Scenario 3.a

DK

NO

SE

PL

FR

UKIE

ES

PT

DE

CH/LI

AT

IT

CZ

NL

BE

LU

EE/LT/LV

AL/CS/MK

BA/HR/SI

BG

CY

FI

GR

HU

SK

MT

RO

TR

U/MD

BY

DZMA

TN

LY EG

20,3

Maximale Transportkapazitäten in GW (Szenario 3a)

26,8

52,2

115,7

20,35,1

2,2 4,089,4

73,4

48,7

45,1

14,4

16,8

18,5

26,911,3

20,5

86,8

81,6

40,921,9

17,1

19,1

8,9

12,2

8,3

9,0

42,3

4,9

18,5

3,7

9,1

4,7

3,0

61,4

11,2

3,6

8,6

5,4

3,7

18,9

5,6

2,1

2,1

3,0

6,2

6,62,6

4,6

5,5

9,43,4

4,9

10,1

8,8

Maximum transmission capacities for all countries

Page 12: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

12

The necessary grid capacity The larger picture in 2050

Scenario 3.a

DK

NO

SE

PL

FR

UKIE

ES

PT

DE

CH/LI

AT

IT

CZ

NL

BE

LU

EE/LT/LV

AL/CS/MK

BA/HR/SI

BG

CY

FI

GR

HU

SK

MT

RO

TR

U/MD

BY

DZMA

TN

LY EG

20,3

Maximale Transportkapazitäten in GW (Szenario 3a)

26,8

52,2

115,7

20,35,1

2,2 4,089,4

73,4

48,7

45,1

14,4

16,8

18,5

26,911,3

20,5

86,8

81,6

40,921,9

17,1

19,1

8,9

12,2

8,3

9,0

42,3

4,9

18,5

3,7

9,1

4,7

3,0

61,4

11,2

3,6

8,6

5,4

3,7

18,9

5,6

2,1

2,1

3,0

6,2

6,62,6

4,6

5,5

9,43,4

4,9

10,1

8,8

Maximum transmission capacities for all countries

Page 13: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

13

The necessary grid capacity The larger picture in 2050

Scenario 3.a

DK

NO

SE

PL

FR

UKIE

ES

PT

DE

CH/LI

AT

IT

CZ

NL

BE

LU

EE/LT/LV

AL/CS/MK

BA/HR/SI

BG

CY

FI

GR

HU

SK

MT

RO

TR

U/MD

BY

DZMA

TN

LY EG

20,3

Maximale Transportkapazitäten in GW (Szenario 3a)

26,8

52,2

115,7

20,35,1

2,2 4,089,4

73,4

48,7

45,1

14,4

16,8

18,5

26,911,3

20,5

86,8

81,6

40,921,9

17,1

19,1

8,9

12,2

8,3

9,0

42,3

4,9

18,5

3,7

9,1

4,7

3,0

61,4

11,2

3,6

8,6

5,4

3,7

18,9

5,6

2,1

2,1

3,0

6,2

6,62,6

4,6

5,5

9,43,4

4,9

10,1

8,8

Maximum transmission capacities for all countries

Page 14: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

14

Production, storage and import costs of electricity in the different countries in 2050 in c/kWh

Scenario 3.a Production, storage and import costs in the different countries in 2050 in c/kWh

Page 15: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

15

Electricity Production in Germany 2005 to 2050 (Scenario 2.1.a)

0

100

200

300

400

500

600

700

800

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Year

TW

h/a

Old Nuclear Old Lignite Old Hard Coal Old Natural Gas

Other Old Conventional Hydropower Geothermal Energy Wind Offshore

Biomass PV Geothermie Natural Gas Plants under Construction

Hard Coal Plants under Construction Lignite Plants under Construction

No new conventional plants needed The German pathway 2010 to 2050

Government target for 2020: reduction to 520 TWh/a

Page 16: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

16

Installed Renewable Energy Capacity 2005 to 2050 (Scenario 2.1.a)

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

180,0

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Year

GW

Hydro Power Wind Onshore Wind Offshore Biomass Geothermal Energy Geothermie

100% REN possible for Germany by 2030 (based on scenario 2.1.a for Germany)

Expansion of renewables only slows down after 2023 to allow the operation of conventional power plantsof 35 years

Page 17: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

17

Difference between new average elctricity production cost including renewables and conventional production cost (based on scenario 2.1a including storage and national as well as international grid extension)

-8

-6

-4

-2

0

2

4

6

8

2010 2015 2020 2025 2030 2035 2040 2045 2050

Year

€ ce

nt/k

Wh

Difference in average electricity production cost of scenario 2.1.a to high conventional price pathDifference in average electricity production costs of scenario 2.1.a to low conventional price path

Cost of climate protection in Germany2,7-3,7 €c/kWh during the most expensive years

Cost compared to moderate price increase in conventional power production (max. 3,7 c/kWh)

Compared to high price increase in conv. (max. 2,7 c/kWh)

The cost changes in Germany

Page 18: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

18

Conclusions

• 100% renewable electricity supply for Germany and Europe is possible by 2050 (2030 for Germany if needed)

• The system will mainly be based on wind and solar energy

• Storage and transmission will be crucial

• Electricity costs will range from 4 to 8 c/kWh for 32 out of 36 countries

• Even in the most expensive case of Slovakia cost will be less than 12 c/kWh

• No new conventional power plants are needed in Germany

• Now life-time extension for nuclear plants is necessary in Germany

• The maximum cost difference to conventional power will be less than 4 c/kWh (in Germany)

• 100% climate protection comes at a surprisingly low cost in the electricity sector

Page 19: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

19

Thank you very much for your attention

Page 20: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

20

0,00

2,00

4,00

6,00

8,00

10,00

12,00

ct/kWh

1.a: DE-100% SV-

500

2.1.a: DE-NO/DK-

100% SV-500

2.2.a: DE-NO/DK-85%

SV-500

3.a: DE-EUNA-85%

SV-500

1.b: DE-100% SV-

700

2.1.b: DE-NO/DK-100%

SV7500

2.2.b: DE-NO/DK-85%

SV-700

3.b: DE-EUNA-85%

SV-700

Scenario

Structure of Electricity Production Cost in Germany 2050 (c/kWh)

Electricity Imports

Compressed Air Storage

Pump Storage

Storage Hydro

Run of River Hydro

Biogas CHP

Solid Biomass CHP

Solid Biomass

Geothermal CHP

Geothermal Electricity

Wind Off Shore

Wind On Shore

PV

Electricity costs of less than 7 Cent per kWh in 2050 (Germany)

7,0 ct/kWh

Page 21: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

21

Füllstand der norwegischen Speicherwasserkapazität mit Ein- und Ausspeicherung aus Szenario 2.1 für 2050

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Zeit [Woche]

En

erg

iem

eng

e [

TW

h]

NO real 2008 Minimaler Speicherfüllstand 1990-2007 Maximaler Speicherfüllstand 1990-2008

Szenario 2.1a Szenario 2.1b

Impact on Norwegian hydro storage in 2050 (Scenario 2.1.a compared to 2008)

Max. level 84 TWh

Min. level 0 TWh

Norway 2008

Scenario 2.1.a500 TWh/a

Scenario 2.1.b700 TWh/a

1990-2008 min.

1990-2008 max.

Page 22: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

22

Only minimal changes to the Norwegian hydro power system are required

5,6 TWh storage capacity This system alone can be expanded to more than 10 GW pump storage capacity without any new dam!

The example of Sira-Kvina

Page 23: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

23

The necessary grid capacity for a cooperation DE-DK-NO

DK

NO

Maximale Übertragungskapazität in GWDE-DK-NO 2050 (Szenario 2.1a)

46 GW

42 GW

DE

Scenario 2.1.a Maximum transmission capacities between DE – DK -NO

Page 24: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

24

Share of different renewable energy sources in the different countries in 2050

Scenario 3.a Share of different renewable energy sources in all countries in 2050 in %

RES production

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Alb

an

ia/S

erb

ia/M

ace

do

nia

Bo

snia

/Cro

atia

/Slo

ven

ia

Au

stri

a

Be

lgiu

m

Bu

lga

ria

Cyp

rus

Cze

ch R

ep

ub

lic

De

nm

ark

Ire

lan

d

Est

on

ia/L

ithu

an

ia/L

atv

ia

Fin

lan

d

Fra

nce

Ge

rma

ny

Gre

ece

Hu

ng

ary

Ita

ly

Slo

vaki

a

Lu

xem

bo

urg

Ma

lta

Ne

the

rla

nd

s

No

rwa

y

Po

lan

d

Po

rtu

ga

l

Ro

ma

nia

Sp

ain

Sw

ed

en

Sw

itze

rla

nd

/Lie

chte

nst

ein

Tu

rke

y

Gre

at

Bri

tain

Ukr

ain

e/M

old

avi

a

Be

laru

s

Alg

eri

a

Mo

rokk

o

Tu

ne

sia

Lib

ya

Eg

ypt

%

Hydro reservoir

Run off river hydro

Gaseous biomass (CHP)

Gaseous biomass

Solid biomass (CHP)

Solid biomass

Geothermal (CHP)

Geothermal

Wind offshore

Wind onshore

CSP

PV

Page 25: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

25

Share of renewable energy sources in the different countries in 2050

Scenario 3.a Share of different renewable energy sources in all countries in 2050 in TWh/a

Page 26: Prof. Dr. Olav Hohmeyer German Council of Environmental Advisors (SRU) EEAC Workshop Transition to a Low Carbon Energy System in Europe Brussels, October

26

Development of electricity production cost (Scenario 2.1a)

0

5

10

15

20

2010 2015 2020 2025 2030 2035 2040 2045 2050

Year

€ ce

nt/k

Wh

Conventional electricity production costs (high increase) Storage and international HVDC transport costConventional electricity production cost (moderate increase) HVDV grid in GermanyCost of renewable electricity including storage and transport

Renewable electricity is the lowest cost long term solution (2.1.a Germany)

Cost of renewable electricity including storage and grid costs

Conventional electricity, strong price increase

Conventional electricity, moderate price increase