producción de etanol: hidrólisis de hemicelulosa y metabolismo de

42
Fuel Ethanol from Sugar Cane Bagasse Alfredo Martínez Jiménez Dpto. Ingeniería Celular y Biocatálisis Instituto de Biotecnología – UNAM [email protected] http://pbr322.ibt.unam.mx/~alfredo/ Puente de Ixtla, Morelos. Wednesday 4, 2009 Competence Platform on Energy Crop and Agroforestry Systems for Arid And Semi-Arid Ecosystems BioEthanol

Upload: dangthu

Post on 13-Jan-2017

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Fuel Ethanol from Sugar Cane Bagasse

Alfredo Martínez JiménezDpto. Ingeniería Celular y Biocatálisis

Instituto de Biotecnología – [email protected]

http://pbr322.ibt.unam.mx/~alfredo/

Puente de Ixtla, Morelos.Wednesday 4, 2009

Competence Platform on Energy Cropand Agroforestry Systems for Arid

And Semi-Arid Ecosystems

BioEthanol

Page 2: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Outline of the Presentation

• Motivation and the Mexican perspective• Lignocellulose – Biomass• 2ng Generation Fuel Ethanol• Carbon metabolism studies in ethanologenic

Escherichia coli• Biomass Sources and Potential• Final Remarks• Acknowledgements• Questions

Page 3: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

New fuels are needed to substitute oil derivatives and fossil fuels

CO2 AccumulationClimatic ChangeGlobal Warming

Oil, natural gas and carbon: Industrial activities, electricity generation, transport, etc.

OilDepletion (Mexico ~2020)Price IncreaseContamination-SpillsEmissionsEconomic National Support

Alternative Renewable EWindHydroWaves

Geothermic

SolarElectricity

Biomass: Solid Bio-fuel

Liquid Bio-fuelsFor Transportation

Fuel Ethanol

Page 4: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Sun Biomass Fossil Fuels

~ 100 Million Years

Page 5: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Sun Biomass Bio-Fuels

!~ or < 1 Year!

BioEtanol

Page 6: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Energy Consumption

~30%

Mexico 2004: 8%Sugar Cane Bagasse

Timber

~35%

Page 7: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Fuel Ethanol Production

Sucrose syrups from Sugar Cane + Yeast Ethanol40% car use E95. Others E22. Ford, GM, WV, Honda, etc.

Brazil, expertise 30 yearsMore than 15,000 million L/year (41 million L/day)

Saccharomyces cerevisiae

Mature Technology

Page 8: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Fuel Ethanol ProductionUSA: expertise 20 years

2006: More than 41 million L/day (more than Brazil)Corn Starch + Amylases Glucose

Glucose + Yeast EthanolE10 any car: 2% gasoline consumption EUA

Mature Technology

Page 9: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

1st Generation Fuel Ethanol USA and Brazil

0

2

4

6

8

10

12

14

Jul 06 Ene 07

mile

s de

mill

ones

de

galo

nes

Production In Construction

Year Area (Mha)

Alcohol(Mm3)

2005 5.50 15.60

2015 7.92 45.00

2025 8.64 78.00

Page 10: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Colombia~2 years expertise

1 million liters/day

What about Mexico?

Sucrose syrups from Sugar Cane + Yeast Ethanol

Page 11: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Mexican Scenario: Fuel Ethanol

Substrate Bulk Price Et-OH Prod. Costin Mexico Substrate(pesos/kg) (pesos/L)

Glucose 8-11Sucrose 8-11

Gasoline Price8 - 10 pesos/L

Glucose 2 Ethanol + 2 CO2Sucrose 4 Ethanol + 4 CO2

Theoretical Yield: 0.51gETHANOL / g(GLC or SUC)

0.64 LEtOH/kg

Glucose, Corn Imports: 8 x 106 metric tons& Corn Yield: 2-4 ton/ha vs 12-14 ton/haSucrose, small surplus – small market &

high sugar cane price (3 times the price of Brazil)

- Mexican demonstrated oil reserves will be depleted in 9 years- 33% of the Mexican federal income is based in oil commercialization.

Page 12: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Vision 20 years• Given that in 20 years the main form of

transportation fuel will still be liquid fuel, the technological vision for 2020-30 is that bio-fuels will evolve to those that will integrate seamlessly into current transportation refining to end use fuel systems: Bio-ethanol, bio-diesel and other liquid and gaseous bio-fuels need to be produced

• Look for solutions: Biotechnology

Page 13: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Bio-Ethanol Market

Schubert. Nature: 2006

Page 14: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Second Generation Fuel Ethanol

Purpose: Purpose: Design microorganismDesign microorganism and process and process to transformto transformLignocellulose (cellulose & hemicellulose: Lignocellulose (cellulose & hemicellulose: pentoses, pentoses, hexoses, disaccharideshexoses, disaccharides) ) to ethanolto ethanol

ETHANOL

Lignocellulose BiomassAgricultural ResiduesSugar Cane Bagasse Fermentation

Hydrolysis

COCO22

Xylose,CellobioseGlucose,

etc.Cellulose,

HemicelluloseC5 & C6

Artificial CO2 cycle

Sun

Martinez et al. 2006

Page 15: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de
Page 16: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

LignocelluloseSugar Cane Bagasse

Pectin(Poligalacturonate)

2-20%

Others(8%)

Lignin(aromatics)

10-20%

Cellulose(glucose)20-50%

Hemicellulose(xil, ara,

man, glc, gal)20-40%

Pentoses 85% + Hexoses 15%(Xil + Ara) + (Gluc+Man+Gal)+ Acetate + Glucuronic Acid

Ingram et al., 1998Martinez et al. 2000

Sugars in Sugar Cane BagasseHemicellulose Hydrolysates

(g/L)Xylose: 80Arabinose: 5Glucose: 15

Page 17: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Biomass – LignocelluloseFuture Raw Material

HemicelluloseHydrolysisProducts

CH2OH

OH

OHO

OH

OH

Glucose6-carbons

OH

OH

OH

OH

O

Xilose5-carbons

OH

OH

OH

OHO

Arabinose5-carbons

Yeast: Do not Ferment Pentose Sugars

Page 18: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Two main strategies: Pentoses EthanolMetabolic Pathway Engineering

PentosesHexoses

Ethanol

Ethanol

B: NO Ethanol producerPathway complementation. Engineer to produce only ethanolEscherichia coli

A: Ethanol producer Increase substrate range. Engineer to use pentosesSaccharomyces cerevisiae and Zymomonas mobilis Hexoses

Ethanol Pentoses

Pentoses

Page 19: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Escherichia coli: Uses a wide range of sugars

Embden-Meyerhof-Parnas Entner-Doudoroff Pentose Pathway

PYRUVATESuccinate

Lactate

Acetate

Acetyl-CoA +

CO2 H2Ethanol

LDH

PDH

Formate

HEXOSES (Glc, Fru, Gal, Man etc.) + PENTOSES (Xyl, Ara, Rib, Xylu, etc.)

PFL

and make fermentation products, but little ethanol

Page 20: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Construction of ethanologenic E. coli: KO11

Embden-Meyerhof-Parnas Entner-Doudoroff Pentose Patway

PYRUVATESuccinate

Lactate

Acetate

Acetyl-CoA +

CO2 H2Ethanol

LDH(Km = 7 mM) PFL

(Km = 2 mM)

Formate

HEXOSES (Glc, Fru, Gal, Man etc.) + PENTOSES (Xyl, Ara, Rib, Xylu, etc.)

KO11 (E. coli W)Δfrd, pfl::pdc adhB cat

Metabolic Engineering

pfl: strong promoter

X

Otha et al., 1991

FRD

Ethanol

Pyruvate Decarboxylase(PDC) (Km = 0.4mM)

Acetaldehyde AlcoholDehydrogenase II (ADHII) (Km = 0.012mM )

CO2

Ingram et al., 1998

Page 21: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Xylose (10%) fermentation

Yield 94.0%Theoretical Yield = 0.51 gEt-OH/gGlc or Xyl

Luria Broth, 35oC, 100 rpm, pH 7.0

Cell mass: KO11 > EcW (34%)µ: KO11 > EcW (30%)qS: (gXyl/gDCWh) KO11 > EcW (30%)QEtOH (gEt-OH/l h) KO11 = 1.0

Tao et al., 2001, Martínez et al., 1999

0 12 24 36 48 60 72 84 960

20

40

60

80

100

Xylose (g/l)

Acids (g/l)

0

1

2

3

4Ec W

Cell mass (g/l)

Time (h)

Ethanol (g/l)

0 12 24 36 48 60 72 84 960

20

40

60

80

100

Xylose (g/l)

Ethanol (g/l)

Acids (g/l)

0

1

2

3

4KO11

Cell mass (g/l)

Time (h)

Page 22: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Metabolic Engineering (Genetic Engineering Tools)

DNAGene 1 Gene 2 Gene 3

Enzima 1 Enzima 2 Enzima 3A B C D

A

DNA

D

Page 23: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

DNAGene 1 Gene 2 Gene 3

Enzima 1 Enzima 2 Enzima 3A B C D

A

Delete – Interrupt Genes

DNA X

X X

Page 24: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

New genes

DNAGene 1 Gene 2 Gene 3

Enzima 1 Enzima 2 Enzima 3A B C D

A

DNA

Page 25: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

New (add foreign) genes

DNAGene 1 Gene 2 Gene 3

Enzima 1 Enzima 2 Enzima 3A B C D

A

Gene 4Enzim

a4

E

Page 26: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Strain evaluation

Fermentor setup: 6-Mini-fermentors (Fleakers)Working volume 200 ml

Mineral media (some with Rich Media) & Sugars (Xyl, Glc)Temperature: 37°C; Speed: 100 rpm; pH: 7.0

Without aeration

Page 27: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

0 12 24 36 480

10

20

30

40

0.0

0.5

1.0

1.5

2.0KO11

Time (h)

Glu

cose

(g/l)

Etha

nol (

g/l)

Cell m

ass (gD

CW

/l)

KO11: Glc or Xyl (4%): Mineral MediaSugar Cane Hemicellulose Hydrolyzates

In comparison with rich media, in mineral media there are reductions by:57Glc & 63Xyl % in cell mass formation; 25% in the specific growth rate70Glc & 60Xyl % in the specific sugar consumption rate

QEtOH is reduced to 0.42Glc & 0.33Xyl gEt-OH/l h, for glucose and xylose

0 12 24 36 480

10

20

30

40

0.0

0.5

1.0

1.5

2.0KO11

Time (h)

Xylo

se (g

/l)Et

hano

l (g/

l)

Cell m

ass (g/l)

Yield 70% Yield 60%

Page 28: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Main Conclusion

• The study provides the basis for the implementation of appropriate genetic modifications to increase the ethanol yield when mineral media or sugar from hemicellulose syrups containing a large amount of pentoses are used, for instance, the disruption of succinate and lactate pathways that compete for ethanol production.

Page 29: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Ethanologenic E. coli 2nd Generation

Embden-Meyerhof-Parnas Entner-Doudoroff Pentoses Pathway

PIRUVATELactate

Acetate

Acetil-CoA

Ethanol

Pyruvate Decarboxylase (0.4mM)

Acetaldehyde +CO2

Alcohol Dehydrogenase (0.012mM)

Formate

ETHANOL

HEXOSES (Glucose) + PENTOSES (Xylose)

PEP

ADH

Succinate

Block Organic AcidsIncrease PDCZm & ADHZm

XX X

XMartínez et al., 2007

ldh-, frd-,pta-ack-, pfl-No Growth

pdc-adh+ Only wayto Grow Up

X

Page 30: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Ethanol Production in Mineral Media-Xyl-GlcOr Hemicellulose Syrups

0.0

0.8

1.6

2.4

3.2

Cel

l mas

s (g

DC

W/L

)

0 24 48 72 960

10

20

30

40

50

0.0

0.2

0.4

0.6

0.8

1.0

Time (h)

Etha

nol (

g/L)

Ethanol (moles/L)

Martinez et al., 2007

Page 31: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

2nd Generation

• Homo-ethanologenic strains• Capable to ferment glc, xyl or mixtures (100

g/L total sugars) in 48 h• Yield above 90% of the theoretical• Some metabolic evolution work was

performed to contend with the effects of pflinterruption.

Page 32: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Generalized ProcessLignocellulose Milling

Hemicellulose Hydrolysis Diluted Acid Treatment

Enzymatic Hydrolysis& Glc Fermentation

Fermentation(pentoses)

Distillation

Water Elimination

Organic Fuel(Steam)

Recombinant Microorganisms

Ethanol Producers

HemicelluloseSyrup

CO2CO2

SolidsLignin

Cellulose &Lignin

Cellulases

Diluted Ethanol (>40 g/L)

Ethanol 95%

Etanol 100%

Detoxification

Generate aMature Technology

Martínez et al. 2006

Page 33: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

SCB

Page 34: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Production Potential with Sugar CaneBase 100 Ton/Ha

• Cane syrups: 7,500 L/Ha• Bagasse (300 kg/Ton, 50% humidity)• 5,500 L/Ha

• Syrups + Bagasse• 13,000 L/Ha

• + Stover• 300 kg/Ton, ~20% humidity• + 7,000 L/ha

• ~ 20,000 L/Ha

Page 35: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Wood

Corn Stover

Bagasse- Sugar Cane- Agave

LumberPaper

Any lignocellulosic material, biomass from semi-arid areas

Sources

Fast Growth Grasses

Page 36: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Bio-Ethanol Activities at the IBt - UNAM• The Biotechnology Institute has been

involved in the research project since 1999.

• It has a fermentation pilot plant based in 100 and 350 liters fermentors.

• We had demonstrated the generation of fermentable sugars using thermohemicaland enzymatic hydrolysis at laboratory and pilot plant scale.

• We have develop (and patented) bacterial strains with the capacity to ferment all sugars present in hydrolyzates with conversions yields above 90% of the theoretical and with volumetric productivities reaching 1 g/L/h.

• Actual research focus in:– Other raw materials– Improve and integrate a process– Cost reduction

0 24 48 72 960

10

20

30

40

50

0.0

0.2

0.4

0.6

0.8

1.0

Time (h)

Etha

nol (

g/L)

Ethanol (moles/L)

Page 37: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Technological goals1. Many opportunities remains to optimize ethanologenic biocatalyst2. Raw materials (lignocellulose) is different for each country or

region. So process development is case specific.3. Thermochemical (pre-treatments and distillation) need to be

energy efficient4. Enzymatic hydrolysis of cellulose needs to be optimized

Wyman. Trends in Biotechnol. 2007.

My vision:Politics are very important. Biomass production is

fundamental. We need to avoid competence with food and feed, and take care of land usage. Sustainable methodologies are essential for all the chain process.

BUT DEVELOPING COUNTRIES ALSO CAN DEVELOP THEIR OWN TECHNOLOGIES, WE DO NOT NEED TO WAIT FOR THE BIG COMPANIES TO DEVELOP THEM AND LATER DEPEND ON THEM. BIOTECHNOLOGY IS FUNDAMENTAL FOR THIS TECHNOLOGIES.

Alfredo Martínez 2006

Page 38: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

!!Thanks!!

AcknowledgmentsCONACyT Grants

SAGARPA 2004-C01-224Estado de Morelos 2004-C02-48

PAPIIT – DGAPA - UNAMIN220908-3

CollaborationsInstituto de Biotecnología

University of Florida

Students

Page 39: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Questions

Page 40: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Production Cost and Energy Balance

Science 2007

Page 41: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Fuel Ethanol (dol/gal) Pesos/LiterNREL-DOE Corn Stover: 1.44 4.20NREL-California Lumber: 1.07 3.10

Estimated Production Costs

Brazil Prices March 2005($/L) (R/L)

Alcohol: 5.9 1.3 Gasoline: 10.4 2.3

Sugar Cane Bagasse Mexico

Production Cost $3.7 / LiterFrom Molasses (2001)

Production Cost $2.3 /LiterCabrera, Gómez & Quintero 2001

Page 42: Producción de etanol: Hidrólisis de Hemicelulosa y Metabolismo de

Bio-ethanol: MexicoSugar Cane

Planta Sn. Juan Bautista Tuxtepec (Tuxtepec, Oaxaca) Planta Tecnol del Sureste S.A de C.V (Huehuetan, Chiapas)Ingenio La Gloria (Veracruz)

CornPlanta Mex-Starch (Sinaloa)Planta Destilmex (Navolato, Sinaloa)

SorgumBioenergéticos MexicanosS.A.P.I. de C.V (Valle Hermoso, Tamaulipas)

CianobacteriasBioFields (Sonora

LignocellulosePlanta Piloto IBt – UNAM

BioEthanol