praktikum optimasi proses - agungk47.files.wordpress.com · peralatan reaktor tipe cstr/pfr dan...

19
Praktikum Optimasi Proses RKI 156004 Agung Ari Wibowo S.T, M.Sc Politeknik Negeri Malang

Upload: phamdat

Post on 08-Apr-2019

223 views

Category:

Documents


0 download

TRANSCRIPT

Praktikum Optimasi ProsesRKI 156004

Agung Ari Wibowo S.T, M.ScPoliteknik Negeri Malang

Meet Your LecturerDate of Birth : February 18th, 1989

Education : Eskisehir Osmangazi University (M.Sc) - 2014

Institut Teknologi Sepuluh Nopember (S.T) - 2007

Field of Interest : Fluid Phase Equilibria, Process Simulation, Polymer Technology

Teaching Experiences: Material Balance, Transportation of Fluid, Process Simulation

with HYSYS, Polymer Technology, Chemical Reaction Engineering 1,

Chemical Engineering Thermodynamics, Material & Corrosion

Technology

Grants And Scholarship :

1. Turkish Government Scholarship

2. General Electric (GE) Foundation Scholarship

3. Eka Tjipta Foundation Scholarship

Capaian Pembelajaran

• Melakukan SimulasiProses dengan HYSYS

• Memilih kondisi operasi suatu proses dengan bantuan case study, set dan adjust

• Melakukan SimulasiProses denganChemCAD

• Memilih kondisi operasi suatu proses dengan bantuan sensitivity analysis

• Melakukan perhitunganproperty nyatatermodinamika

• Melakukan fitting data VLE dengan model koefisien aktifitas

Rencana Pembelajaran

Minggu ke -1

Gambaran umumtentang mata kuliahpraktikum optimasiproses

Permodelantermodinamika untuksimulasi dan optimasiproses

Minggu ke 2-4

Minggu ke 5-6Simulasi dan spesifikasiperalatan transportasifluida, heat exchanger dan reaktor di industrikimia

• Simulasi dan spesifikasi peralatandistilasi dan absorbsi

• Sensitifity Analisys

Minggu ke 7-10

QUIZ

Minggu ke 12 - 14

Simulasi dan spesifikasi peralatan transportasi fluida, heat exchanger dan reaktor di industri kimia dengan HYSYS

Simulasi dan spesifikasiperalatan reaktor tipeCSTR/PFR dan shortcut kolom distilasi sertaproses recycle di industri kimia

Minggu ke 15-16

Minggu ke 17-18distilasi standar sertamenggunakan logikaSet, Adjust dan Case Study

UAS

Evaluasi

• Project : 30%

• Quiz : 20%

• Tugas : 20%

• UAS : 30%

References

Smith J.M., Van Ness, H.C. & Abbott M.M. "Introduction to Chemical EngineeringThermodynamics." Seventh Edition, McGraw-Hill.

Hamid, K. A. (2007). “HYSYS : An Introduction to Chemical Engineering Simulation”.Johor, Malaysia: Universiti Teknologi Malaysia.

CHEMCAD Version 7 User Guide. (2016). New York, USA: Chemstations, Inc.

Thermodynamic Properties of Fluids

Residual Property

Ideal Gas(V ig )

Δ V = V - V ig

Real Gas( V )

VR = V - V ig

𝑉𝑅 =𝑅𝑇

𝑃𝑍 − 1

𝑍 = Compressibility Factor

Calculated by Virial Eq, EOS or Generalized Eq (Lee Kesler)

Lee Kesler Generalized Correlation

𝑍 = 𝑍0 + 𝜔 𝑍1

General Concept from Pitzer et.al

𝑍0 𝑎𝑛𝑑 𝑍1

𝑓𝑟𝑜𝑚 𝑡𝑎𝑏𝑙𝑒 𝐸3 𝑎𝑛𝑑 𝐸4 (𝑆𝑚𝑖𝑡ℎ 𝑉𝑎𝑛 𝑁𝑒𝑠𝑠)

𝜔𝑓𝑟𝑜𝑚 𝑡𝑎𝑏𝑙𝑒 𝐵 (𝑆𝑚𝑖𝑡ℎ 𝑉𝑎𝑛 𝑁𝑒𝑠𝑠)

Lee Kesler Generalized Correlation

𝐻𝑅

𝑅𝑇𝐶=

𝐻𝑅 0

𝑅𝑇𝐶+ 𝜔

𝐻𝑅 1

𝑅𝑇𝐶

Residual Enthalpy

𝐻𝑅 0

𝑅𝑇𝐶𝑎𝑛𝑑

𝐻𝑅 1

𝑅𝑇𝐶

𝑓𝑟𝑜𝑚 𝑡𝑎𝑏𝑙𝑒 𝐸5 𝑎𝑛𝑑 𝐸6 (𝑆𝑚𝑖𝑡ℎ 𝑉𝑎𝑛 𝑁𝑒𝑠𝑠)

𝜔𝑓𝑟𝑜𝑚 𝑡𝑎𝑏𝑙𝑒 𝐵 (𝑆𝑚𝑖𝑡ℎ 𝑉𝑎𝑛 𝑁𝑒𝑠𝑠)

Lets Practice

Estimate V and HR of Propane Gas at 450 K and 140 bar !

How to solve this problem?

1. Find the value of Tc, Pc and ω from table B

2. Calculate reduced properties ;𝑇𝑟 =𝑇

𝑇𝐶;𝑃𝑟 =

𝑃

𝑃𝐶

3. Find the value of 𝑍0 𝑎𝑛𝑑 𝑍1 from table E3 and E4

4. Calculate Z then V = ZRT/ P

5. Find the value of𝐻𝑅 0

𝑅𝑇𝐶𝑎𝑛𝑑

𝐻𝑅 1

𝑅𝑇𝐶from table E5 and E6, then calculate HR

Lets Practice

Estimate V and H for 1-butene vapor at 473.15 K and 70 Bar, if H are set equal to

zero for saturated liquid at 273.15 K!

( Tc = 420 K; Pc=40.43 Bar, Tn (normal boiling point) = 266.9 K; ω = 0.191)

𝐶𝑃𝑖𝑔

𝑅= 1.967 + 31.630 𝑥 10 − 31 𝑇 − 9.837 𝑥 10 − 6𝑇2

Calculation Path

1. Vaporization at 273.15 K at P1

2. Transition to ideal gas state (273.15

K; P1)

3. Change to T2; P2 at ideal gas

4. Transition to the actual state T2;P2

Calculation Path

1. Vaporization at 273.15 K at P1

To calculate P1 we can use simple Antoine Eq, with data from Tc; Pc and normal boiling point

ln 𝑃𝑠𝑎𝑡 = 𝐴 −𝐵

𝑇

ln 40.43 = 𝐴 −𝐵

420

ln 1.013 = 𝐴 −𝐵

266.9

A = 10.1260 ; B =2699.11P1 = 1.2711 Bar

Calculation Path

1. Vaporization at 273.15 K at P1

∆𝐻𝑛𝑙𝑣

𝑅𝑇𝑛=

1.0912 (ln𝑃𝐶 − 1.013)

0.930 − 𝑇𝑟𝑛

∆𝐻𝑛𝑙𝑣= 22 137 J/ mol K

∆𝐻𝑙𝑣

∆𝐻𝑛𝑙𝑣 =

1 − 𝑇𝑟

1 − 𝑇𝑟𝑛

0.38

∆𝐻𝑙𝑣 = 21 810 J/ mol K

Calculation Path

2. Transition to ideal gas state (273.15 K; 1.2711 Bar)

The residual enthalpy for this process can be calculated using

Lee/Kesler Generalized Correlation

a) Simple calculate Tr and Pr for T = 273.15 K ; P = 1.2711 Bar

b) Read from table E5 and E6 to get of 𝐻𝑅 0

𝑅𝑇𝐶𝑎𝑛𝑑

𝐻𝑅 1

𝑅𝑇𝐶,

then calculate 𝐻𝑅

𝑅𝑇𝐶

𝐻𝑅= -344 J/ mol

Calculation Path

3. Change to T2; P2 at ideal gas

Because there is change in Temperature, so the enthalpy change must be calculated from Cp

correlation

𝐶𝑃𝑖𝑔

𝑅= 1.967 + 31.630 𝑥 10 − 31 𝑇 − 9.837 𝑥 10 − 6 𝑇2

𝐶𝑝 𝐻

𝑅= 𝐴 +

𝐵

2𝑇1 𝜏 + 1 +

𝐶

3𝑇12 𝜏2 + 𝜏 + 1 +

𝐷

𝜏𝑇12

)∆𝑯 = 𝑪𝑷 𝑯 𝒙 (𝑻2 − 𝑻1

D= 0

∆𝐻𝑖𝑔 = 𝟐𝟎 𝟓𝟔𝟒𝑱

𝒎𝒐𝒍

𝜏 =𝑇2𝑇1

Calculation Path

4. Transition to actual gas state (473.15 K; 70 Bar)

The residual enthalpy for this process can be calculated using

Lee/Kesler Generalized Correlation

a) Simple calculate Tr and Pr for T = 473.15 K ; P = 70 Bar

b) Read from table E5 and E6 to get of 𝐻𝑅 0

𝑅𝑇𝐶𝑎𝑛𝑑

𝐻𝑅 1

𝑅𝑇𝐶,

then calculate 𝐻𝑅

𝑅𝑇𝐶

𝐻𝑅= -8485 J/ mol

Calculation Path

Total Enthalpy Change for the process can be calculated as follow:

H = ∆𝐻𝑙𝑣 + 𝐻𝑅1 + ∆𝐻𝑖𝑔 + 𝐻𝑅2

= 34 233 J/ mol