power electronics for electric drive...

27
Power Electronics for Electric Drive Vehicles Fall 2013 1

Upload: vantu

Post on 11-Apr-2018

325 views

Category:

Documents


17 download

TRANSCRIPT

Page 1: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Power Electronics for Electric Drive Vehicles

Fall 2013

1

Page 2: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

2

• Co‐developed and maintained by multiple universities• USU: Prof. Regan Zane (lead for 2013)• CU‐Boulder: Prof. Dragan Maksimovic• University of Cantabria, Spain: Prof. Francisco Azcondo

• Content provided by all campuses• Lectures, assignments, supplementary video and materials

• Local support: office hours, grading, location specific details• Benefits

• Course content maintained relevant and up‐to‐date• Leading experts brought in from around the world• Online content available to all students for review• Discussions exchanged across campuses via course blog

Course Offered Jointly

Page 3: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

3

CU‐Boulder Instructor: Professor Dragan Maksimovic

• Office:• OT346, 3rd floor office tower• phone: 303‐492‐4863

• Office hours• Monday, Wednesday 1‐2:30pm

• Class blog• E‐mail: [email protected]

• Please use 5017 in the subject line

Page 4: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Materials and Textbook• Course website

– http://ecee.colorado.edu/~ecen5017/– Lecture slides & notes, assignments, additional materials

• Textbook– R. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer 2001 (Chapters 1‐5); on‐line access available from CU network

• MATLAB/Simulink is required– Student version is sufficient

• Prerequisites– undergraduate circuits sequence, microelectronics, 

Laplace transforms, linear systems

4

Page 5: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Assignments

5

• Weekly homeworks (11‐12 total), 50% of the grade

• Midterm exam (open book/notes, take‐home), 20% of the grade

• Final exam (comprehensive, open book/notes, take‐home), 30% of the grade

• All assignments and due dates posted on the course web site

• All work must be submitted via D2L system as a single, easily readable PDF file; use black‐an‐white scanning, reasonable file size

• Deadlines are enforced by D2L and are the same for all students, on‐campus and off‐campus

• Late work will not be accepted except in cases of documented emergencies

Page 6: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Assignment Policy

6

Homeworks

• You are encouraged to talk to other students taking the class about homework problems; collaboration is allowed

• Use the class blog to ask and answer questions

• You must turn in your own work. Copying someone else’s work is not allowed

Exams

• Take‐home, open‐book, open notes exams

• Absolutely no collaboration allowed in any form

Any policy violations would lead to severe consequences, starting with an immediate F in the class, for all parties involved

Page 7: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

7

Page 8: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

How to succeed in this course• Keep up: follow all materials available online• Actively participate: speak up in class, post questions and answers to blog– Class attendance is required

• Plan on a significant effort in the weekly homework assignments

• Review for the mid‐term and final exams similar to any other exam

• Plan on increased effort during the one‐week take home exams

8

Page 9: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Introduction• Objectives

– Architectures, modeling and simulations of electric drivetrains– Modeling, analysis and design of vehicle power electronics

9

• One of the four courses in Graduate Certificate in Electric Drivetrain Technology offered by UCCS

Page 10: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Course Outline• Transportation electrification• System overview

– Vehicle dynamics, MATLAB/Simulink modeling– Architectures of hybrid (HEV), plug‐in hybrid (PHEV) and electric vehicles (EV)– Rating and sizing of drivetrain components

• Electric drivetrain components: analysis, modeling, simulations and design considerations

– Battery systems, battery management electronics– Bidirectional DC‐DC converters– Inverters and AC motor drives– Battery chargers

• Complete system modeling and simulations

10

Page 11: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

System Architectures, Modeling and Simulations

11

Top-level model of EV for use in ECEN 5017 course. Drivingcycle is a velocity-vs-time profile for the vehicle, operating on

flat ground. Driver uses gas pedal to track the reference velocity.

Top-Level EV Model

m

Vref

speeds

Forces

Iinv

Ebat

dist

Unit Conversion Scope

Electric VehicleDriver model

Driv ing cy cleRef erence Speed

Torque command(Gas & brake pedals)

Vehicle Monitoring

Vehicle Speed

• Vehicle dynamics, MATLAB/Simulink modeling• Architectures of hybrid (HEV), plug‐in hybrid (PHEV) and electric vehicles (EV)

• Rating and sizing of drivetrain components

Page 12: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Vehicle Subsystems

12

Vehicle Systems Model

Model for a sample vehicle system during driving cycle. Model consistsof Battery, DC-DC, Inverter, three-phase Permanent-Magnet AC

(PMAC) motor, drive shaft gearing, and vehicle tires

4

Fdrive

3

SOC 2

Iabc

1

Iinv

Tire

PMAC Motor: FunctionalMotor Drive Inverter:Functional

Gearing

EV Battery Model:Functional

DC-DC Converter:Functional

Vbus_ref

Bus VoltageReference

2

Vev

1

TcommandBattery Voltage

Battery Current

Rotor Phase Angle

Inv erter Input Current

DC Bus Voltage

Motor Input Power

Motor Torque

Wheel Torque

Wheel Angular Speed

Rotor Angular Speed

SimulinkModel View

Electrical Model View

Page 13: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Energy Storage System (Battery)

13

• An introduction to battery electro‐chemistry

• Types and characteristics of battery cells, energy, power, cycle life, calendar life, cost

• Cell charge/discharge characteristics, electrical circuit modeling

• Battery management system, cell balancing

• Modeling and simulations of battery systems

Battery dynamic modeling and control are covered in IDEATE courses at UCCSECE 5710: Modeling, Simulation, and Identification of Battery Dynamics (Fall)ECE 5720: Battery Management and Control (Spring)

Page 14: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Bidirectional DC‐DC Converter

14

• Introduction to switched‐mode power converters

• Steady‐state operation, analysis and simulations

• Introduction to power semiconductor switching devices: diodes, IGBTs, MOSFETs

• Modeling of losses and efficiency• Simulations

• This course provides a self‐contained introduction and covers additional topics specific to electric‐drivetrain applications

• Topics covered in more detail in ECEN 5797: Introduction to Power Electronics

Page 15: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

AC Motor Drive

15

• An introduction to AC machine operation and models*

• Permanent magnet synchronous machine

• Induction machine• DC‐to‐AC inverter operation and controls 

• AC drive modeling and simulations

* Topics covered in more detail in ECEN 5737: Adjustable Speed AC Drives offered in Spring 2014 at CU Boulder

Page 16: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Complete System Model and Simulations

16

Top-level model of EV for use in ECEN 5017 course. Drivingcycle is a velocity-vs-time profi le for the vehicle, operating on

flat ground. Driver uses gas pedal to track the reference velocity.

Top-Level EV Model

m

Vref

speeds

Forces

Iinv

Ebat

dist

Unit Conversion Scope

Electric VehicleDriver model

Driv ing cy cleRef erence Speed

Torque command(Gas & brake pedals)

Vehicle Monitoring

Vehicle Speed

• Integration of developed subsystem models into a complete vehicle model

• System evaluation and design considerations

Speed

Forces

Inverter current

Battery energy

The course includes

Page 17: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Transportation Electrification

17

Motivation

• Improve efficiency: reduce energy consumption

• Displace petroleum as primary energy source 

• Reduce impact on environment

• Reduce cost

EIA:• Transportation accounts for 28% of total U.S. energy use

• Transportation accounts for 33% of CO2 emissions

• Petroleum comprises 93% of US transportation energy use

Page 18: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

0 100 200 300 400 500 600-60

-40

-20

0

20

40

60

80

Pv [

kW]

time [s]

18

Example: US06 driving cycle

0 100 200 300 400 500 6000

20

40

60

80

100

v [m

ph]

Example: Prius‐sized vehicle

Vehicle speed [mph]

Propulsion power [kW]

10‐min8 miles

Page 19: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

19

Average power and energy

0 100 200 300 400 500 600-60

-40

-20

0

20

40

60

80

Pv [

kW]

time [s]

Prius‐sized vehicle

Dissipative braking

Pvavg = 11.3 kW

235 Wh/mile

Regenerative braking

Pvavg = 7.0 kW

146 Wh/mile

0 100 200 300 400 500 6000

20

40

60

80

100

v [m

ph]

Page 20: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

20

Conventional versus Electric Vehicle(Prius‐sized vehicle example)

Tank + Internal Combustion Engine (ICE)

Electric Vehicle (EV)Battery + Inverter + AC machine 

Gasoline energy content12.3 kWh/kg, 33.7 kWh/gallon

Tank‐to‐wheel efficiency

20%

1.2 kWh/mile, 28 mpg

85%

0.17 kWh/mile, 200 mpg equiv.

Regenerative braking NO YES

Energy storage LiFePO4 battery0.1 kWh/kg, 0.8 kWh/gallon

Refueling 5 gallons/minute11 MW, 140 miles/minute

Level I (120Vac): 1.5 kW, <8 miles/hourLevel II (240Vac): 6 kW, <32 miles/hourLevel III (DC): 100 kW, <9 miles/minute

Cost

CO2 emissions (tailpipe, total)

12 ¢/mile [$3.50/gallon]

(0, 120) g CO2/mile[current U.S. electricity mix]300, 350) g CO2/mile

2 ¢/mile [$0.12/kWh]

Page 21: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Electric‐Drive Vehicle Technologies• Internal Combustion Engine (ICE) vehicle

– Gasoline powered only

• Hybrid Electric Vehicle (HEV)– Combination of a gasoline‐powered ICE and electric drive,– HEV efficiency improvements

• Regenerative braking• “Downsizing:” a smaller, more efficient ICE, relatively small battery• ICE operated around the most efficient operating point• No idling required when the vehicle stops, keep ICE off

• Plug‐In Hybrid Electric Vehicle (PHEV)– Same efficiency improvements as HEV– Larger battery for an all‐electric range

• Electric Vehicle (EV), All electric vehicle (AEV), (BEV)– No ICE, (much) larger battery

21

Page 22: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

PHEV example, new EPA stickers

22

Chevy Volt

1720 kg62 kW (83 hp) ICE55 kW generator110 kW (149 hp) electric drive16 kWh Li‐Ion battery (175 kg)

65% usable, 35 mi EV range8 years, 100,000 miles warranty

MPGequivalent = Trip length [miles]

Total energy consumed [kWh]33.7 kWh/gallonx

EPA miles‐per‐gallon‐equivalent calculation for All Electric

Page 23: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

EV example

23

Nissan Leaf

1527 kg80 kW (110 hp) electric drive24 kWh Li‐Ion battery

Cells: 140 Wh/kg300 kg battery pack(8 years, 100,000 miles warranty)

Page 24: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

CO2 emissions and oil displacement study

24

Well‐to‐Wheel Analysis of Energy Use and Greenhouse Gas Emissions of PHEVs (2010 report by Argonne National Lab)

Page 25: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

CO2 emissions Over Full LifetimePreparing for a Life Cycle CO2 Measure (2011 report by Ricardo)

Page 26: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

Trends and Challenges• Paths to electrified (personal) transportation

– Hybrid electric vehicles (HEV)– Plug‐in hybrid electric vehicles (PHEV)– All electric vehicles (AEV, BEV)– Hydrogen + fuel cell electric vehicles (FCV)

• Electricity generation mix: shift to renewables• Challenges

– Batteries– Engineering of electric drivetrain components, including efficient, high‐density, reliable power electronics

– Charging infrastructure

26

Page 27: Power Electronics for Electric Drive Vehiclesecee.colorado.edu/~ecen5017/lectures/CU/L1_slides.pdf · – Modeling, analysis and design of vehicle power electronics 9 • One of the

A Vision: Renewable Sources + Battery Electric Vehicles

27

• Zero GHG emissions, no petroleum• High efficiencies are feasible: 80% grid‐to‐wheel• Challenges

• Battery technology: cost, cycle life, power and energy density• Efficient, reliably and cost‐effective drivetrain components• Need for charging infrastructure• Limited Pchg, long charge‐up times

Pchg