part i: paper d: protein folding erik demaine, mit stefan langerman, u. bruxelles joseph orourke,...

39
Part I: Paper Part I: Paper d: Protein Folding d: Protein Folding Erik Demaine, MIT Erik Demaine, MIT Stefan Langerman, U. Bruxelles Stefan Langerman, U. Bruxelles Joseph O’Rourke, Smith College Joseph O’Rourke, Smith College

Upload: mary-willis

Post on 27-Mar-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Part I: PaperPart I: Paperd: Protein Foldingd: Protein Folding

Erik Demaine, MITErik Demaine, MIT

Stefan Langerman, U. Stefan Langerman, U. BruxellesBruxelles

Joseph O’Rourke, Smith Joseph O’Rourke, Smith CollegeCollege

Page 2: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

OutlineOutline

Interlocked ChainsFixed-angle chainsProducible chainsFlattenableProof OutlineConsequence?

Page 3: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

DefinitionsDefinitions

Open vs. closed chains. (Closed chains are more constrained.)

Flexible chains: no constraints on joint motion (each joint universal).

Rigid chains: each joint is frozen, and the entire chain is rigid.

Fixed-angle chains: maintain angle between links incident to each joint.

Page 4: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Crosstable of resultsCrosstable of results

Page 5: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Rigid 2-chains cannot Rigid 2-chains cannot interlockinterlock

Page 6: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Flexible 2-chain can interlock Flexible 2-chain can interlock with rigid 5-chainwith rigid 5-chain

Page 7: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Open ProblemOpen Problem

What is the smallest value of k that permits a flexible 2-chain to interlock with a flexible k-chain? Theorem 10.1.2 shows that a rigid 5-chain suffices; presumably k > 5 is needed for a flexible chain.

Page 8: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Demaine, Langermann, JOR:Demaine, Langermann, JOR:Main TheoremMain Theorem

Theorem 1: A fixed angle polygonal (≤)-chain is

-producible ( ≤ 90º ),

if and only if it is flattenable.

Page 9: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

ConsequenceConsequence

Theorem 2: The -producible configurations of chainsare rare:

The probability that a random configuration of a random chain is -producible approaches 0 as n∞.

Page 10: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

ProteinProteinFoldingFolding

Page 11: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Main TheoremMain Theorem

Theorem 1: A fixed angle polygonal (≤)-chain is

-producible ( ≤ 90º ),

if and only if it is flattenable.

Page 12: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Fixed-angle chainFixed-angle chain

Page 13: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

(≤(≤)-chain)-chain

Page 14: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Locked 3D Chains Locked 3D Chains [Cantarella & [Cantarella & Johnston 1998; Johnston 1998; Biedl, Demaine, Demaine, Lazard, Lubiw, Biedl, Demaine, Demaine, Lazard, Lubiw, O’Rourke, Overmars, Robbins, Streinu, Toussaint, O’Rourke, Overmars, Robbins, Streinu, Toussaint, Whitesides 1999]Whitesides 1999]

Cannot straighten some chains, even with universal joints.

Page 15: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

RibosomeRibosomehttp://www.biochimie.univ-montp2.fr/maitrise/ribosome/50s_letunnel.htm

“The majority of the surface of the tunnel is trained by field I (yellow) and V (red) of 23S and by the nonglobular areas of the proteins L4, L22 and L39e. Incipient polypeptide first meets field V then field II and IV with the proteins L4 and L22. Half of the tunnel is constituted by field I and III and the L39e protein.”

Page 16: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Ribosome (closeup)Ribosome (closeup)

“The 2 proteins, L22 and L4 (in dark blue) form what appears to be an open door. This crossing point could be the place where the nature of incipient polypeptide is detected and from which information would be transmitted to the surface of ribosome, perhaps through proteins L22 and L4.”

Page 17: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Constraint: ConeConstraint: Cone

Page 18: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Main TheoremMain Theorem

Theorem 1: A fixed angle polygonal (≤)-chain is

-producible ( ≤ 90º ),

if and only if it is flattenable.

Page 19: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

-production-production

Page 20: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Lemma 1Lemma 1

An (≤)-chain can be produced only in a cone with (whole) apex angle of ≥ .

Page 21: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

B: Emergence coneB: Emergence cone

Page 22: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

-chain-chain

Page 23: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Canonical ConfigurationCanonical Configuration

Lemma 2. If a configuration of a chain is -producible, then it can be moved inside the cone to a canonical coiled configuration, the -CCC.

Page 24: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

-CCC-CCC

Page 25: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Proof figureProof figure

Page 26: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Proof IdeaProof Idea

Replay production movements in time reversal, coiling the chain inside the cone.

Page 27: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Main TheoremMain Theorem

Theorem 1: A fixed angle polygonal (≤)-chain is

-producible ( ≤ 90º ),

if and only if it is flattenable.

Page 28: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

FlattenableFlattenable

A configuration of a chain if flattenable if it can be reconfigured, without self-intersection, so that it lies flat in a plane.

Otherwise the configuration is unflattenable, or locked.

Page 29: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Every 90Every 90ºº-angle chain has a -angle chain has a flattenable configuration.flattenable configuration.

Page 30: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Unflattenable chainUnflattenable chain

Page 31: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Main Theorem (revisited)Main Theorem (revisited)

Theorem 1:

All -producible (≤)-chains are flattenable, provided ≤ 90º.

All flat configurations of (≤)-chains are -producible, for ≤ 90º.

Page 32: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Logical Flow of IdeasLogical Flow of Ideas

-producible -CCC canonical configurationflattened → -CCC-producible flattenableflattenable → not lockedlocked → abundant

not locked → rarerare → search easier?

Page 33: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Consequence (revisited)Consequence (revisited)

Theorem 2: The -producible configurations of chainsare rare:

The probability that a random configuration of a random chain is -producible approaches 0 as n∞.

Page 34: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Configuration SpaceConfiguration Space

All configurations

Flattenable configurations

Page 35: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Why restriction to Why restriction to ≤ 90 ≤ 90º ?º ?

Page 36: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Protein SidechainsProtein Sidechains

Page 37: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Tunnel ExitTunnel Exit

“Localization of proteins at the exit of the tunnel.”

Page 38: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Open Problems: Open Problems: Locked Equilateral Locked Equilateral Chains?Chains?

(1)Is there a configuration of a chain with universal joints, all of whose links have the same length, that is locked?

(2)Is there a configuration of a 90o fixed-angle chain, all of whose links have the same length, that is locked?

Perhaps: No?

Perhaps: Yes for 1+?

Page 39: Part I: Paper d: Protein Folding Erik Demaine, MIT Stefan Langerman, U. Bruxelles Joseph ORourke, Smith College

Ribosome structureRibosome structure

“The figure at bottom represents the interactions allowing pairing codon-anticodon. The elements of contact are marked (A) with (c). The anticodon of ARNt is in dark blue and the codon of ARNm in the site P is in red.”

http://www.biochimie.univ-montp2.fr/maitrise/ribosome/sommaire.htm