palynological studies of late holocene jurujuba sound sediments (guanabara bay), rio de janeiro,...

8
Palynological studies of Late Holocene Jurujuba Sound sediments (Guanabara Bay), Rio de Janeiro, southeast Brazil Cintia Ferreira Barreto a, , José Antônio Baptista Neto b , Claudia Gutterres Vilela c , Ortrud Monika Barth d a Laboratório de PaleoEcologia Tropica, Departamento de Geologia Marinha, Instituto de Geociências, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói, RJ, Brasil b LAGEMAR, Instituto de Geociências, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói, RJ, Brasil c Laboratório de Análise Micropaleontológica - MicroCentro, Departamento de Geologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21949-900 Rio de Janeiro, RJ, Brasil d Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brasil abstract article info Article history: Received 23 October 2014 Accepted 27 October 2014 Available online xxxx Keywords: Pollen analysis Sediments Guanabara Bay Late Holocene Palaeoenvironment Sea level variations The Late Holocene vegetation history and climate from southern (SE) Brazil have been reconstructed by means of a pollen analysis of a 223 cm-long core from the central part of Jurujuba Sound (22°55256S and 43°06346W). The analysis showed that before 3520 yr BP (subzone Ia), tropical rainforest occupied extensive parts of the region. However, from 3520 yr BP onwards, the forest reduced in size and there was a slight increase in pollen from hygrophyte plants, fern spores and algae. The higher sea level during this period favoured the expansion of these plants, as well as Botryococcus, in the ooded areas around the Sound. There was a reduction in palynomorph concentrations at about 2820 yr BP (subzone Ib). This can probably be related to a regressive event of the relative sea level and the reduction of atmospheric precipitation during this period. This event favoured an increase in grassland formations, and pioneer forest elements seemed to settle in the open areas. The intensive human occupation in the region around Jurujuba Sound was clearly evident in the pollen record next to the core top (at zone II). The low percentage of tree pollen grains showed that the Atlantic rainforest was signicantly reduced in size, while there was an expressive increase in the herbaceous pollen that is associ- ated with the appearance of exotic taxa. © 2014 Elsevier B.V. All rights reserved. 1. Introduction Palynological studies of Quaternary sediments have supplied im- portant information about the past environment along the Rio de Janeiro state coast in southeastern Brazil. These studies have contribut- ed answers to questions with respect to sea level variations, climate change, and alterations to the natural vegetation that are related to intensive human activities during the Holocene (Barth et al., 2001, Barth et al., 2004; Coelho et al., 1999; Luz et al., 1999, 2011, 2006; Santos et al., 2000; Toledo et al., 1994). Relative sea level uctuations along the eastern Brazilian coast, as elaborated on by Martin et al. (1993) and Suguio et al. (1985), reveal two level events that were higher than those of today after the Maxi- mum Transgressive (5000 cal yr BP): one from 4300 to 3500 BP and the other between 2700 and 2100 cal yr BP. Meanwhile, the relative sea level curves for the southern Brazilian coast provided by Angulo and Lessa (1997) suggest that, the sea level rates declined slightly compared to the present day after the Maximum Transgressive. According to Amador (1997), the climatic oscillation events, which were related to sea level variations that occurred during the Pleistocene and Holocene, were responsible for the origin and morphological evolution of Guanabara Bay. The Holocene Transgressive Maximum event was responsible for expanding the boundaries of Guanabara Bay, reaching a measure of about 800 km 2 . With the lowering of the sea level around 4200 BP, the water level of the bay fell to about 1 m below that of today, producing beach ridges, marine terraces, lagoons, and the expansion of mangroves along the bay's estuaries (Amador and Ponzi, 1974; Ruellan, 1974). This regressive sea level event was ob- served in the sediments from a drilling core obtained from Guanabara Bay next to Paquetá Island (Barreto et al., 2007; Barth et al., 2004). Using a pollen analysis, it was determined that the water level of the bay lowered progressively, starting in 5100 BP. The efuent river mar- gins were eroded and precipitated a strong deposition of damaged pol- len grains and spores. In order to supply new information obtained from palynological studies carried out in Guanabara Bay and along the coastal region of Rio de Janeiro state, the present study intends to not only recognize and explain the environmental history of this region during the Late Holocene, but also identify the anthropic inuences on it. 2. Study area The Jurujuba Sound is situated in the Niterói municipality on the eastern margin of Guanabara Bay along the Rio de Janeiro state coast Catena 126 (2015) 2027 Corresponding author at: Cintia Ferreira Barreto, Rua Cromita, 7, Jardim Piedade, Belford Roxo, Rio de Janeiro CEP 26183-830, Brasil. Tel.: +55 213022 1598. E-mail address: [email protected] (C.F. Barreto). http://dx.doi.org/10.1016/j.catena.2014.10.028 0341-8162/© 2014 Elsevier B.V. All rights reserved. Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena

Upload: ortrud-monika

Post on 05-Apr-2017

219 views

Category:

Documents


0 download

TRANSCRIPT

  • Catena 126 (2015) 2027

    Contents lists available at ScienceDirect

    Catena

    j ourna l homepage: www.e lsev ie r .com/ locate /catenaPalynological studies of Late Holocene Jurujuba Sound sediments(Guanabara Bay), Rio de Janeiro, southeast BrazilCintia Ferreira Barreto a,, Jos Antnio Baptista Neto b, Claudia Gutterres Vilela c, Ortrud Monika Barth d

    a Laboratrio de PaleoEcologia Tropica, Departamento de Geologia Marinha, Instituto de Geocincias, Universidade Federal Fluminense, Avenida Litornea s/n, 24210-340 Niteri, RJ, Brasilb LAGEMAR, Instituto de Geocincias, Universidade Federal Fluminense, Avenida Litornea s/n, 24210-340 Niteri, RJ, Brasilc Laboratrio de Anlise Micropaleontolgica - MicroCentro, Departamento de Geologia, Universidade Federal do Rio de Janeiro, Ilha do Fundo, 21949-900 Rio de Janeiro, RJ, Brasild Instituto Oswaldo Cruz, Fundao Oswaldo Cruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brasil Corresponding author at: Cintia Ferreira Barreto, RBelford Roxo, Rio de Janeiro CEP 26183-830, Brasil. Tel.: +

    E-mail address: [email protected] (C.F. Barre

    http://dx.doi.org/10.1016/j.catena.2014.10.0280341-8162/ 2014 Elsevier B.V. All rights reserved.a b s t r a c ta r t i c l e i n f oArticle history:Received 23 October 2014Accepted 27 October 2014Available online xxxx

    Keywords:Pollen analysisSedimentsGuanabara BayLate HolocenePalaeoenvironmentSea level variationsThe Late Holocene vegetation history and climate from southern (SE) Brazil have been reconstructed bymeans ofa pollen analysis of a 223 cm-long core from the central part of Jurujuba Sound (2255256S and 4306346W). Theanalysis showed that before 3520 yr BP (subzone Ia), tropical rainforest occupied extensive parts of theregion. However, from 3520 yr BP onwards, the forest reduced in size and there was a slight increase in pollenfrom hygrophyte plants, fern spores and algae. The higher sea level during this period favoured the expansionof these plants, as well as Botryococcus, in the flooded areas around the Sound. There was a reduction inpalynomorph concentrations at about 2820 yr BP (subzone Ib). This can probably be related to a regressiveevent of the relative sea level and the reduction of atmospheric precipitation during this period. This eventfavoured an increase in grassland formations, and pioneer forest elements seemed to settle in the open areas.The intensive human occupation in the region around Jurujuba Sound was clearly evident in the pollen recordnext to the core top (at zone II). The low percentage of tree pollen grains showed that the Atlantic rainforestwas significantly reduced in size, while there was an expressive increase in the herbaceous pollen that is associ-ated with the appearance of exotic taxa.

    2014 Elsevier B.V. All rights reserved.1. Introduction

    Palynological studies of Quaternary sediments have supplied im-portant information about the past environment along the Rio deJaneiro state coast in southeastern Brazil. These studies have contribut-ed answers to questions with respect to sea level variations, climatechange, and alterations to the natural vegetation that are related tointensive human activities during the Holocene (Barth et al., 2001,Barth et al., 2004; Coelho et al., 1999; Luz et al., 1999, 2011, 2006;Santos et al., 2000; Toledo et al., 1994).

    Relative sea level fluctuations along the eastern Brazilian coast, aselaborated on by Martin et al. (1993) and Suguio et al. (1985), revealtwo level events that were higher than those of today after the Maxi-mum Transgressive (5000 cal yr BP): one from 4300 to 3500 BP andthe other between 2700 and 2100 cal yr BP. Meanwhile, the relativesea level curves for the southern Brazilian coast provided by Anguloand Lessa (1997) suggest that, the sea level rates declined slightlycompared to the present day after the Maximum Transgressive.

    According to Amador (1997), the climatic oscillation events, whichwere related to sea level variations that occurred during the Pleistoceneua Cromita, 7, Jardim Piedade,55 213022 1598.to).and Holocene, were responsible for the origin and morphologicalevolution of Guanabara Bay. The Holocene Transgressive Maximumevent was responsible for expanding the boundaries of GuanabaraBay, reaching a measure of about 800 km2. With the lowering of thesea level around 4200 BP, the water level of the bay fell to about 1 mbelow that of today, producing beach ridges, marine terraces, lagoons,and the expansion of mangroves along the bay's estuaries (Amadorand Ponzi, 1974; Ruellan, 1974). This regressive sea level event was ob-served in the sediments from a drilling core obtained from GuanabaraBay next to Paquet Island (Barreto et al., 2007; Barth et al., 2004).Using a pollen analysis, it was determined that the water level of thebay lowered progressively, starting in 5100 BP. The effluent river mar-gins were eroded and precipitated a strong deposition of damaged pol-len grains and spores.

    In order to supply new information obtained from palynologicalstudies carried out in Guanabara Bay and along the coastal region ofRio de Janeiro state, the present study intends to not only recognizeand explain the environmental history of this region during the LateHolocene, but also identify the anthropic influences on it.

    2. Study area

    The Jurujuba Sound is situated in the Niteri municipality on theeastern margin of Guanabara Bay along the Rio de Janeiro state coast

    http://crossmark.crossref.org/dialog/?doi=10.1016/j.catena.2014.10.028&domain=pdfhttp://dx.doi.org/10.1016/j.catena.2014.10.028mailto:[email protected] imagehttp://dx.doi.org/10.1016/j.catena.2014.10.028Unlabelled imagehttp://www.sciencedirect.com/science/journal/03418162www.elsevier.com/locate/catena

  • 21C.F. Barreto et al. / Catena 126 (2015) 2027of Brazil (Lat. 22542256S and Long. 043050430730W; Fig. 1).Its link with the bay is made by the bar located between Ponta doMorro do Morcego and Boa Viagem island. The Sound's surface areais about 9 km2 and ranges in depth from 5 to 7 m at its entrance to3 4 m at the centre. The Cachoeiera and Icara rivers are responsiblefor fluvial inflows to the Sound beyond some small streams that havebeen transformed into sewer channels as a consequence of increasinghuman occupation (Baptista Neto et al., 1999, 2000, 2005). Accordingto Baptista Neto et al. (1999), the sedimentation of Jurujuba Sound ischaracteristic of the rapid accumulation of heterogeneous sedimentsrich in the kaolinite/illite clays that are the result of urbanization. A con-siderable part of the water catchment of the Sound originates in barerocks from regolith protectives covered by secondary rainforest. Partof the regolith was removed during the Late Pleistocene as a result ofthe fluvial erosion associated with a regional lowering of the sea level.In addition to environmental modifications driven by climate change,the area has also been subject to anthropogenic influences that beganwith selective logging soon after the Europeans arrived in the 16thcentury. Such influences continued through different phases of cultiva-tion and have culminated in recent urbanization. The latter can belinked directly to the 1974 construction of a bridge connecting Niteriwith Rio de Janeiro.

    The climate of the Niteri region is tropical and humid, with a well-defined rainy season in the summer (DecemberApril), dry weather inthe winter (JuneAugust), and average precipitation of 120 mm(Amador, 1997; Barbiri and Coe-Neto, 1996).

    A dense Ombrophylous forest (tropical rainforest) characterizesthe vegetation in the Guanabara Bay region. Considered to be one ofthe richest terrestrial areas, the Atlantic forest covered almost all ofthe territory of Guanabara at the beginning of European settlement.It is now extremely broken up and reduced to discontinuous frag-ments that are mainly located on the mountain slopes and in forest re-serves (Kurtz and Arajo, 2000; Radambrasil, 1983; Veloso et al., 1991).Barreto et al. (2012), using pollen, analysed 61 surface sedimentFig. 1.Map of study area showingsamples in Guanabara Bay, and observed that grassland taxa (the mostimportant being Poaceae, followed by Amaranthus/Chenopodiaceae,Borreria densiflora and Chamaesyce) predominated in almost all ofthe samples. The Ombrophylous forest vegetation taxa had the greatestrichness of pollen types (53 pollen types), with high frequencies ofAlchornea (Euphorbiaceae), Arecaceae, Celtis (Ulmaceae), Hedyosmum(Chloranthaceae), Lecythidaceae, Piper (Piperaceae), Rapanea(Myrsinaceae), Sebastiania (Euphorbiaceae), and Trema micrantha(Ulmaceae). The dominance of grassland taxa reflects changes in theoriginal flora. The permanent presence of Ombrophylous forest pollengrains in all of the analysed samples should confirm the incidence ofthe remaining forest segments in the lowlands, as well as hillside andMontane forest preservation, with the maintenance of mangrove andhydrophyte assemblages.3. Material and methods

    A core (T13) of 223 cm in length was collected in the central part ofJurujuba Sound (2255256S and 4306346W) using the percussionmethod (Fig. 1). Two samples were taken from the core for radiocarbondating and submitted to the BETA Analytic Radiocarbon Dating Labora-tory in Florida, United States of America (Fig. 2). The dateswere calibrat-ed using CALIB 5 (Stuiver et al., 2005, Table 1). For the pollen analysis,the corewas sampled in intervals of 10 cm. The sampleswere chemical-ly treated according to the standard methodology for Quaternary sedi-ments proposed by Faegri and Iversen (1989). This includes: 10% HCLfor the elimination of carbonates; 40%HF for the elimination of silicates;acetolysis; and the recovery of palynomorphs using a CL2 Zn gradient(density = 2). To calculate the concentrations of the palynomorphs,two tablets of Lycopodium clavatum spores (about 11,670 spores pertablet) were introduced to each sample (Stockmarr, 1971). A minimumof three slides were prepared in medium glycerine jelly and at least 300pollen grains were counted for each sample.the location of core analysed.

    image of Fig.1

  • Fig. 2. Location of core analysed within of shematic diagram illustrating nearshore stratigraphy (modified from Baptista Neto et al., 1999).

    22 C.F. Barreto et al. / Catena 126 (2015) 2027Pollen identificationwas based upon pollen catalogues (Barth, 1962,1964, 1972, 1976; Barth and Barbosa, 1972a, 1972b, 1975a, 1975b; Boveand Barth, 1992; Barth and Costa, 1993, Barros and Barth 1999, Luzand Barth, 2000; Hooghiemstra, 1984; Roubik and Moreno, 1991), spe-cific papers (Behling, 1995; Garcia, 1997, 1998; Lorscheitter et al., 1998,1999), and comparisons with the reference pollen collection of thePalynology Laboratory, Federal University of Rio de Janeiro (UFRJ).

    The palynomorph counts were expressed as percentages and con-centrations. The pollen sum for the percentage calculations includesOmbrophylous forest taxa, mountain forest, grassland formations,hygrophytes, wide destruction, and exotic genera. It excludes fernspores, foraminiferal lignings, dinoflagellates and algae. The soft-ware Tilia, Tilia-graph and CONISS (Grimm, 1987)were used for the sta-tistical analyses of the palynological data obtained. The identifiedpalynomorphs in the samples were grouped according to the respectivetypes of vegetation, and the classification of the vegetation used was asestablished by Veloso et al. (1991).4. Results

    4.1. Stratigraphy and radiocarbon age

    The sediment core was characterized by two distinct layers. Fromthe base up to a depth of 64 cm was compact mud with rare presencesof biodebris, while the top of the corewas composed of recentmudwithplan-parallel laminations (Fig. 1). Fig. 2 modified from Baptista Netoet al. (1999). The radiocarbon dates obtained by the AMS method arepresented in Table 1.4.2. Pollen data

    The pollen diagrams of the sediment core (Figs. 3 to 5) reveal themost abundant pollen and spores out of the 114 taxa identified, andare grouped according to distinct environments (Table 2). Based onTable 1Radiocarbon dates for the Jurujuba Sound core.

    Depth(cm)

    Laboratorycode

    Dated age(14C age years BP)

    Age range, 2(cal yr BP)

    Analysis

    152 Beta-230982 2820 40 2855 (27662958) AMS202 Beta-214370 3520 50 3700 (36983868) AMSchanges in the pollen assemblages, and as illustrated by a CONISS clus-ter analysis, three pollen zones are recognized.4.2.1. Zone I (212155 cm core interval; six samples)Zone I is marked by a high representation of pollen types of

    Ombrophylous forest (about 63%, Fig. 3) that is mainly characterizedby Alchornea (720%), Arecaceae (816%), Celtis (57%), Hedyosmum(15%), Lecythis (415%), Myrcine (13%), Sebastiania (24%) andT. micrantha (24%, Fig. 5). Other Ombrophylous forest taxa, such asAnadenanthera, Arrabidaea, Astronium, Ilex, Lecythidaceae, Meliaceae,Piper and Tapirira, are registered in low percentages (less than 2%,Fig. 5). A slight decrease in the Ombrophylous forest percentages from63 to 48% is observed next to the base (at a depth of 202 cm, Fig. 4).Podocarpus lambertii and Drimys brasiliensis of the mountain forestvegetation are uncommon, and grassland formation pollens are alsopresent in low amounts (less than 9%). The pollen of hygrophyteplants is present in low percentages (less than 10%), except at a depthof 202 cm, where this figure rises to 21% (Fig. 4). Pollen types withlarge distributions, such as Asteraceae, Euphorbiaceae, Combretum/Melastomataceae and Myrtaceae, are present at a 2% frequency(Fig. 5). Exotic genera are absent in this zone. Fern spores are presentin high percentages at the base and the top of the zone. Foraminiferallignings and Dinoflagellates are rare (less than 1%), while colonies ofthe Botryococcus alga are more common (3%; Fig. 4).

    Total pollen and spore concentrations are high in this zone (about56,000 palynomorphs/g; Fig. 4).4.2.2. Zone II (15565 cm core interval; nine samples)Pollen grains of the Ombrophylous forest vegetation are domi-

    nant (5770%, Fig. 4), mainly due to the high frequency of theAlchornea,Arecaceae, Celtis, Hedyosmum, Lecythis, Myrcine, Sebastiania andT. micrantha pollen types (Fig. 5). Grassland formation pollen percent-ages remain low (7%, Fig. 4), but are slightly higher at the base andthe top of this zone, and at a depth of 102 cm (Fig. 4). Poaceae, Diodia,Brassicaceae, and Amaranthus/Chenopodiaceae pollen types of grass-land formation are responsible for this increase (Fig. 5). The pollen ofhygrophytes is also found in low percentages (less than 5%), and is rep-resented by Cyperaceae, Scoparia and Typha (Figs. 3 and 4). Fern sporesare present at a higher frequency at a depth of 132 cm(maximum124%)and at the end of this zone. The foraminiferal lignings and colonies ofBotryococcus are uncommon. Dinoflagellates only occur at the top ofthis zone (Fig. 4).

    image of Fig.2

  • Fig. 3. Pollen total percentage palynodiagram from Jurujuba Sound core, including the record of pollen total concentration.

    23C.F. Barreto et al. / Catena 126 (2015) 2027The total pollen and spore concentrations increased in this zone,reaching about 149,000 palynomorphs/g at a core depth of 132 cm(Fig. 4).

    4.2.3. Zone III (650 cm core interval; five samples)The base of this zone is characterized by low representations of

    Ombrophylous forest pollen (mainly due to the low values of Alchornea,Arecaceae, Celtis, Hedyosmum, Lecythis and Sebastiania; Fig. 5) and asignificant increase in grassland formation taxa from 11 to 40%,representing its highest percentages (Fig. 4). Poaceae is the most im-portant taxa (929%), followed by the Amaranthus/Chenopodiaceae(less than 13%), B. densiflora (02%) and Brassicaceae (02%) types(Fig. 4). Exotic genera of Casuarina, Eucalyptus and Pinus occur for thefirst time in this core (Fig. 5). The hygrophytes remain in relativelylow percentages. The fern spores are expressive (they increase to 61%next to the base of this zone), only decreasing next to the top of thiszone (32 cm depth to 17%). Foraminiferal lignings are present in lowpercentages (1%). Dinoflagellates and colonies of Botryococcus are rare,occurring only in the base sediments of this zone (Fig. 4).

    The total pollen and spore concentrations decreased significantly inthis zone from 105,445 to 30,147 palynomorphs/g (Fig. 4).

    5. Discussion

    5.1. Environmental reconstruction

    The pollen data obtained during the analysis of the Jurujuba Soundcore revealed the significant presence of the pollen types that are repre-sentative of tropical rainforest circa 3520 yr BP, suggesting that thisvegetation occupied extensive regions of the Sound and probably theGuanabara Bay hydrographic basin, covering the hillsides of the coastalmountain ranges, the alluvial plain and its countless islands (Zone I,Figs. 3 and 4). From 3520 yr BP, it was possible to observe a changein the pollen record. The forest pollen types decreased in number,while the pollen of hygrophyte plants, fern spores and algae (mainlyBotryococcus) increased slightly (Zone I, Fig. 4). According to Amadorand Ponzi (1974), when it comes to the data obtained with the sealevel variation curve of the Brazilian coast, this period correspondswith the transgressive interval, with the sea level of 1.5 m higher thanthe present day. This phase construed a new coastal line, higher upthan the current one, and a fossil beach system in the Guanabara Bayregion. The high sea level of this period affected and probably reducedthe forest vegetation around the Sound, favouring the expansion ofhygrophyte plants, fern spores and Botryococcus in the flooded areasof the alluvial plains of the Icara and Cachoeira rivers. This transgressiveevent was also registered in Lagoa de Cima, which is located in thenorthern region of Rio de Janeiro state (Barth et al., 2001, Luz 1997,2003, Luz et al., 1999), and in the Poo das Antas Forest Reserve(Coelho et al., 2008) that is located in themiddle region of Rio de Janeirostate. The increase in the humidity related to the elevation of the sealevel, which occurred around 3500 yr BP, favoured the expansion ofhygrophyte and aquatic plants in theflooded areas, affecting the vegeta-tion of these regions.

    Between about 3380 and 2960 BP (Zone I), the increase inOmbrophylous forest taxa, followed by a reduction of grassland andhygrophyte plants, suggests that the forest returned to occupy the sur-rounding areas of the Sound. The expansion of the forest is confirmed bythe high frequency of forest pioneer types.

    The low total palynomorph concentrations observed about 2960and 2820 yr BP (next to the base of Zone II), which are related to theabrupt fall in the frequency of fern spores, Ombrophylous forest andgrassland, increased, suggesting a warmer and less humid climaticphase. This may be a response to both a regressive events of the relativesea level and the reduction of atmospheric precipitation documentedby Martin (2003) at about 2800 yr BP (cal. 2600 yr BP). This regressivesea level event was also registered in the sediments of Lagoa doCampelo in the northern region of Rio de Janeiro state, suggestingprogradation of the mouth of the Paraba do Sul River (Luz et al.,2011). Dryer climatic conditions favoured thedevelopment of the grass-land formations and pioneer forest elements (Fig. 4). After this event,palynomorph concentrations increased, indicating that the environ-mental conditions became more humid or there was a lower sedimentaccumulation rate.

    The intensive human occupation in the region of Guanabara,mainly around the Jurujuba Sound, was evident in the pollen reg-ister next to the core top (Zone III). The decrease in tree pollengrains (Ombrophylous forest) such as Alchornea, Arecaceae, Celtis,Hedyosmum, Lecythis and Sebastiania showed that theAtlantic rainforestwas strongly reduced in the study region during this period. It was pos-sible to observe an expressive increase in the herbaceous pollen fromthe grassland formations, which is associated with the appearance ofexotic taxa like Casuarina, Eucalyptus (Andrade, 1939) and Pinus

    image of Fig.3

  • Fig. 4. Pollen types percentage palynodiagram agrouped into the Ombrophilous forest, mountain forest and grassland formations.

    24C.F.Barreto

    etal./Catena126

    (2015)20

    27

    image of Fig.4

  • Fig. 5. Fig. 4: Pollen types percentage palynodiagram agrouped into the higrophytes, wide distribution, exotic genera and fern spores.

    25C.F.Barreto

    etal./Catena126

    (2015)20

    27

    image of Fig.5

  • Table 2List of identified taxa from the Jurujuba Sound core.

    Ombrophilous forest Alchornea (Euphorbiaceae), Anadenanthera (Mimosaceae), Arrabidaea (Bignoniaceae), Arecaceae, Astronium (Anacardiaceae), Casearia(Flacourtiaceae), Cecropia (Moraceae), Cedrela (Meliaceae), Celtis (Ulmaceae), Clethra (Clethraceae), Convolvulaceae, Cordia (Boraginaceae),Cupania (Sapindaceae), Dydimopanax (Araliaceae), Erythrina (Sapindaceae), Hedyosmum (Chloranthaceae), Ilex (Aquifoliaceae), Jacaranda(Bignoniaceae), Lecythis (Lecythidaceae), Lecythidaceae, Machaerium (Fabaceae), Mansoa (Bignoniaceae), Meliaceae, Menispermaceae, Merremia(Convolvulaceae), Mimosa caesalpiniaefolia (Mimosaceae), Mimosa scabrella (Mimosaceae), Myrcine (Myrcinaceae), Paullinia (Sapindaceae),Pera obovata (Euphorbiaceae), Physalis (Solanaceae), Phytolacca revinoides (Phytolaccaceae), Phytolacca (Phytolaccaceae), Piper (Piperaceae),Pilocarpus (Rutaceae), Pouteria (Sapotaceae), Schinus (Anacardiaceae), Sebastiania (Euphorbiaceae), Serjania (Sapindaceae), Solanum (Solanaceae),Struthanthus (Loranthaceae), Symplocos (Symplocaceae), Tapirira (Anacardiaceae), Tetrapteris (Malpighiaceae), Trema micrantha (Ulmaceae),Trichilia (Melliaceae), Vitex (Verbenaceae), Zanthoxylum (Rutaceae), Weinmannia (Cunoniaceae).

    Mountain forest Drymis brasilienses (Winteraceae), Podocarpus lambertii (Podocarpaceae), Podocarpus (Podocarpaceae).Grassland formations Alternanthera (Amaranthaceae), Amaranthus/Chenopodiaceae, Apiaceae/Umbelliferae, Borreria densiflora (Rubiaceae), Borreria latifolia (Rubiaceae),

    Brassicaceae, Chamasyce (Euphorbiaceae), Desmodium (Fabaceae), Diodia (Fabaceae), Eryngium (Apiaceae), Gomphrena (Amaranthaceae), Hyptis(Lamiaceae), Luehea (Tiliaceae), Mimosa verrugosa (Mimosaceae), Phyllanthus (Euphobiaceae), Poaceae, Sapium (Euphorbiaceae), Spermacoce(Rubiaceae).

    Hygrophytes Bacopa (Scrophulariaceae), Cleome (Capparaceae), Cyperaceae, Ludwigia (Onagraceae), Myriophillum (Haloragaceae), Onagraceae, Oxalidaceae,Pachira aquatica (Bombacaceae), Scoparia (Scrophulariaceae), Scrophulariaceae, Typha (Typhaceae).

    Wide distribution Anacardium (Anacardiaceae), Anacardiaceae, Apocynaceae, Asteraceae, Bignoniaceae, Bromeliaceae, Caesalpiniaceae, Cassia (Caesalpiniaceae),Croton (Euphorbiaceae,) Cucurbitaceae, Euphorbiaceae, Fabaceae, Loranthaceae, Malpighiaceae, Melastomaceae/Combretaceae, Mimosaceae,Moraceae, Myrtaceae, Polygalaceae, Protium (Buseraceae), Rubiaceae, Rutaceae, Sapotaceae, Solanaceae, Tabebuia (Bignoniaceae), Valeriana(Valerianaceae).

    Exotic genera Casuarina (Casuarinaceae), Eucalyptus (Myrtaceae), Pinus (Pinaceae).Fern spores Anaemia (Schizaeaceae) Asplenium (Polypodiaceae) Blechnum (Polypodiaceae), Monolete espinhoso, Trilete espinhoso, Trilete liso, Trilete

    reticulado, Trilete verrugoso.

    PalynoforaminiferalDinoflagellates

    Algae Cisto de alga, Botriococcus (Alga), Pseudoschizea (insertae sedis).

    26 C.F. Barreto et al. / Catena 126 (2015) 2027(Ahrens, 1987), which were introduced by Europeans. The reduction ofthe Atlantic rainforest and the expansion of the grassland formationsmay be related to the start of both the process of European colonizerssettling in the region and the agricultural cycles around GuanabaraBay advancing towards the low mountain ranges, resulting in largedeforested areas. According to Amador (1997), 74% of the Guanabararegion was covered by the exuberant continuous Atlantic forest in1500 AD, when the Europeans arrived there. Currently, only 16% ofthe original forest persists. These areas are mainly located in rough to-pographic mountain slopes and in units of environmental conservation(Kurtz and Arajo, 2000). The impact on the environment of humanshas also been documented by pollen analyses of sediments from: theRio de Janeiro state coast in southeastern Brazil, Lagoa de Cima in thefluminense north region (Luz et al., 1999, Luz 2003), Sepetiba Bay inthe metropolitan region (Coelho et al., 1999 2002, Santos et al., 2000),Lagoa do Campelo in the fluminense north region (Luz et al., 2006),and Poo das Antas in the coastal central area (Coelho et al., 2008). Inthe Guanabara Bay region, the dominance of grassland taxa reflectsthe anthropic action that caused changes in the original flora (Barretoet al., 2012).

    6. Conclusion

    In summary, sea level oscillations had a major influence on the veg-etation physiognomy around Guanabara Bay in the Late Holocene peri-od. The tropical rainforest was dominant early on, was then partiallydisplaced by grassland formations, before returning strongly and finallybeing reduced by human activities after European settlement. Quantita-tive and qualitative pollen and spore analyses of ground sediments andof a sediment core obtained in Guanabara Bay support this evolutionand present detailed aspects of the successive flora developmentaround the bay.

    Acknowledgements

    This study was sponsored by the Fundao de Amparo Pesquisado Estado do Rio de Janeiro (Faperj), Fundao coordenao deAperfeioamento de Pessoal de Nvel Superior (CAPES) project number(E-26/ 103.185/2012) and by the Universidade Federal Fluminense.References

    Ahrens, S., 1987. A concepo de regimes de manejo para plantaes de Pinus spp.EMBRAPA CNPF, No Brasil (23 pp.).

    Amador, E.S., 1997. Baa de Guanabara e Ecossistemas Perifricos: Homem e Natureza.Edio do Autor, Rio de Janeiro (539 pp.).

    Amador, E.S. And, Ponzi, V.R.A., 1974. Estratigrafia e sedimentao dos depsitos flvio-marinhos da orla da Baa de Guanabara. An. Acad. Bras. Cienc. 46, 34.

    Andrade, E.N. 1939. O Eucalipto. So Paulo. Ed. Chcaras e Quintais. 121p.Angulo, R.J., Lessa, G., 1997. The Brazilian sea level curves: a critical reviewwith emphasis

    on the curves from Paranagu and Canania regions. Maryne Geol. 140, 141166.Baptista Neto, J.A., Smith, B.J., Mcalliste, J.J., 1999. Concentraes de metais pesados em

    sedimentos de escoamento superficial urbano: implicaes quanto qualidadeambiental de Niteri, RJ, Brasil. An. Acad. Bras. Cienc. 4, 981995.

    Baptista Neto, J.A., Smith, B.J., McAllister, J.J., 2000. Heavy metal concentrations in surfacesediments in a nearshore environment, Jurujuba Sound, southeast Brazil. Environ.Pollut. 109, 19.

    Baptista Neto, J.A., Smith Bernard, J., Mcallister John, J., da Silva, M.A.M., 2005. Fontes eTransporte de metais pesados para a Enseada de Jurujuba (Baa de Gunanabara)SE - Brasil. Revista Tamoios 2, 616.

    Barbire, E.B., Coe-Neto, R., 1996. Distribuio espacial da pluviosidade na vertenteatlntica da Serra do Mar no trecho Niteri - Maca. Symposium InternationalEnviromental in Tropic Countries, 2, Cartagena. Anais. UFF, Departamento deGeoqumica, Niteri (3 p.).

    Barreto, C.F., Luz, C.F.P., Baptista-Neto, J.A., Vilela, C.G., Barth, O.M., 2007. Palynologicalanalysis of a sediment core obtained in Guanabara Bay, Rio de Janeiro, Brazil. An.Acad. Bras. Cienc. 79 (2), 223234.

    Barreto, C.F., Vilela, C.G., Baptista Neto, J.A., Barth, M.O., 2012. Spatial distribution of pollengrains and spores in surface sediments of Guanabara Bay, Rio de Janeiro, Brazil. An.Acad. Bras. Cincias (Online) 84, 627643.

    Barth, O.M., 1962. Catlogo sistemtico dos plens das plantas arbreas do BrasilMeridional - Parte Complementar: Coniferales. Mem. Inst. Oswaldo Cruz 60 (2),199208.

    Barth, O.M., 1964. Catlogo sistemtico dos plens das plantas arbreas do BrasilMeridional - V. Leguminosae: Papilionatae. Mem. Inst. Oswaldo Cruz 62, 95123.

    Barth, O.M., 1972. Catlogo sistemtico dos plens das plantas arbreas do BrasilMeridional -XI. Loranthaceae e Olacaceae. Mem. Inst. Oswaldo Cruz 70 (1), 4967.

    Barth, O.M., 1976. Catlogo sistemtico dos plens das plantas arbreas do BrasilMeridional - XXIII. Moraceae. Mem. Inst. Oswaldo Cruz 74 (34), 295309.

    Barth, O.M., Barbosa, A.F., 1972a. Catlogo sistemtico dos polens das plantas arbreas doBrasil Meridional - XIV. Nyctaginaceae e Phytolaccaceae. Mem. Inst. Oswaldo Cruz 70(3), 241267.

    Barth, O.M., Barbosa, A.F., 1972b. Catlogo sistemtico dos plens das plantas arbreas doBrasil Meridional - XV. Myrtaceae. Mem. Inst. Oswaldo Cruz 70 (4), 467498.

    Barth, O.M., Barbosa, A.F., 1975a. Catlogo sistemtico dos polens das plantas arbreas doBrasil Meridional - XIX. Melastomataaceae.Mem. Inst. Oswaldo Cruz 73 (12), 3960.

    Barth, O.M., Barbosa, A.F., 1975b. Catlogo sistemtico dos plens das plantas arbreas doBrasil Meridional - XX. Chloranthaceae e Piperaceae. Mem. Inst. Oswaldo Cruz 73(12), 101108.

    Barth, O.M., Costa, K.M.R., 1993. Catlogo sistemtico do plen das plantas arbreas doBrasil Meridional - XXVI. Aquifoliaceae. Rev. Bras. Biol. 53 (2), 305309.

    http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0005http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0005http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0010http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0010http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0015http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0015http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0020http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0020http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0025http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0025http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0025http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0030http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0030http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0030http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9995http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9995http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9995http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0040http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0040http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0040http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0040http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0045http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0045http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0045http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0050http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0050http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0050http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0055http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0055http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0055http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0060http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0060http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0065http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0065http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0070http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0070http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0075http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0075http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0075http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0080http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0080http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0085http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0085http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0090http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0090http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0090http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0095http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0095

  • 27C.F. Barreto et al. / Catena 126 (2015) 2027Barth, O.M., Luz, C.F.P., Toledo, M.B., Barros, M.A., Silva, C.G., 2001. Palynological data fromquaternary deposits of two lakes in the northern region of the State of Rio de Janeiro.In: Goodman, D.K., Clarke, R.T. (Eds.), Proceedings of the IX Palynological Congress,Houston, Texas, USA, 1996. American Association of Stratigraphic Palynologists Foun-dation, pp. 443450.

    Barth, O.M., Barreto, C.F., Coelho, L.G., Luz, C.F., 2004. Pollen record and paleoenvironmentof a 4210 years BP old sediment in the Bay of Guanabara, Rio de Janeiro, Brasil. An.Acad. Bras. Cienc. 76 (3), 549551.

    Behling, H., 1995. Investigations into the late Pleistocene and Holocene history of vegeta-tion and climate in Santa Catarina (Brazil). Veg. Hist. Archaeobot. 4, 127152.

    Bove, C.P., Barth, O.M., 1992. Catlogo sistemtico do plen das plantas arbreas do BrasilMeridional - XXV. Bignoniaceae. Rev. Bras. Biol. 52 (2), 283292.

    Coelho, L.G., Barth, O.M., Chaves, H.A.F., 1999. O registro palinolgico das mudanas devegetao na regio da Baa de Sepetiba, Rio de Janeiro, nos ltimos 1000 anos.Leandra 14, 5163.

    Coelho, L.G., Barth, O.M., Chaves, H.A.F., 2002. Palynologycal records of environmentalchanges in Guaratiba Mangrove Area, southeast Brazil, in the last 6000 years B.P.Pesq. Geocienc 29 (1), 7179.

    Coelho, L.G., Barth, O.M., Araujo, D.S.D., 2008. Pollen analysis of Holocene sediments fromthe Poo das antas National Biological Reserve, Silva Jardim, Rio de Janeiro, Brazil. An.Acad. Bras. Cienc. 80, 531541.

    Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis, In: Faegri, K., Kaland, P.E.,Krzywinski, K. (Eds.), Fourth ed. John Wiley & Sons, New York (328 pp.).

    Garcia,M.J., 1997. Palinologia de turfeiras quaternrias domdio vale do rio Paraiba do Sul,Estado de So Paulo, Brasil. Parte 1: fungos, algas, Bryophyta e Pteridophyta. Revista daUniversidade de Guarulhos Geocincias 2 (nmero especial), pp. 148165.

    Garcia, M.J., 1998. Palinologia de turfeiras quaternrias do mdio vale do rio Paraba doSul, Estado de So Paulo, Brasil. Parte 2: gymnospermae e magnoliophyta. Revistada Universidade de Guarulhos Geocincias 3 (6), pp. 148165.

    Grimm, E.C., 1987. CONISS: a 77 program for stratigraphically constrained cluster analysisby the method of incremental sum of squares. Comput. Geosci. 2, 1335.

    Hooghiemstra, H., 1984. Vegetational and climatic history of the high plain of Bogot,Colombia: a continuous record of the last 3.5 million years. In: Van Der Hammen,T. (Ed.), The Quaternary of Colombia 10. J. Cramer, Amsterdam, p. 368.

    Kurtz, B.C., Arajo, D.S.D. de, 2000. Composio florstica e estrutura do componentearbreo de um trecho de Mata Atlntica na Estao Ecolgica Estadual do Paraso,Cachoeiras de Macacu, Rio de Janeiro, Brasil. Rodrigusia 51 (78/115), pp. 69112.

    Lorscheitter, M.L., Ashraf, A.R., Bueno, R.M., Mosbrugger, V., 1998. Pteridophyte spores ofRio Grande do Sul flora, Brazil, part I. Palaeontographica, Abt. B 246(1-3), pp. 1113.

    Lorscheitter, M.L., Ashraf, A.R.,Windisch, P.G.,Mosbrugger, V., 1999. Pteridophyte spores ofRio Grande do Sul flora, Brazil, part II. Palaeontographica, Abt. B 251(4-6), pp. 71235.

    Luz, C.F.P., Barth, O.M., 2000. Palinomorfos indicadores de tipos de vegetao emsedimentos holocnicos da Lagoa de Cima, norte do Estado do Rio de Janeiro, Brasil Dicotyledoneae. Leandra (UFRJ). 15, pp. 1134.Luz, C.F.P., Barth, O.M., Martin, L., 1999. Evoluo das florestas Tropical Estacional eOmbrfila Densa durante o holoceno mdio na regio norte do Rio de Janeiro,baseada em palinologia. Revista da Universidade de Guarulhos-Geocincias 4 (6),7484.

    Luz, C.F.P., Barth, O.M., Silva, C.G., 2006. Dinmica temporal na Lagoa do Campelo, regionorte do estado do Rio de Janeiro, baseada em estudos palinolgicos. Rev. Bras.Paleontol. 9, 127136.

    Luz, C.F.P., Barth, O.M., Martin Silva, C.G., Turcq, B.J., 2011. Palynological evidence of thereplacement of the hygrophilous forest by field vegetation during the last7000 years B.P. in the northern coast of Rio de Janeiro, Brazil. An. Acad. Bras. Cienc.83 (3), 939951.

    Luz, C.F.P., 1997. Palinologia dos sedimentos holocnicos da Lagoa de Cima, Municpio deCampos, norte do Estado do Rio de Janeiro. Dissertao de Mestrado, IG/UFRJ. Rio deJaneiro, RJ. Brasil 204.

    Luz, C.F.P., 2003. Os registros palinolgicos como sensores das dinmicas da vegetao noHoloceno da regio norte do Estado do Rio de Janeiro (Brasil). Tese de Doutorado,Departamento de Geologia, IGEO/UFRJ. Rio de Janeiro, Brasil 168.

    Martin, L., 2003. Holocene Sea-Level History Along Eastern-Southeastern Brazil. Anuriodo Instituto de Geocincias/UFRJ 26, pp. 1324.

    Martin, L., Fournier, M., Mourguiart, P., Siefeddine, A., Turcq, B., 1993. Southern oscillationsignal in South American palaeoclimatic data of the last 7000 years. Quat. Res. 39,338346.

    Radambrasil, 1983. folhas SF. 23/24, Rio de Janeiro/Vitria; geologia, geomorfologia,pedologia, vegetao e uso potencial da terra. MME, Rio de Janeiro ((sec. ger.) 32:780 pp.).

    Roubik, D.W., Moreno, J.E., 1991. Pollen and spores of Barro Colorado Island. St. Louis,Missouri Botanical Garden. Monographs in Systematic Botany 36, 270.

    Ruellan, F., 1974. Evoluo geomorfolgica da Baa de Guanabara e das regies vizinhas.Rev. Bras. Geogr. 6 (4), 445508.

    Santos, D.S., Barth, O.M., Chaves, H.A.F., 2000. Mudanas na vegetao do manguezal deGuaratiba, Estado do Rio de Janeiro, nos ltimos 6.000 anos, baseado em palinologia.Revista da Universidade de Guarulhos - Geocincias 5(n. especial), pp. 156159.

    Stockmarr, J., 1971. Tablets with espores used in absolute pollen analysis. Pollen Spores13, 615621.

    Stuiver, M., Reimer, P.J., Reimer, R.W., 2005. CALIB 5.0.WWW.program and documentation.Suguio, K., Martin, L., Bittencourt, A.C., Bittencourt, A.C.S.P., Dominguez, J.M.L., Flexor, J.-M.,

    De Azevedo, A.E.G., 1985. Flutuaes do nvel do mar durante o Quaternrio superiorao longo do litoral brasileiro e suas aplicaes na sedimentao costeira. Rev. Bras.Geosci. 15, 273286.

    Toledo,M.B., Barros,M.A., Barth, O.M., 1994. Contribuio a palinologia da lagoa Salgada, Riode Janeiro. VIII Reunio de Paleobotnica e Palinlogos, So Paulo. Resumos (81 p.).

    Veloso, H.P., Rangel Filho, L.R., Lima, J.C.A., 1991. Classificao da vegetao brasileiraadaptada a um sistema universal. Publicao Instituto Brasileiro de Geografia, Riode Janeiro (124 pp.).

    http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0100http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0100http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0100http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0100http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0100http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0105http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0105http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0105http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0110http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0110http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0115http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0115http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0120http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0120http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0120http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9915http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9915http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9915http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0125http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0125http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0125http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0130http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0130http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0135http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0135http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0135http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0140http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0140http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0140http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0145http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0145http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0150http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0150http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0150http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0155http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0155http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0155http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0160http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0160http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0165http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0165http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0170http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0170http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0170http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0175http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0175http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0175http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0175http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0180http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0180http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0180http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0185http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0185http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0185http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0185http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9920http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9920http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9920http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9925http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9925http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9925http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0190http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0190http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0195http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0195http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0195http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0200http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0200http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0200http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9910http://refhub.elsevier.com/S0341-8162(14)00311-7/rf9910http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0210http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0210http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0215http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0215http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0215http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0220http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0220http://WWW.program%20and%20documentationhttp://refhub.elsevier.com/S0341-8162(14)00311-7/rf0230http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0230http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0230http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0235http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0235http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0240http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0240http://refhub.elsevier.com/S0341-8162(14)00311-7/rf0240

    Palynological studies of Late Holocene Jurujuba Sound sediments (Guanabara Bay), Rio de Janeiro, southeast Brazil1. Introduction2. Study area3. Material and methods4. Results4.1. Stratigraphy and radiocarbon age4.2. Pollen data4.2.1. Zone I (212155cm core interval; six samples)4.2.2. Zone II (15565cm core interval; nine samples)4.2.3. Zone III (650cm core interval; five samples)

    5. Discussion5.1. Environmental reconstruction

    6. ConclusionAcknowledgementsReferences