page 1 © 1988-2006 j.paul robinson, purdue university bms 602 lecture 9.ppt bms 631 - lecture 10x...

36
Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue University Office: 494 0757 Fax 494 0517 email; [email protected] WEB http://www.cyto.purdue.edu Multiparameter Data Analysis 3 rd Ed. Shapiro p 207-214 J. Paul Robinson Professor of Immunopharmacology Professor of Biomedical Engineering Purdue University

Post on 19-Dec-2015

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 1

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

BMS 631 - LECTURE 10xFlow Cytometry: Theory

Bindley Bioscience CenterPurdue UniversityOffice: 494 0757Fax 494 0517email; [email protected]

WEB http://www.cyto.purdue.edu

Multiparameter Data Analysis3rd Ed. Shapiro p 207-214

J. Paul RobinsonProfessor of ImmunopharmacologyProfessor of Biomedical EngineeringPurdue University

Page 2: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 2

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Data Analysis

• Gating• Data displays

– histogram– dot plot– isometric display– contour plot– chromatic (color) plots– 3 D projection

Page 3: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 3© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Gating

•Real-time gating vs. software gating•Establishing regions•Gating strategies•Quadrant analysis•Complex or Boolean gates•Back gating

Page 4: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 4© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Real-Time vs. Software Real-Time vs. Software GatingGating

Real-time or live gating:-restrict the data that will be accepted by a computer (some characteristic must be metbefore data is stored)

Software or analysis gating:-excludes certain stored data from a particular analysis procedure

Page 5: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 5© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Establishing RegionsEstablishing Regions•Establishing regions:

-objective or subjective?-training/skill/practice

•Possible shapes: -rectangles-ellipses-free-hand-quadrants

•Statistics

Page 6: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 6

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Region 1 establishedRegion 1 established Gated on Region 1Gated on Region 1

Using GatesUsing Gates

log

PE

Page 7: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 7

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Quadrant AnalysisQuadrant Analysis

log

PE

(+ +)( - +)

(+ -)(- -)

Page 8: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 8

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Drawing Regions: Sample Preparation

Sample Quality

B.subtilisB.subtilis spores spores B.subtilis B.subtilis veg. + spores veg. + spores

Debris

Spores Spores

Debris

Vegetative

Data removedFrom analysis

Page 9: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 9

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Complex or Boolean GatingWith two overlapping regions, several options are available:

Page 10: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 10

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Boolean GatingNot Region 1:Not Region 1:

Page 11: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 11

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Boolean GatingNot Region 2:Not Region 2:

Page 12: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 12

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Boolean GatingRegion 1 or Region 2:Region 1 or Region 2:

Page 13: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 13

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Boolean Gating

Region 1 and Region 2:Region 1 and Region 2:

Page 14: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 14

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Not (Region1 and Region 2):Not (Region1 and Region 2):

Boolean Gating

Page 15: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 15

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

0 200 400 600 800 1000

0 2

00 4

00 6

00 8

0010

00

Side Scatter Projection

Forw

ard

Sca

tter P

roje

ctio

n

Light Scatter Gating

Forward Scatter Projection

90 Degree Scatter

Neutrophils

Lymphocytes

Monocytes

For

war

d S

catte

r

Human white blood cells

Page 16: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 16

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Back-Gating

Region 4 establishedRegion 4 established Back-gating using Region 4Back-gating using Region 4

log

PE

Back gateBack gate

Page 17: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 17

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

3 Parameter Data DisplayIsometric Display

Page 18: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 18

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Methods that can change results:

1. Doublet discrimination

2. Time as a quality control parameter

Example: DNA content-need to eliminate debris & clumps-need to gate out doublets-maintain constant flow rate

Page 19: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 19

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

DNA Histogram

G0-G1

S

G2-M

Fluorescence Intensity

# of

Eve

nts

TimeC

ount

s

A B C

Gating out bad data

Page 20: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 20

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Multi-color studies generate a lot of data

1 2 3 4 5 6 7 8 9 10

3 color4 color 5 color

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Log Fluorescence

QUADSTATS

Log

Flu

ores

cenc

e

++

-- +-

-+

Page 21: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 21

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Contour plots Dot plots

Page 22: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 22

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

• This figure shows two examples of simultaneous 2 color immunophenotyping. In figure 3 (a) the directly labeled MABs used were CD4-PE / CD8-FITC. In this example approximately 50% of the cells were positive for CD4 and 23% positive for CD8. These percentages were calculated based upon the settings of the negative control for 2% positivity. Right figure shows a similar situation for CD2-PE / CD19-FITC.

Typical phenotypic analysis histograms

Page 23: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 23

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Kinetic Analysis

50 ng PMAStimulated

Fluo

resc

ence

Fluo

resc

ence

0 ng PMAUnstimulated

TIME (seconds)0 1800450 900 1350

TIME (seconds)0 1800450 900 1350

Figure: This figure shows an example of stimulation of neutrophils by PMA (50 nm/ml). On the left the unstimulated cells show no increase in DCF fluorescence . On the right, activatedcells increase the green DCF fluorescence at least 10 times the initial fluorescence.

Page 24: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 24

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Color Coded Dot Plots

R1

R2

R3

R4

10 20 30 40 50 60 70 80 90 100 120

FSC-Height -->

1020

3040

5060

7080

9010

012

0

SS

C-H

eigh

t -->

10 1 10 2 10 3 10 4

FL4-Height -->

101

102

103

104

FL2-

Hei

ght -

->

Key to understanding this figure, is the notion that differentpopulations can be identified by colors and the relationship of these populations to one another can be monitored.

Page 25: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 25

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Contour Plot with Projection

90 Light Scatter 60 50 40 30 20 100

Fo

rwa

rd S

catt

er

60

50

40

30

20

10

0

Page 26: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 26© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

3 Color Combinations

Negatives

Positives

4+4=8

FITC

PE

APC 4+4+4=12

Page 27: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 27

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

3 Color Combinations

FITC

PE

APC 4+4+4=12

PE-FITC Pattern

FITCFITC

TR-FITC Pattern

FITCFITC

TR-PE Pattern

PhycoerytherinPhycoerytherin

.1.11

1010

010

010

0010

00

.1.111

1010

100

100

1000

1000

.1.111

1010

100

100

1000

1000

.1.1 11 1010 100100 10001000 .1.1 11 1010 100100 10001000 .1.1 11 1010 100100 10001000

CD4CD4

CD5CD5 CD38CD38

K/LK/L

CD45CD45CD3CD3

NegativeNegative NegativeNegative

CD10CD10

HLA-DR

HLA-DR

CD20CD20CD8CD8

CD7CD7

CD2CD2

CD8CD8

CD8 (dim)CD8 (dim)CD2CD2

NegativeNegative CD4CD4 CD5CD5

KK

Tex

as R

edT

exas

Red

Tex

as R

edT

exas

Red

Ph

yco

eryt

her

inP

hyc

oer

yth

erin

CD3CD3

CD3CD3

IgMIgM

IgGIgG

CD3CD3

CD8CD8CD3CD3

CD20CD20

IgGIgG

LL

CD20CD20

CD20CD20

CD45CD45

Page 28: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 28

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Page 29: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 29

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Lasers used for multicolor studies

Page 30: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 30

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Page 31: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 31

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Page 32: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 32

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Innovative Data Analysis

Page 33: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 33

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Page 34: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 34

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Some advanced ways of showing data relationships

20

60

100

Enrico Lugli et al, Università di Modena e Reggio EmiliaOral Presentation Immunology section 15.30-17.30 today

Classification ?

Page 35: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 35

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Spectral analysis allows classification

Page 36: Page 1 © 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS 631 - LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue

Page 36

© 1988-2006 J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT

Conclusions• The more parameters you have, the more complex

the analysis will be• But…when you have more parameters (variables)

you have more opportunities for population discrimination

• Display of data in histogram and dotplot formats assists the analysis process

• Displays in 3D are nice but not particularly useful for analysis.

• Multiple parameter displays such as PCA or LDA are more useful for high content data sets