slide 1 t:/classes/bms524/524lect3.ppt© j.paul robinson - purdue university cytometry laboratories...

39
Slide 1 t:/classes/BMS524/524lect3.pp © J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524 - “Introduction to Confocal Microscopy and Image Analysis” 1 Credit course offered by Purdue University Department of Basic Medical Sciences, School of Veterinary Medicine UPDATED January 2000 J.Paul Robinson, Ph.D. Professor of Immunopharmacology Director, Purdue University Cytometry Laboratories These slides are intended for use in a lecture series. Copies of the graphics are distributed and students encouraged to take their notes on these graphics. The intent is to have the student NOT try to reproduce the figures, but to LISTEN and UNDERSTAND the material. All material copyright J.Paul Robinson unless otherwise stated, however, the material may be freely used for lectures, tutorials and workshops. It may not be used for any commercial purpose. The text for this course is Pawley “Introduction to Confocal Microscopy”, Plenum Press, 2nd Ed. A number of the ideas and figures in these lecture notes are taken from this text.

Upload: alexia-gibson

Post on 13-Jan-2016

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Lecture 3Fluorescence and Fluorescence Probes

BMS 524 - “Introduction to Confocal Microscopy and Image Analysis”

1 Credit course offered by Purdue University Department of Basic Medical Sciences, School of Veterinary Medicine

UPDATED January 2000

J.Paul Robinson, Ph.D. Professor of Immunopharmacology

Director, Purdue University Cytometry Laboratories

These slides are intended for use in a lecture series. Copies of the graphics are distributed and students encouraged to take their notes on these graphics. The intent is to have the student NOT

try to reproduce the figures, but to LISTEN and UNDERSTAND the material. All material copyright J.Paul Robinson unless otherwise stated, however, the material may be freely used

for lectures, tutorials and workshops. It may not be used for any commercial purpose.The text for this course is Pawley “Introduction to Confocal Microscopy”, Plenum Press, 2nd Ed. A

number of the ideas and figures in these lecture notes are taken from this text.

Page 2: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 2 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Overview

• Fluorescence

• The fluorescent microscope

• Types of fluorescent probes

• Problems with fluorochromes

• General applications

Page 3: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 3 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Excitation Sources

Excitation SourcesLamps

XenonXenon/Mercury

LasersArgon Ion (Ar)Krypton (Kr)Helium Neon (He-Ne)Helium Cadmium (He-Cd)Krypton-Argon (Kr-Ar)

Page 4: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 4 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Fluorescence

• Chromophores are components of molecules which absorb light

• They are generally aromatic rings

Page 5: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 5 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Fluorescence

• What is it?

• Where does it come from?

• Advantages

• Disadvantages

Page 6: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 6 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

FluorescenceE

NE

RG

Y

S0

S1

S2

T2

T1ABS FL I.C.

ABS - Absorbance S 0.1.2 - Singlet Electronic Energy LevelsFL - Fluorescence T 1,2 - Corresponding Triplet StatesI.C.- Nonradiative Internal Conversion IsC - Intersystem Crossing PH - Phosphorescence

IsC

IsC

PH

[Vibrational sublevels]

Jablonski Diagram

Vibrational energy levelsRotational energy levelsElectronic energy levels

Singlet States Triplet States

Page 7: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 7 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Simplified Jablonski Diagram

S0

S’

1E

n er g

yS1

hvex hvem

Page 8: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 8 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Fluorescence

The longer the wavelength the lower the energy

The shorter the wavelength the higher the energyeg. UV light from sun causes the sunburn

not the red visible light

Page 9: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 9 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Fluorescence Excitation Spectra

Intensity related to the probability of the event

Wavelengththe energy of the light absorbed or emitted

Page 10: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 10 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Allophycocyanin (APC)Protein 632.5 nm (HeNe)

Excitation Emisson

300 nm 400 nm 500 nm 600 nm 700 nm

Page 11: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 11 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Arc Lamp Excitation SpectraIr

rad

ian

ce a

t 0.

5 m

(m

W m

-2 n

m-1)

Xe Lamp

Hg Lamp

Page 12: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 12 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Ethidium

PE

cis-Parinaric acid

Texas Red

PE-TR Conj.

PI

FITC

600 nm300 nm 500 nm 700 nm400 nm457350 514 610 632488 Common Laser Lines

Page 13: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 13 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

FluorescenceStokes Shift

– is the energy difference between the lowest energy peak of absorbence and the highest energy of emission

495 nm 520 nm

Stokes Shift is 25 nmFluoresceinmolecule

Flu

ores

cnec

e In

tens

ity

Wavelength

Page 14: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 14 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Light Sources - Lasers

• Argon Ar 353-361, 488, 514 nm

• Krypton-Ar Kr-Ar 488, 568, 647 nm

• Helium-Neon He-Ne 543 nm, 633 nm

• He-Cadmium He-Cd 325 - 441 nm(He-Cd light difficult to get 325 nm band through some optical systems)

Laser Abbrev. Excitation Lines

Page 15: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 15 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Parameters

• Extinction Coefficient– refers to a single wavelength (usually the absorption

maximum)

• Quantum Yield– Qf is a measure of the integrated photon emission over the

fluorophore spectral band

• At sub-saturation excitation rates, fluorescence intensity is proportional to the product of and Qf

Page 16: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 16 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Excitation Saturation

• The rate of emission is dependent upon the time the molecule remains within the excitation state (the excited state lifetime f)

• Optical saturation occurs when the rate of excitation exceeds the reciprocal of f

• In a scanned image of 512 x 768 pixels (400,000 pixels) if scanned in 1 second requires a dwell time per pixel of 2 x 10-6

sec.

• Molecules that remain in the excitation beam for extended periods have higher probability of interstate crossings and thus phosphorescence

• Usually, increasing dye concentration can be the most effective means of increasing signal when energy is not the limiting factor (ie laser based confocal systems)

Page 17: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 17 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

How many Photons?

• Consider 1 mW of power at 488 nm focused to a Gaussian spot whose radius at 1/e2 intensity is 0.25m via a 1.25 NA objective

• The peak intensity at the center will be 10-3W [.(0.25 x 10-4 cm)2]= 5.1 x 105 W/cm2 or 1.25 x 1024 photons/(cm2 sec-1)

• At this power, FITCFITC would have 63% of its molecules in an excited state and 37% in ground state at any one time

Page 18: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 18 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Raman Scatter• A molecule may undergo a vibrational transition (not

an electronic shift) at exactly the same time as scattering occurs

• This results in a photon emission of a photon differing in energy from the energy of the incident photon by the amount of the above energy - this is Raman scattering.

• The dominant effect in flow cytometry is the stretch of the O-H bonds of water. At 488 nm excitation488 nm excitation this would give emission at 575-595575-595 nm nm

Page 19: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 19 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Rayleigh Scatter• Molecules and very small

particles do not absorb, but scatter light in the visible region (same freq as excitation)

• Rayleigh scattering is directly proportional to the electric dipole and inversely proportional to the 4th power of the wavelength of the incident light

the sky looks blue because the gas molecules scatter more light at shorter (blue) rather than longer wavelengths (red)

Page 20: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 20 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Photobleaching• Defined as the irreversible destruction of an excited

fluorophore (discussed in later lecture)• Methods for countering photobleaching

– Scan for shorter times

– Use high magnification, high NA objective

– Use wide emission filters

– Reduce excitation intensity

– Use “antifade” reagents (not compatible with viable cells)

Page 21: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 21 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Photobleaching example

• FITCFITC - at 4.4 x 1023 photons cm-2 sec-1 FITCFITC bleaches with a quantum efficiency Qb of 3 x 10-5

• Therefore FITCFITC would be bleaching with a rate constant of 4.2 x 103 sec-1 so 37% of the molecules would remain after 240 sec of irradiation.

• In a single plane, 16 scans would cause 6-50% bleaching

Page 22: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 22 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Antifade Agents• Many quenchers act by reducing oxygen concentration

to prevent formation of singlet oxygen

• Satisfactory for fixed samples but not live cells!

• Antioxidents such as propyl gallate, hydroquinone, p-phenylenediamine are used

• Reduce O2 concentration or use singlet oxygen quenchers such as carotenoids (50 mM crocetin or etretinate in cell cultures); ascorbate, imidazole, histidine, cysteamine, reduced glutathione, uric acid, trolox (vitamin E analogue)

Page 23: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 23 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Excitation - Emission Peaks

Fluorophore EXpeak EM peak

% Max Excitation at488 568 647 nm

FITC 496 518 87 0 0Bodipy 503 511 58 1 1Tetra-M-Rho 554 576 10 61 0L-Rhodamine 572 590 5 92 0Texas Red 592 610 3 45 1CY5 649 666 1 11 98

Note: You will not be able to see CY5 fluorescence under the regular fluorescent microscope because the wavelength is too high.

Page 24: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 24 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Fluorescent Microscope

Dichroic Filter

Objective

Arc Lamp

Emission Filter

Excitation Diaphragm

Ocular

Excitation Filter

EPI-Illumination

Page 25: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 25 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Fluorescence Microscope withColor Video (CCD) 35 mm Camera

Page 26: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 26 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Cameras and emission filters

Color CCD camera does not need optical filters to collect all wavelengths but if you want to collect each emission wavelength optimally, you need a monochrome camera with separate emission filters shown on the right (camera is not in position in this photo).

Camera goes here

Cooled color CCD camera

Page 27: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 27 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Page 28: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 28 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Probes for Proteins

FITC 488 525

PE 488 575

APC 630 650

PerCP™ 488 680

Cascade Blue 360 450

Coumerin-phalloidin 350 450

Texas Red™ 610 630

Tetramethylrhodamine-amines 550 575

CY3 (indotrimethinecyanines) 540 575

CY5 (indopentamethinecyanines) 640 670

Probe Excitation Emission

Page 29: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 29 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

• Hoechst 33342 (AT rich) (uv)346 460

• DAPI (uv) 359 461

• POPO-1 434 456

• YOYO-1 491 509

• Acridine Orange (RNA) 460 650

• Acridine Orange (DNA) 502 536

• Thiazole Orange (vis) 509 525

• TOTO-1 514 533

• Ethidium Bromide 526 604

• PI (uv/vis) 536 620

• 7-Aminoactinomycin D (7AAD) 555 655

Probes for Nucleic Acids

Page 30: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 30 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

DNA Probes• AO

– Metachromatic dye• concentration dependent emission• double stranded NA - Green• single stranded NA - Red

• AT/GC binding dyes– AT rich: DAPI, Hoechst, quinacrine

– GC rich: antibiotics bleomycin, chromamycin A3, mithramycin, olivomycin, rhodamine 800

Page 31: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 31 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Probes for Ions

• INDO-1 Ex350Em405/480

• QUIN-2 Ex350 Em490

• Fluo-3 Ex488 Em525

• Fura -2 Ex330/360 Em510

Page 32: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 32 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

pH Sensitive Indicators

• SNARF-1 488 575

• BCECF 488 525/620

440/488 525[2’,7’-bis-(carboxyethyl)-5,6-carboxyfluorescein]

Probe Excitation Emission

Page 33: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 33 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Probes for Oxidation States

• DCFH-DA(H2O2) 488 525

• HE (O2-) 488 590

• DHR 123 (H2O2) 488 525

Probe Oxidant Excitation Emission

DCFH-DA - dichlorofluorescin diacetateHE - hydroethidineDHR-123 - dihydrorhodamine 123

Page 34: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 34 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Specific Organelle Probes

BODIPY Golgi 505 511

NBD Golgi 488 525

DPH Lipid 350 420

TMA-DPH Lipid 350 420

Rhodamine 123 Mitochondria 488 525

DiO Lipid 488 500

diI-Cn-(5) Lipid 550 565

diO-Cn-(3) Lipid 488 500

Probe Site Excitation Emission

BODIPY - borate-dipyrromethene complexesNBD - nitrobenzoxadiazoleDPH - diphenylhexatrieneTMA - trimethylammonium

Page 35: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 35 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Other Probes of Interest• GFP - Green Fluorescent Protein

– GFP is from the chemiluminescent jellyfish Aequorea victoria

– excitation maxima at 395 and 470 nm (quantum efficiency is 0.8) Peak emission at 509 nm

– contains a p-hydroxybenzylidene-imidazolone chromophore generated by oxidation of the Ser-Tyr-Gly at positions 65-67 of the primary sequence

– Major application is as a reporter gene for assay of promoter activity

– requires no added substrates

Page 36: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 36 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Multiple Emissions

• Many possibilities for using multiple probes with a single excitation

• Multiple excitation lines are possible• Combination of multiple excitation lines

or probes that have same excitation and quite different emissions– e.g. Calcein AM and Ethidium (ex 488)– emissions 530 nm and 617 nm

Page 37: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 37 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Energy Transfer

• Effective between 10-100 Å only

• Emission and excitation spectrum must significantly overlap

• Donor transfers non-radiatively to the acceptor

• PE-Texas Red™

• Carboxyfluorescein-Sulforhodamine B

Page 38: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 38 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Fluorescence

Resonance Energy Transfer

Inte

nsi

ty

Wavelength

Absorbance

DONOR

Absorbance

Fluorescence Fluorescence

ACCEPTOR

Molecule 1 Molecule 2

Page 39: Slide 1 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories Lecture 3 Fluorescence and Fluorescence Probes BMS 524

Slide 39 t:/classes/BMS524/524lect3.ppt© J.Paul Robinson - Purdue University Cytometry Laboratories

Conclusions• Fluorescence is the primary energy source for confocal

microscopes

• Dye molecules must be close to, but below saturation levels for optimum emission

• Fluorescence emission is longer than the exciting wavelength

• The energy of the light increases with reduction of wavelength

• Fluorescence probes must be appropriate for the excitation source and the sample of interest

• Correct optical filters must be used for multiple color fluorescence emission