operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfoperational...

52
Operational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam Mallick and Shivani Singh) The Institute of Mathematical Sciences, Chennai, India QIPA 2018 Harish-Chandra Research Institute, Allahabad Operational perspective of quantum simulations using quantum walks

Upload: others

Post on 02-Feb-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Operational perspective of quantum simulations usingquantum walks

C. M. Chandrashekar(Arindam Mallick and Shivani Singh)

The Institute of Mathematical Sciences, Chennai, India

QIPA 2018Harish-Chandra Research Institute, Allahabad

Operational perspective of quantum simulations using quantum walks

Page 2: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Outline

Quantum simulations : Operational approach and why is it important ?

Discrete-time quantum walks (DTQW)

DTQW with Dirac equation

Disorder QW and localization of quantum state

Dynamic localizationAnderson localization

Accelerate DTQW

one particle casetwo particle localization and entanglement generation

Operational perspective of quantum simulations using quantum walks

Page 3: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Outline

Quantum simulations : Operational approach and why is it important ?

Discrete-time quantum walks (DTQW)

DTQW with Dirac equation

Disorder QW and localization of quantum state

Dynamic localizationAnderson localization

Accelerate DTQW

one particle casetwo particle localization and entanglement generation

Operational perspective of quantum simulations using quantum walks

Page 4: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Outline

Quantum simulations : Operational approach and why is it important ?

Discrete-time quantum walks (DTQW)

DTQW with Dirac equation

Disorder QW and localization of quantum state

Dynamic localizationAnderson localization

Accelerate DTQW

one particle casetwo particle localization and entanglement generation

Operational perspective of quantum simulations using quantum walks

Page 5: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Outline

Quantum simulations : Operational approach and why is it important ?

Discrete-time quantum walks (DTQW)

DTQW with Dirac equation

Disorder QW and localization of quantum state

Dynamic localizationAnderson localization

Accelerate DTQW

one particle casetwo particle localization and entanglement generation

Operational perspective of quantum simulations using quantum walks

Page 6: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Outline

Quantum simulations : Operational approach and why is it important ?

Discrete-time quantum walks (DTQW)

DTQW with Dirac equation

Disorder QW and localization of quantum state

Dynamic localizationAnderson localization

Accelerate DTQW

one particle casetwo particle localization and entanglement generation

Operational perspective of quantum simulations using quantum walks

Page 7: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Quantum simulation

• Simulation of quantum physics is a difficult computational problem :when dealing with large system or an high energy quantum phenomenon

How to overcome the difficulty ?

Using some controllable quantum system to study less controllable /accessiblequantum system (Quantum Simulation)

• Application : study of condensed matter physics, high-energy physics, atomicphysics, quantum chemistry and cosmology

• Can be implemented in quantum computer and also with simpler analog devicesthat require less control and easier to constructFor example :neutral atoms, ion, polar molecules, electron in semiconductor,superconducting circuits, nuclear spins and photons

Operational perspective of quantum simulations using quantum walks

Page 8: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Quantum simulation

• Simulation of quantum physics is a difficult computational problem :when dealing with large system or an high energy quantum phenomenon

How to overcome the difficulty ?

Using some controllable quantum system to study less controllable /accessiblequantum system (Quantum Simulation)

• Application : study of condensed matter physics, high-energy physics, atomicphysics, quantum chemistry and cosmology

• Can be implemented in quantum computer and also with simpler analog devicesthat require less control and easier to constructFor example :neutral atoms, ion, polar molecules, electron in semiconductor,superconducting circuits, nuclear spins and photons

Operational perspective of quantum simulations using quantum walks

Page 9: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Quantum simulation

• Simulation of quantum physics is a difficult computational problem :when dealing with large system or an high energy quantum phenomenon

How to overcome the difficulty ?

Using some controllable quantum system to study less controllable /accessiblequantum system (Quantum Simulation)

• Application : study of condensed matter physics, high-energy physics, atomicphysics, quantum chemistry and cosmology

• Can be implemented in quantum computer and also with simpler analog devicesthat require less control and easier to constructFor example :neutral atoms, ion, polar molecules, electron in semiconductor,superconducting circuits, nuclear spins and photons

Operational perspective of quantum simulations using quantum walks

Page 10: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Quantum simulation

• Simulation of quantum physics is a difficult computational problem :when dealing with large system or an high energy quantum phenomenon

How to overcome the difficulty ?

Using some controllable quantum system to study less controllable /accessiblequantum system (Quantum Simulation)

• Application : study of condensed matter physics, high-energy physics, atomicphysics, quantum chemistry and cosmology

• Can be implemented in quantum computer and also with simpler analog devicesthat require less control and easier to constructFor example :neutral atoms, ion, polar molecules, electron in semiconductor,superconducting circuits, nuclear spins and photons

Operational perspective of quantum simulations using quantum walks

Page 11: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Quantum simulation

• Simulation of quantum physics is a difficult computational problem :when dealing with large system or an high energy quantum phenomenon

How to overcome the difficulty ?

Using some controllable quantum system to study less controllable /accessiblequantum system (Quantum Simulation)

• Application : study of condensed matter physics, high-energy physics, atomicphysics, quantum chemistry and cosmology

• Can be implemented in quantum computer and also with simpler analog devicesthat require less control and easier to constructFor example :neutral atoms, ion, polar molecules, electron in semiconductor,superconducting circuits, nuclear spins and photons

Operational perspective of quantum simulations using quantum walks

Page 12: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Quantum Simulation :Operational approach (algorithmic) approach

using a qubit

Operational perspective of quantum simulations using quantum walks

Page 13: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Qubit : Basic Element

• Qubit - Ideal two-state quantum system : | ↑〉 =

[10

]and | ↓〉 =

[01

]logical /computational states

photons (V and H polarization, transmission mode - path encoding)

electrons or other spin- 12 systems (spin up and down)

systems defined by two energy levels of atoms or ions

Allows superposition : |Ψ〉 = α| ↑〉+ β| ↓〉α, β ∈ C ; |α|2 + |β|2 = 1 ; |Ψ〉 = e iη|Ψ〉

Operational perspective of quantum simulations using quantum walks

Page 14: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Discrete-time quantum walk

• Walk is defined on the Hilbert space H = Hc ⊗Hp

Hc (particle) is spanned by | ↑〉 and | ↓〉Hp (position) is spanned by |j〉, j ∈ Z

• Initial state :|Ψin〉 = [cos(δ)| ↑〉+ e iη sin(δ)| ↓〉]⊗ |j = 0〉

• Evolution :

Coin operation : C (θ) =

[cos(θ) − i sin(θ)

−i sin(θ) cos(θ)

]Conditional unitary shift operation S :

S =∑

j∈Z

[| ↑〉〈↑ | ⊗ |j − 1〉〈j |+ | ↓〉〈↓ | ⊗ |j + 1〉〈j |

]state | ↑〉 moves to the left and state | ↓〉 moves to the right

Operational perspective of quantum simulations using quantum walks

Page 15: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Discrete-time quantum walk

• Walk is defined on the Hilbert space H = Hc ⊗Hp

Hc (particle) is spanned by | ↑〉 and | ↓〉Hp (position) is spanned by |j〉, j ∈ Z

• Initial state :|Ψin〉 = [cos(δ)| ↑〉+ e iη sin(δ)| ↓〉]⊗ |j = 0〉

• Evolution :

Coin operation : C (θ) =

[cos(θ) − i sin(θ)

−i sin(θ) cos(θ)

]Conditional unitary shift operation S :

S =∑

j∈Z

[| ↑〉〈↑ | ⊗ |j − 1〉〈j |+ | ↓〉〈↓ | ⊗ |j + 1〉〈j |

]state | ↑〉 moves to the left and state | ↓〉 moves to the right

Operational perspective of quantum simulations using quantum walks

Page 16: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Discrete-time quantum walk

• Walk is defined on the Hilbert space H = Hc ⊗Hp

Hc (particle) is spanned by | ↑〉 and | ↓〉Hp (position) is spanned by |j〉, j ∈ Z

• Initial state :|Ψin〉 = [cos(δ)| ↑〉+ e iη sin(δ)| ↓〉]⊗ |j = 0〉

• Evolution :

Coin operation : C (θ) =

[cos(θ) − i sin(θ)

−i sin(θ) cos(θ)

]Conditional unitary shift operation S :

S =∑

j∈Z

[| ↑〉〈↑ | ⊗ |j − 1〉〈j |+ | ↓〉〈↓ | ⊗ |j + 1〉〈j |

]state | ↑〉 moves to the left and state | ↓〉 moves to the right

Operational perspective of quantum simulations using quantum walks

Page 17: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Discrete-time quantum walk

• Walk is defined on the Hilbert space H = Hc ⊗Hp

Hc (particle) is spanned by | ↑〉 and | ↓〉Hp (position) is spanned by |j〉, j ∈ Z

• Initial state :|Ψin〉 = [cos(δ)| ↑〉+ e iη sin(δ)| ↓〉]⊗ |j = 0〉

• Evolution :

Coin operation : C (θ) =

[cos(θ) − i sin(θ)

−i sin(θ) cos(θ)

]

Conditional unitary shift operation S :

S =∑

j∈Z

[| ↑〉〈↑ | ⊗ |j − 1〉〈j |+ | ↓〉〈↓ | ⊗ |j + 1〉〈j |

]state | ↑〉 moves to the left and state | ↓〉 moves to the right

Operational perspective of quantum simulations using quantum walks

Page 18: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Discrete-time quantum walk

• Walk is defined on the Hilbert space H = Hc ⊗Hp

Hc (particle) is spanned by | ↑〉 and | ↓〉Hp (position) is spanned by |j〉, j ∈ Z

• Initial state :|Ψin〉 = [cos(δ)| ↑〉+ e iη sin(δ)| ↓〉]⊗ |j = 0〉

• Evolution :

Coin operation : C (θ) =

[cos(θ) − i sin(θ)

−i sin(θ) cos(θ)

]Conditional unitary shift operation S :

S =∑

j∈Z

[| ↑〉〈↑ | ⊗ |j − 1〉〈j |+ | ↓〉〈↓ | ⊗ |j + 1〉〈j |

]state | ↑〉 moves to the left and state | ↓〉 moves to the right

Operational perspective of quantum simulations using quantum walks

Page 19: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Quantum walk

• Each step of QW : W = S(C (θ)⊗ 1)

−100 −80 −60 −40 −20 0 20 40 60 80 1000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Particle position

Pro

babili

ty

Quantum walkClassical random walk

100 step of CRW and QW [S(C(π/4)⊗ 1)]100on a particle with initial state1√2(| ↑〉+ i | ↓〉)

• G. V. Riazanov (1958), R. Feynman (1986)• K.R. Parthasarathy, Journal of applied probability 25, 151-166 (1988)•Y. Aharonov, L. Davidovich and N. Zugury, Phys. Rev. A, 48, 1687 (1993)• Use of word Quantum random walk

Operational perspective of quantum simulations using quantum walks

Page 20: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Quantum walks

Superposition and interference : Evolution (dynamics) exploits superpositionand interference aspects of quantum mechanics entangling the Hilbert spaceinvolved in the dynamics ( particle and position space)Explores multiple possible paths simultaneously with amplitude correspondingto different paths interfering

The variance grows quadratically with number of steps (t) compared to thelinear growth for CRW :σ2 ∝ t2 (QW), σ2 ∝ t (CRW)

Experimentally implemented and control over the dynamics demonstratedNMR system, ion traps, photons in optical waveguide, neutral atoms onoptical lattice.......

Operational perspective of quantum simulations using quantum walks

Page 21: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Quantum walks

Superposition and interference : Evolution (dynamics) exploits superpositionand interference aspects of quantum mechanics entangling the Hilbert spaceinvolved in the dynamics ( particle and position space)Explores multiple possible paths simultaneously with amplitude correspondingto different paths interfering

The variance grows quadratically with number of steps (t) compared to thelinear growth for CRW :σ2 ∝ t2 (QW), σ2 ∝ t (CRW)

Experimentally implemented and control over the dynamics demonstratedNMR system, ion traps, photons in optical waveguide, neutral atoms onoptical lattice.......

Operational perspective of quantum simulations using quantum walks

Page 22: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Quantum walks

Superposition and interference : Evolution (dynamics) exploits superpositionand interference aspects of quantum mechanics entangling the Hilbert spaceinvolved in the dynamics ( particle and position space)Explores multiple possible paths simultaneously with amplitude correspondingto different paths interfering

The variance grows quadratically with number of steps (t) compared to thelinear growth for CRW :σ2 ∝ t2 (QW), σ2 ∝ t (CRW)

Experimentally implemented and control over the dynamics demonstratedNMR system, ion traps, photons in optical waveguide, neutral atoms onoptical lattice.......

Operational perspective of quantum simulations using quantum walks

Page 23: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Continuum limit and simulation of Dirac equation

Dirac equation

(i~∂

∂t− HD

)Ψ =

(i~∂

∂t+ i~cα · ∂

∂x− βmc2

)Ψ = 0

From DTQW

ψ↑x,t+1 = cos(θ)ψ↑x+1,t − i sin(θ)ψ↓x−1,t

ψ↓x,t+1 = cos(θ)ψ↓x−1,t − i sin(θ)ψ↑x+1,t

when θ = 0, the expression in continuum limit takes the form[i~∂

∂t− i~σ3

∂x

]Ψ(x , t) = 0

Massless Dirac equation

David Mayer (1996) ; Fredrick Strauch (2006) ; CMC (2010)

Operational perspective of quantum simulations using quantum walks

Page 24: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Continuum limit and simulation of Dirac equation

Dirac equation

(i~∂

∂t− HD

)Ψ =

(i~∂

∂t+ i~cα · ∂

∂x− βmc2

)Ψ = 0

From DTQW

ψ↑x,t+1 = cos(θ)ψ↑x+1,t − i sin(θ)ψ↓x−1,t

ψ↓x,t+1 = cos(θ)ψ↓x−1,t − i sin(θ)ψ↑x+1,t

when θ = 0, the expression in continuum limit takes the form[i~∂

∂t− i~σ3

∂x

]Ψ(x , t) = 0

Massless Dirac equation

David Mayer (1996) ; Fredrick Strauch (2006) ; CMC (2010)

Operational perspective of quantum simulations using quantum walks

Page 25: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

DE with mass term : Split-step / 2-period QW

C (θ1) =

(cos(θ1) −i sin(θ1)

−i sin(θ1) cos(θ1)

),

C (θ2) =

(cos(θ2) −i sin(θ2)

−i sin(θ2) cos(θ2)

)and a two half-shift operators,

S− =

(T− 00 I

), S+ =

(I 00 T+

)S =

(T− 00 T+

)

T− = |j − 1〉〈j | ; T+ = |j + 1〉〈j |

USQW = S+

(C (θ2)⊗ I

)S−(C (θ1)⊗ I

)≡ S

(C (θ2)⊗ I

)S(C (θ1)⊗ I

)

Operational perspective of quantum simulations using quantum walks

Page 26: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

DE with mass term : Split-step / 2-period QW

C (θ1) =

(cos(θ1) −i sin(θ1)

−i sin(θ1) cos(θ1)

),

C (θ2) =

(cos(θ2) −i sin(θ2)

−i sin(θ2) cos(θ2)

)and a two half-shift operators,

S− =

(T− 00 I

), S+ =

(I 00 T+

)S =

(T− 00 T+

)

T− = |j − 1〉〈j | ; T+ = |j + 1〉〈j |

USQW = S+

(C (θ2)⊗ I

)S−(C (θ1)⊗ I

)≡ S

(C (θ2)⊗ I

)S(C (θ1)⊗ I

)Operational perspective of quantum simulations using quantum walks

Page 27: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

DCA and SS-QW

−100 −50 0 50 1000

0.02

0.04

0.06

0.08

Position

Pro

babili

ty

DTQW

SS−DTQW

−100 0 1000

0.05

−100 −50 0 50 1000

0.02

0.04

0.06

0.08

0.1

Position

Pro

babili

ty

θ1 = π/12

θ1=π/3

θ1 = 5π/12

θ2 = π/4

SSQW (θ1 = 0, θ2 = π/4) = DCA α = β = 1√2

Substituting

θ1 = φ1 = δ1 = δ2 = 0 we get,

USQW =

(cos(θ2)T− −i sin(θ2)I−i sin(θ2)I cos(θ2)T+

)which is in the same form as UDA where β = sin(θ2) ≡ mca

~ and α = cos(θ2).

Operational perspective of quantum simulations using quantum walks

Page 28: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

SS-QW and DE

[∂

∂t− cos(θ2)

[cos(θ1) −i sin(θ1)i sin(θ1) − cos(θ1)

]∂

∂x−[cos(θ1 + θ2)− 1 −i sin(θ1 + θ2)−i sin(θ1 + θ2) cos(θ1 + θ2)− 1

] ] [ψ↓

x,t

ψ↑x,t

]= 0

1 Setting θ1 = 0 and θ2 to a small value (mass of sub-atomic particles) :

i~

[∂

∂t−(

1− θ22

2

)[1 00 −1

]∂

∂x+ iθ2

[0 11 0

]] [ψ↓x,tψ↑x,t

]≈ 0

2 Setting cos(θ1 + θ2) = 1 :

i~

[∂

∂t− cos(θ2)

[cos(θ1) −i sin(θ1)i sin(θ1) − cos(θ1)

]∂

∂x

] [ψ↓x,tψ↑x,t

]= 0

3 Setting θ1 to be extremely small and cos(θ1 + θ2) = 1 :

i~

[∂

∂t− cos(θ2)

[1 00 −1

]∂

∂x

] [ψ↓x,tψ↑x,t

]≈ 0

Scientific Reports 6, 25779 (2016); Phys. Rev. A 97, 012116 (2018)

Operational perspective of quantum simulations using quantum walks

Page 29: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

SS-QW and DE

[∂

∂t− cos(θ2)

[cos(θ1) −i sin(θ1)i sin(θ1) − cos(θ1)

]∂

∂x−[cos(θ1 + θ2)− 1 −i sin(θ1 + θ2)−i sin(θ1 + θ2) cos(θ1 + θ2)− 1

] ] [ψ↓

x,t

ψ↑x,t

]= 0

1 Setting θ1 = 0 and θ2 to a small value (mass of sub-atomic particles) :

i~

[∂

∂t−(

1− θ22

2

)[1 00 −1

]∂

∂x+ iθ2

[0 11 0

]] [ψ↓x,tψ↑x,t

]≈ 0

2 Setting cos(θ1 + θ2) = 1 :

i~

[∂

∂t− cos(θ2)

[cos(θ1) −i sin(θ1)i sin(θ1) − cos(θ1)

]∂

∂x

] [ψ↓x,tψ↑x,t

]= 0

3 Setting θ1 to be extremely small and cos(θ1 + θ2) = 1 :

i~

[∂

∂t− cos(θ2)

[1 00 −1

]∂

∂x

] [ψ↓x,tψ↑x,t

]≈ 0

Scientific Reports 6, 25779 (2016); Phys. Rev. A 97, 012116 (2018)

Operational perspective of quantum simulations using quantum walks

Page 30: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

SS-QW and DE

[∂

∂t− cos(θ2)

[cos(θ1) −i sin(θ1)i sin(θ1) − cos(θ1)

]∂

∂x−[cos(θ1 + θ2)− 1 −i sin(θ1 + θ2)−i sin(θ1 + θ2) cos(θ1 + θ2)− 1

] ] [ψ↓

x,t

ψ↑x,t

]= 0

1 Setting θ1 = 0 and θ2 to a small value (mass of sub-atomic particles) :

i~

[∂

∂t−(

1− θ22

2

)[1 00 −1

]∂

∂x+ iθ2

[0 11 0

]] [ψ↓x,tψ↑x,t

]≈ 0

2 Setting cos(θ1 + θ2) = 1 :

i~

[∂

∂t− cos(θ2)

[cos(θ1) −i sin(θ1)i sin(θ1) − cos(θ1)

]∂

∂x

] [ψ↓x,tψ↑x,t

]= 0

3 Setting θ1 to be extremely small and cos(θ1 + θ2) = 1 :

i~

[∂

∂t− cos(θ2)

[1 00 −1

]∂

∂x

] [ψ↓x,tψ↑x,t

]≈ 0

Scientific Reports 6, 25779 (2016); Phys. Rev. A 97, 012116 (2018)

Operational perspective of quantum simulations using quantum walks

Page 31: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

SS-QW and DE

[∂

∂t− cos(θ2)

[cos(θ1) −i sin(θ1)i sin(θ1) − cos(θ1)

]∂

∂x−[cos(θ1 + θ2)− 1 −i sin(θ1 + θ2)−i sin(θ1 + θ2) cos(θ1 + θ2)− 1

] ] [ψ↓

x,t

ψ↑x,t

]= 0

1 Setting θ1 = 0 and θ2 to a small value (mass of sub-atomic particles) :

i~

[∂

∂t−(

1− θ22

2

)[1 00 −1

]∂

∂x+ iθ2

[0 11 0

]] [ψ↓x,tψ↑x,t

]≈ 0

2 Setting cos(θ1 + θ2) = 1 :

i~

[∂

∂t− cos(θ2)

[cos(θ1) −i sin(θ1)i sin(θ1) − cos(θ1)

]∂

∂x

] [ψ↓x,tψ↑x,t

]= 0

3 Setting θ1 to be extremely small and cos(θ1 + θ2) = 1 :

i~

[∂

∂t− cos(θ2)

[1 00 −1

]∂

∂x

] [ψ↓x,tψ↑x,t

]≈ 0

Scientific Reports 6, 25779 (2016); Phys. Rev. A 97, 012116 (2018)

Operational perspective of quantum simulations using quantum walks

Page 32: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Examples of simulations

500 1500 2500 3500 45000

0.2

0.4

0.6

0.8

1

Number of steps

Oscill

atio

n P

rob

ab

ility

νe(0) → ν

e(t)

νe(0) → ν

τ(t)

νe(0) → ν

µ(t)

(1) Neutrino flavour oscillation Eur. Phys. J. C (Particles and Fields), 77: 85 (2017)

(2) Dirac Hamiltonian in curved space with U(1) gauge potential arXiv:1712.03911

Operational perspective of quantum simulations using quantum walks

Page 33: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Disorder and localization

Operational perspective of quantum simulations using quantum walks

Page 34: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Disorder induced by randomized unitary evolution

• Temporal disorder

S(B(θt)⊗ 1

)· · · S

(B(θj)⊗ 1

)· · · S

(B(θ0)⊗ 1

)|Ψin〉

randomly chosen parameter θ ∈ {−π/2, π/2} for each step.

• Spatial disorder [S

(∑x

B(θx)⊗ |x〉〈x |

)]t|Ψin〉

randomly chosen parameters θ ∈ {−π/2, π/2} for each position.

• Spatio-temporal disorder (fluctuating)

S

(∑x

B(θx,t)⊗ |x〉〈x |

)· · · S

(∑x

B(θx,j)⊗ |x〉〈x |

)· · · S

(∑x

B(θx,1)⊗ |x〉〈x |

)|Ψin〉

randomly chosen parameters θ ∈ {−π/2, π/2} for each position and step.

Operational perspective of quantum simulations using quantum walks

Page 35: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Disorder induced by randomized unitary evolution

• Temporal disorder

S(B(θt)⊗ 1

)· · · S

(B(θj)⊗ 1

)· · · S

(B(θ0)⊗ 1

)|Ψin〉

randomly chosen parameter θ ∈ {−π/2, π/2} for each step.

• Spatial disorder [S

(∑x

B(θx)⊗ |x〉〈x |

)]t|Ψin〉

randomly chosen parameters θ ∈ {−π/2, π/2} for each position.

• Spatio-temporal disorder (fluctuating)

S

(∑x

B(θx,t)⊗ |x〉〈x |

)· · · S

(∑x

B(θx,j)⊗ |x〉〈x |

)· · · S

(∑x

B(θx,1)⊗ |x〉〈x |

)|Ψin〉

randomly chosen parameters θ ∈ {−π/2, π/2} for each position and step.

Operational perspective of quantum simulations using quantum walks

Page 36: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Disorder induced by randomized unitary evolution

• Temporal disorder

S(B(θt)⊗ 1

)· · · S

(B(θj)⊗ 1

)· · · S

(B(θ0)⊗ 1

)|Ψin〉

randomly chosen parameter θ ∈ {−π/2, π/2} for each step.

• Spatial disorder [S

(∑x

B(θx)⊗ |x〉〈x |

)]t|Ψin〉

randomly chosen parameters θ ∈ {−π/2, π/2} for each position.

• Spatio-temporal disorder (fluctuating)

S

(∑x

B(θx,t)⊗ |x〉〈x |

)· · · S

(∑x

B(θx,j)⊗ |x〉〈x |

)· · · S

(∑x

B(θx,1)⊗ |x〉〈x |

)|Ψin〉

randomly chosen parameters θ ∈ {−π/2, π/2} for each position and step.

Operational perspective of quantum simulations using quantum walks

Page 37: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Disorder induced by randomized unitary evolution

• Temporal disorder

S(B(θt)⊗ 1

)· · · S

(B(θj)⊗ 1

)· · · S

(B(θ0)⊗ 1

)|Ψin〉

randomly chosen parameter θ ∈ {−π/2, π/2} for each step.

• Spatial disorder [S

(∑x

B(θx)⊗ |x〉〈x |

)]t|Ψin〉

randomly chosen parameters θ ∈ {−π/2, π/2} for each position.

• Spatio-temporal disorder (fluctuating)

S

(∑x

B(θx,t)⊗ |x〉〈x |

)· · · S

(∑x

B(θx,j)⊗ |x〉〈x |

)· · · S

(∑x

B(θx,1)⊗ |x〉〈x |

)|Ψin〉

randomly chosen parameters θ ∈ {−π/2, π/2} for each position and step.

Operational perspective of quantum simulations using quantum walks

Page 38: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Disorder and localization

20% disorder 100% disorder

−100 −50 0 50 1000

0.02

0.04

0.06

0.08

0.1

0.12

Position

Pro

babili

ty

θ = π/4

SD

TD

S−TD

−100 −50 0 50 1000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Position

Pro

babili

ty

θ = π/4

SD

TD

S−TD

0 20 40 60 80 1000

10

20

30

40

50

60

Percentage of Disorder

Sta

ndard

Devia

tion

SD

TD

S−TD

0 50 100 150 2000

20

40

60

80

100

120

Steps

Sta

ndard

Devia

tion (

σ)

θ = π/4

SD

TD

S−TD

Operational perspective of quantum simulations using quantum walks

Page 39: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Dynamic localization from temporal disorder

vg (k, θt) = ± k cos(θt)√k2 cos(θt) + A(θ, t)

A(θ, t) = 1 + sin(θt)[

csc(θt±1)− cot(θt±1)]− cos(θt)

For each instance of time t the group velocity will be a random value in the range:−1 ≤ vg (k, θt) ≤ 1. The average group velocity :

vTDg (k , θt , t) =

1

t

t∑t=0

vg (k , θt) ≈ 0

−600 −400 −200 0 200 400 6000

0.02

0.04

0.06

0.08

0.1

Position

Pro

bab

ilit

y

100 steps QW

200 steps QW

300 steps QW

600 steps QW

100 steps TDQW

200 steps TDQW

300 steps TDQW

600 steps TDQW

−50 0 500

0.02

0.04

0.06

0.08

Position

Pro

bab

ilit

y

Distribution remains localized near the origin irrespective of the time (t)

Operational perspective of quantum simulations using quantum walks

Page 40: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Entanglement in localized states

Probability distribution Entanglement

−100 −50 0 50 1000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Position

Pro

babili

ty

θ = π/4

SD

TD

S−TD

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Steps

Enta

ngle

ment

θ = π/4

SD

TD

S−TD

0 20 40 60 80 1000.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Percentage of Disorder

Enta

ngle

ment

SD

TD

S−TD

N (ρ) =∑i

|λi | − λi2

where λi are the eigenvalues.

Entanglement is robust against disorder

Operational perspective of quantum simulations using quantum walks

Page 41: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Entanglement in localized states

Probability distribution Entanglement

−100 −50 0 50 1000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Position

Pro

babili

ty

θ = π/4

SD

TD

S−TD

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Steps

Enta

ngle

ment

θ = π/4

SD

TD

S−TD

0 20 40 60 80 1000.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Percentage of Disorder

Enta

ngle

ment

SD

TD

S−TD

N (ρ) =∑i

|λi | − λi2

where λi are the eigenvalues.

Entanglement is robust against disorder

Operational perspective of quantum simulations using quantum walks

Page 42: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Entanglement in localized states

Probability distribution Entanglement

−100 −50 0 50 1000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Position

Pro

babili

ty

θ = π/4

SD

TD

S−TD

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Steps

Enta

ngle

ment

θ = π/4

SD

TD

S−TD

0 20 40 60 80 1000.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Percentage of Disorder

Enta

ngle

ment

SD

TD

S−TD

N (ρ) =∑i

|λi | − λi2

where λi are the eigenvalues.

Entanglement is robust against disorder

Operational perspective of quantum simulations using quantum walks

Page 43: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Controlling localization - two period QW

Probability distribution Entanglement

0 50 100 150 200t

04080

120160

σ

b)θ1 = π/12

θ2 = π/3

θ1, θ2

−200 −100 0 100 200Position

0.00

0.04

0.08

0.12Proba

blity

a)

0 50 100 150 200t

04080

120160

σ

d)θ1 = π/6

θ2 =5π/12

θ1, θ2

−200 −100 0 100 200Position

0.00

0.02

0.04

0.06

Proba

blity

c)

0 50 100 150 200t

04080

120160

σ

f)θ1 = π/3

θ2 = π/6

θ1, θ2

−200 −100 0 100 200Position

0.00

0.02

0.04

0.06

Proba

blity

e)

0 π/4 π/2 3π/4 π0

50

100

θ1

σ

θ2 = θ

1

θ2 = π/3

θ2 = π/6

π/3

π/6

0 π/4 π0

0.5

1

θ1

Llo

c (

50 tim

e a

ve.)

Spatial disorder

temporal disorder

θ2 = random value

0 20 40 60 80 1000

1

2

3

Time

Llo

c

θ1 = π/16

θ1 = π/4

θ1 = π/16

θ1 = π/4

Red − Lloc

T

Blue − Lloc

S

Operational perspective of quantum simulations using quantum walks

Page 44: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Controlling localization - two period QW

Probability distribution Entanglement

0 50 100 150 200t

04080

120160

σ

b)θ1 = π/12

θ2 = π/3

θ1, θ2

−200 −100 0 100 200Position

0.00

0.04

0.08

0.12Proba

blity

a)

0 50 100 150 200t

04080

120160

σ

d)θ1 = π/6

θ2 =5π/12

θ1, θ2

−200 −100 0 100 200Position

0.00

0.02

0.04

0.06

Proba

blity

c)

0 50 100 150 200t

04080

120160

σ

f)θ1 = π/3

θ2 = π/6

θ1, θ2

−200 −100 0 100 200Position

0.00

0.02

0.04

0.06

Proba

blity

e)

0 π/4 π/2 3π/4 π0

50

100

θ1

σ

θ2 = θ

1

θ2 = π/3

θ2 = π/6

π/3

π/6

0 π/4 π0

0.5

1

θ1

Llo

c (

50 tim

e a

ve.)

Spatial disorder

temporal disorder

θ2 = random value

0 20 40 60 80 1000

1

2

3

Time

Llo

c

θ1 = π/16

θ1 = π/4

θ1 = π/16

θ1 = π/4

Red − Lloc

T

Blue − Lloc

S

Operational perspective of quantum simulations using quantum walks

Page 45: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Accelerating quantum walks

Replace θ in coin operation by θ(t) = θ(a, t) = θ0e−at

Operational perspective of quantum simulations using quantum walks

Page 46: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Accelerating quantum walks

Replace θ in coin operation by θ(t) = θ(a, t) = θ0e−at

Operational perspective of quantum simulations using quantum walks

Page 47: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Accelerated quantum walks : disorder and localization

Φφ =

(1 00 e iφ

)⊗∑x

|x〉 〈x |

W = SxΦ(φ)C (θ0) ≡ SxB(θ0, φ).

Operational perspective of quantum simulations using quantum walks

Page 48: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Accelerated 2 particle quantum walks

Entanglement

|Ψ〉AB = |a〉A ⊗ |b〉B = |a〉A|b〉B|a〉A|b〉B →

∑cab|a〉A|b〉B

|Ψ〉AB = α|0〉A|0〉B ± β|1〉A|1〉B

|Ψin〉 = |00〉 → localised QW on two particle → entangled statecoin operation

C [θ(t)] =

cos[θ(t)] 0 0 −i sin[θ(t)]

0 cos[θ(t)] −i sin[θ(t)] 00 −i sin[θ(t)] cos[θ(t)] 0

−i sin[θ(t)] 0 0 cos[θ(t)]

shift-operator

S1 ⊗ S2

Operational perspective of quantum simulations using quantum walks

Page 49: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Accelerated 2 particle quantum walks

Entanglement

|Ψ〉AB = |a〉A ⊗ |b〉B = |a〉A|b〉B|a〉A|b〉B →

∑cab|a〉A|b〉B

|Ψ〉AB = α|0〉A|0〉B ± β|1〉A|1〉B

|Ψin〉 = |00〉 → localised QW on two particle → entangled state

coin operation

C [θ(t)] =

cos[θ(t)] 0 0 −i sin[θ(t)]

0 cos[θ(t)] −i sin[θ(t)] 00 −i sin[θ(t)] cos[θ(t)] 0

−i sin[θ(t)] 0 0 cos[θ(t)]

shift-operator

S1 ⊗ S2

Operational perspective of quantum simulations using quantum walks

Page 50: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Accelerated 2 particle quantum walks

Entanglement

|Ψ〉AB = |a〉A ⊗ |b〉B = |a〉A|b〉B|a〉A|b〉B →

∑cab|a〉A|b〉B

|Ψ〉AB = α|0〉A|0〉B ± β|1〉A|1〉B

|Ψin〉 = |00〉 → localised QW on two particle → entangled statecoin operation

C [θ(t)] =

cos[θ(t)] 0 0 −i sin[θ(t)]

0 cos[θ(t)] −i sin[θ(t)] 00 −i sin[θ(t)] cos[θ(t)] 0

−i sin[θ(t)] 0 0 cos[θ(t)]

shift-operator

S1 ⊗ S2

Operational perspective of quantum simulations using quantum walks

Page 51: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Two-particle Entanglement Generation

a = 0.002 and a = 0.02

00.001

0.002 0

50

100

00.5

1

Stepsa

Operational perspective of quantum simulations using quantum walks

Page 52: Operational perspective of quantum simulations …confqic/qipa18/docs/day1/talk-8.pdfOperational perspective of quantum simulations using quantum walks C. M. Chandrashekar (Arindam

Summary

With a careful choice of evolution parameters we can engineer thelocalization of quantum walk for effective use in QIP protocols and simulationof various accessible and inaccessible quantum phenomenon with disorder inboth, high energy and low energy physical systems.

Operational perspective of quantum simulations using quantum walks