exploring quantum simulations with superconducting … · exploring quantum simulations with...

85
Team: J. - C. Besse , R . Buijs , M . Collodo , S. Garcia, S . Gasparinetti , J . Heinsoo , S. Krinner , P. Kurpiers , M . Oppliger , M . Pechal , A. Potocnik , Y . Salathe , M . Stammeier , A. Stockklauser , T . Thiele, T . Walter (ETH Zurich ) Exploring Quantum Simulations with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch

Upload: lykhanh

Post on 06-Sep-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • Team: J.-C. Besse, R. Buijs, M. Collodo, S. Garcia, S. Gasparinetti, J. Heinsoo, S. Krinner, P. Kurpiers,

    M. Oppliger, M. Pechal, A. Potocnik, Y. Salathe, M. Stammeier, A. Stockklauser, T. Thiele, T. Walter

    (ETH Zurich)

    Exploring Quantum Simulations with Superconducting CircuitsAndreas Wallraff (ETH Zurich)www.qudev.ethz.ch

  • The ETH Zurich Quantum Device Labincl. undergrad and summer students

  • Former group members nowFaculty/PostDoc/PhD/IndustryA. Abdumalikov (Gorba AG)M. Allan (Leiden)M. Baur (ABB)J. Basset (U. Paris Sud) S. Berger (AWK Group)R. Bianchetti (ABB)D. Bozyigit (MIT)C. Eichler (Princeton)A. Fedorov (UQ Brisbane)A. Fragner (Yale)S. Filipp (IBM Zurich)J. Fink (IST Austria)T. Frey (Bosch)M. Goppl (Sensirion)J. Govenius (Aalto) L. Huthmacher (Cambridge)

    D.-D. Jarausch (Cambridge) K. Juliusson (CEA Saclay) C. Lang (Radionor) P. Leek (Oxford)P. Maurer (Stanford)J. Mlynek (Siemens)M. Mondal (Johns Hopkins)G. Puebla (IBM Zurich)A. Safavi-Naeini (Stanford)L. Steffen (AWK Group)A. van Loo (Oxford)S. Zeytinolu (ETH Zurich)

    Collaborations with (groups of): A. Blais (Sherbrooke)C. Bruder (Basel)M. da Silva (Raytheon) L. DiCarlo (TU Delft)

    K. Ensslin (ETH Zurich)J. Faist (ETH Zurich)J. Gambetta (IBM Yorktown)K. Hammerer (Hannover)T. Ihn (ETH Zurich)F. Merkt (ETH Zurich)L. Novotny (ETH Zurich)T. J. Osborne (Hannover)B. Sanders (Calgary) S. Schmidt (ETH Zurich)R. Schoelkopf (Yale)C. Schoenenberger (Basel)E. Solano (UPV/EHU)W. Wegscheider (ETH Zurich)

    Acknowledgementswww.qudev.ethz.ch

  • Classical and Quantum Electronic Circuit Elements

    quantum superposition states of:

    charge q

    flux

    basic circuit elements: charge on a capacitor:

    current or magnetic flux in an inductor:

    commutation relation (c.f. x, p):

  • Constructing Linear Quantum Electronic Circuits

    Review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411172 (2004)

    classical physics:

    basic circuit elements: harmonic LC oscillator:

    quantum mechanics:

    energy:electronic

    photon

  • Constructing Non-Linear Quantum Electronic Circuits

    Review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411172 (2004)

    circuit elements:

    Josephson junction:a non-dissipative nonlinear element (inductor)

    anharmonic oscillator: non-linear energy level spectrum:

    electronicartificial atom

  • How to Operate Circuits in the Quantum Regime?

    Review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411174 (2004)

    recipe:

    avoid dissipation

    work at low temperatures

    isolate quantum circuit from environment

    control circuit read-out circuitquantum circuit

  • Cavity QED with Superconducting Circuits

    coherent quantum mechanicswith individual photons and qubits ...

    ... basic approach:

    Isolating qubits from their environment

    Maintain addressability of qubits

    Reading out the state of qubits

    Coupling qubits to each other

    Converting stationary qubits to flying qubits

    What is this good for?

  • Cavity QED

    A. Blais, et al., PRA 69, 062320 (2004)A. Wallraff et al., Nature (London) 431, 162 (2004)

    R. J. Schoelkopf, S. M. Girvin, Nature (London) 451, 664 (2008)

    coherent interaction of photons with quantum two-level systems ...

    with Superconducting Circuits

    J. M. Raimond et al., Rev. Mod. Phys. 73, 565 (2001)S. Haroche & J. Raimond, OUP Oxford (2006) J. Ye., H. J. Kimble, H. Katori, Science 320, 1734 (2008)

    Properties: strong coupling in solid state sys. easy to fabricate and integrate

    Research directions: quantum optics quantum information hybrid quantum systems

  • Realization

    device fabrication: L. Frunzio et al., IEEE Trans. on Appl. Supercon. 15, 860 (2005)

  • J. Mlynek et al., Quantum Device Lab, ETH Zurich (2012)

  • Sample Mount

    M. Peterer et al., Quantum Device Lab, ETH Zurich (2012)

    ~ 2 cm

  • Cryostate for temperatures down to 0.02 K

    Microwave control & measurement equipment

    ~ 20 cm

  • How to do the Measurement

    prevent leakage of thermal photons (cold attenuators and circulators)

    average power to be detected (r/2 = 6 GHz, /2 = 1 MHz)

    efficient with cryogenic low noise HEMT amplifier TN = 6 K

  • Resonant Vacuum Rabi Mode Splitting

    first demonstration in a solid: A. Wallraff et al., Nature (London) 431, 162 (2004)this data: J. Fink et al., Nature (London) 454, 315 (2008)

    R. J. Schoelkopf, S. M. Girvin, Nature (London) 451, 664 (2008)

    ... with one photon (n=1): very strong coupling:

    forming a 'molecule' of a qubit and a photon

  • Resonant Vacuum Rabi Mode Splitting

    first demonstration in a solid: A. Wallraff et al., Nature (London) 431, 162 (2004)this data: J. Fink et al., Nature (London) 454, 315 (2008)

    R. J. Schoelkopf, S. M. Girvin, Nature (London) 451, 664 (2008)

    ... with one photon (n=1): very strong coupling:

    forming a 'molecule' of a qubit and a photon

    vacuum Rabi oscillations

  • Quantum Optics with Supercond. CircuitsStrong Coherent CouplingChiorescu et al., Nature 431, 159 (2004)Wallraff et al., Nature 431, 162 (2004)Schuster et al., Nature 445, 515 (2007)

    Parametric Amplification & SqueezingCastellanos-Beltran et al., Nat. Phys. 4, 928 (2008)Abdo et al., PRX 3, 031001 (2013)

    Microwave Fock and Cat StatesHofheinz et al., Nature 454, 310 (2008)

    Hofheinz et al., Nature 459, 546 (2009)Kirchmair et al., Nature 495, 205 (2013)Vlastakis et al., Science 342, 607 (2013)

    Wang et al., Science 352, 1087 (2016)

    Waveguide QED Qubit Interactions in Free Space

    Astafiev et al., Science 327, 840 (2010)van Loo et al., Science 342, 1494 (2013)

    Root n NonlinearitiesFink et al., Nature 454, 315 (2008)Deppe et al., Nat. Phys. 4, 686 (2008)Bishop et al., Nat. Phys. 5, 105 (2009)

  • Hybrid Systems with Superconducting Circuits

    CNT, Gate Defined 2DEG, or nanowire Quantum DotsM. Delbecq et al., PRL 107, 256804 (2011)T. Frey et al., PRL 108, 046807 (2012)K. Petersson et al., Nature 490, 380 (2013)

    Spin Ensembles: e.g. NV centersD. Schuster et al., PRL 105, 140501 (2010)Y. Kubo et al., PRL 105, 140502 (2010)

    Nano-MechanicsJ. Teufel et al., Nature 475, 359 (2011)X. Zhou et al., Nat. Phys. 9, 179(2013)

    Polar Molecules, Rydberg, BECP. Rabl et al, PRL 97, 033003 (2006)

    A. Andre et al, Nat. Phys. 2, 636 (2006)D. Petrosyan et al, PRL 100, 170501 (2008)

    J. Verdu et al, PRL 103, 043603 (2009)

    Rydberg AtomsS. Hoganet al., PRL 108, 063004 (2012)

    zx

    vz

    and many more

  • TeleportationL. Steffen et al., Nature 500, 319 (2013) M.. Baur et al., PRL 108, 040502 (2012)

    Quantum Computing with Superconducting Circuits

    Circuit QED ArchitectureA. Blais et al., PRA 69, 062320 (2004)

    A. Wallraff et al., Nature 431, 162 (2004)M. Sillanpaa et al., Nature 449, 438 (2007)

    H. Majer et al., Nature 449, 443 (2007)M. Mariantoni et al., Science 334, 61 (2011)

    R. Barends et al., Nature 508, 500 (2014)

    Deutsch & Grover Algorithm, Toffoli GateL. DiCarlo et al., Nature 460, 240 (2009)L. DiCarlo et al., Nature 467, 574 (2010)M. Reed et al., Nature 481, 382 (2012)

    Error CorrectionM. Reed et al., Nature 481, 382 (2012)Corcoles et al., Nat. Com. 6, 6979 (2015) Rist et al., Nat. Com. 6, 6983 (2015) Kelly et al., Nature 519, 66-69 (2015)

  • Quantum Simulation

    simulatinga quantum system

    difficult on classicalcomputer!

    quantumsimulator

    sufficient controllability, flexibility!

    map!

    describes physical system of interest

    (physics, chemistry, biology,)

    encodes hard classical problem

    interesting toy model

    universalquantum computeruse

    Feynman, Int. Journal of Th. Phys. 21, 467 (1982)Llloyd, Science 273, 5278 (1996)

    OR

    still to be realized!

  • Systems for Quantum Simulation

    Blatt & Roos, Nat. Phys. 8, 277 (2012)

    Bloch et al.,Nat. Phys. 8, 267 (2012)

    Aspuru-Guzik & Walther, Nat. Phys. 8, 258 (2012)

    Ultracold gases Trapped ions

    Optical photons

    Nuclear magnetic resonance

    Vandersypen & Chuang, RMP 76, 1037 (2004)

    Solid state quantum devices

    Georgescu et al., RMP 86, 153 (2014)

    more established

    under development

  • Quantum Simulation with Superconducting Circuits

    Salathe et al., PRX 5, 021027 (2015)

    Digital simulation of exchange, Heisenberg, Ising spin models

    two-mode fermionic Hubbard models

    Analog simulations with cavity and/or qubit arrays

    Houck et al., Nat Phys. 8, 292 (2012)

    Barends et al., Nat. Com. 6, 7654 (2015)

    Eichleret al., Phys. Rev. X 5, 041044 (2015)OMalley et al., arXiv:1512.06860 (2015)

    Quantum simulation of correlated systems with variational Ansatz based on MPS

    Raftery et al., Phys. Rev. X 4, 031043 (2014)

  • Heisenberg Model Simulated with Supercon. Circuits

    Salathe et al., PRX 5, 021027 (2015)

    Digital simulation of Heisenberg spin model

  • Quantum Properties of Propagating Microwaves

    Bozyigit et al., Nat. Phys 7, 154 (2011)Lang et al., PRL 107, 073601 (2011)

    Single photon sources and their anti-bunching

    Preparation and characterization of qubit-propagating photon entanglement

    Eichler et al., PRL 109, 240501 (2012)Eichler et al., PRA 86, 032106 (2012)

    Full state tomography and Wigner functions of propagating photons

    Hong-Ou-Mandel: Two-photon interference incl. msrmnt of coherences at microwave freq.Lang et al. , Nat. Phys. 9, 345 (2013)

    Eichler et al., PRL 106, 220503 (2011)

  • On-Demand Pulsed Single Photon Source

    Step 1:Prepare qubit state by Rabi oscillation

    Step 3:Measure at the output using linear amplifier and signal processing hardware

    Step 2:Map qubit state to resonator by 1/2 vacuum Rabi oscillation

    D. Bozyigit et al., Nat. Phys. 7, 154 (2011), S. Deleglise et al. Nature 455, 510514 (2008) M. Hofheinz et al., Nature 454, 310 (2008), A. Houck et al., Nature 449, 328 (2007)

  • Single Sided Cavity and Beam Splitter

  • Detection Scheme using Beam Splitters, Amplifiers ...

    linear amplifier:

    beamsplitter:

    bosonicfield operators

    signal mode

    noisemode

    output mode

    C. Caves, PRD 26, 1817 (1982).

  • ... and Quadrature Detectors

    IQ mixer

    measured observable

    signal opticalanalogue

    homodynedetectionscheme

    M. P. da Silva et al., PRA 82, 043804 (2010).

    measuring field amplitude instead of photon number:

  • The Signal in One Channel of the Setup

    signal mode , vacuum mode

    Beam splitter

    Linear amplifier

    Mixer

    effective noisemode

    analogous forsecond channel!

  • Field Quadrature and Photon Number MeasurementsMeasure quadratures at channel b: Measure cross-power between channel e&f:

  • Single-Channel Power vs. Two-Channel Cross Power

    Single channel power:

    ... vs. cross power:

    similar for higher order moments:

    signal photonssystem noise is Gaussian with

    vanishing mean

    added noise photons

    whereas

    in vacuum Noise in 2 detection channelsuncorrelated

    system noise uncorrelated from signal

  • G(2) Measurement of Pulsed Single Photon SourceFirst measurement of intensity/intensity correlation function of a microwave frequency single photon source

    D. Bozyigit et al., Nat. Phys. 7, 154 (2011)M. P. da Silva et al., PRA 82, 043804 (2010)

    C. Eichler et al., PRA 86, 032106 (2012)

  • Photon Blockade: A Single Photon Turnstile

    Mollow-type triplet:

    Vacuum Rabi mode splitting:

    Effective two-level system (polariton)

    Photon blockade: first photon enters cavity second is blocked

    mediated photon/photon interactions

    Level diagram:

    Drive:

    C. Lang et al., PRL 107, 243601 (2011)

  • Polariton Mollow Triplet Measurement(cross-)power spectrum:

    observations: Rayleigh scattering resonance fluorescence

    C. Lang et al., PRL 106, 243601 (2011)

  • thermal (bunching) & coherent (poissonian) fields

    G(2) of Continuously Pumped Single Photon Source anti-bunching and sub-poissonian photon statistics

    C. Lang et al., PRL 106, 243601 (2011)M. P. da Silva et al., PRA 82, 043804 (2010)

    C. Eichler et al., PRA 86, 032106 (2012)

    resonant photon blockade:

  • G

    Microwave Photon Field Detectionamplitudedetector

    linearamplifier

    complex amplitude:Eichler et al., PRA 86, 032106 (2012)

    M. P. da Silva et al., PRA 82, 043804 (2010)C. M. Caves, PRD 26, 1817 (1982)

    noise added by HEMT amplifier :

    = ADC &digital filtering

    signal

    adds vacuum/thermal

    noise

    noise

    signal photon

    .. .~50 noise photons

    G

  • Full Tomography of a Single Propagating Mode

    G

    noise modephoton source

    1) prepare in vacuum :

    record histogramof measurement results

    normal distribution with variance

    introduces thermal noisewith mean photon number

    vacuum noise

  • Coherent State Histograms

    2) prepare in coherent state :

    MW generator

    3) rotate phase :

    Question: What can we learn about statewhen ?

    MW generator

  • store 2D histogram from measurement results:

    signal mode in single photon

    Fock state

    signal mode in vacuum

    correspondingphase spacedistribution

    subtracted histogramsto visualize difference

    Q - functionof noise mode :

    Single Photon Source Histogram

    C. Eichler, et al., PRL 106, 220503 (2011), PRA 86, 032106 (2012)

    separate noise fromsignal systematically!

    convolutionwith P function

    of signal

  • Statistical Analysis of Histograms

    systematic mode separation:

    Fock state

    vacuum

    1. calculate histogram moments

    2. algebraic inversion

    histogram moments:

    reminder:

    C. Eichler, et al., PRL 106, 220503 (2011), PRA 86, 032106 (2012)

  • State Dependent Moments of Probability Distribution

    moments for different prepared states:

    Fock statemean photon

    number

    superposition

    mean amplitude

    coherent state coherent state

    anti bunching

    C. Eichler, et al., PRL 106, 220503 (2011), PRA 86, 032106 (2012)

  • Reconstructed Wigner Function of Itinerant Photon

    Wigner function reconstructed from measured moments:

    Fock state superposition

    with

    C. Eichler, et al., PRL 106, 220503 (2011), PRA 86, 032106 (2012)

  • Reconstruct Density Matrices and Wigner Functions

    C. Eichler, et al., PRL 106, 220503 (2011)C. Eichler et al., PRA 86, 032106 (2012)

    for propagating multi-photon Fock states and their superpositions:

    measured using near-quantum-limited parametric amplifier

    Density matrices

    Wigner functions

  • Two Single Photon Sources and Beam Splitter

  • Two Single Photon Sources and Beam Splitter

  • Hong-Ou-Mandel g () for Microwave Photons

    Observations:

    Photon-Pair anti-bunching

    For > 0:

    Broadening of satellite peaks

    Triple-peak structure of satellite peaks

    Full recovery of double-peak at

    (2)

    Exp.: C. Lang, C Eichler et al. , Nat. Phys. 9, 345 (2013)

    Theo.: M. Woolley et al. , New J. Phys. 15, 10502519 (2013)

  • Learning More: Two-Channel Tomography

    Idea: Measure 4D histogram and evaluate relevant photon statistics

    analogous to1-channel case

    1 average photonin each channel

    no simultaneous click in both channels

    2-photon bunching

    quantum superposition!

    C. Lang, C Eichler et al. , Nat. Phys. 9, 345 (2013)

  • Density Matrix Displaying Two-Mode Entanglement

    Density matrix reconstruction: linear mapmoments Fock space density matrix

    use maximum likelihood procedure

    F = 0.93 F = 0.86

    C. Lang, C Eichler et al. , Nat. Phys. 9, 345 (2013)

    final state:

  • Dissipative Bose Hubbard Dimer

    Simulate quantum many body physics with light

    Greentree et al. Nat. Phys., 2 856 (2006)Angelakis et al, PRA 76, 031805 (2007)

    Hartmann et al., Nat Phys 2 849 (2006)Schmidt et al., PRB 82 100507 (2010)

    Realize nondegenerateparametric amplifier

    Unconventional photon blockade effect

    Josephson oscillations

    Liew & Savona, PRL 104 18 (2010)Bamba et al., PRA 83, 021802 (2011)

    Gerace et al. Nat. Phys., 5 281 (2009)Abbarchi et al. Nat. Phys., 9 275 (2013)

    Eichler et al., Phys. Rev. Lett. 113, 110502 (2014)

    hoppingemission

    photon-photon interaction

  • Why parametric amplifiers?

    G

    QUANTUM LIMITED AMPLIFICATION FOR

    Detection efficiency:

    Qubit readout

    Quantum feedback

    Mallet et al. Nat. Phys., 5 791 (2009)Vijay et al, PRL 106, 110502 (2011)

    Sank et al., arXiv (2014)

    SqueezingCV Entanglement

    MW photon correlations

    Microwave spectroscopy/Hybrid systems

    ANY CRYOGENIC SETUPOPERATING at MW FREQUENCY!

    Castellanos-Beltran et al., Nat. Phys. 4, 929 (2008)Eichler et al., PRL. 107, 113601 (2011)Flurin et al., PRL 109, 183901 (2012).Menzel et., PRL109, 250502 (2012).

    Riste et al., PRL 109, 240502 (2012)Vijay et al., Nature 490, 77 (2012)

    Steffen et al., Nature 500, 319-322 (2013)

    Mallet et al., PRL. 106, 220502 (2011)Eichler et al., PRL & PRA (2012)Pechal et al., PRX 4, 041010 (2014)Mlynek et al., Nat. Com. 5, 5186 (2014)

    Quantum dots,Mechanical devices,

    Rydberg atoms,

    2-5% best commercial amps-> 100% parametric amps

  • Parametric amplifier: Basic working principle

    Yurke et al., PRL 60, 764 (1988)Castellanos-Beltran et al., Nat. Phys. 4, 929 (2008)

    Eichler and Wallraff, EPJ 1, (2014)

    coherentPump

    nonlinearmedium

    signal

    idler

    4-wave mixing:

    Conversion stimulated by:1) vacuum fluctuations -> spontaneous parametric down-conversion (SPDC)2) input (quantum) signals ->parametric amplification

    Spectraldensity

    signal + idler photon pairs

    pump

    occupy samemode

    degenerateparamp

  • Degenerate vs. nondegenerate parampDegenerate paramp

    signalgain

    idlergain

    Non-degenerate paramp

    pump

    desirable for: conventional phase-preserving

    amplification multiplexed readout photon correlation measurements

    desirable for: single mode squeezing fast readout quantum feedback

  • JPD amplifier: implementation

    Features: Arrays with M SQUIDs to control nonlinearity: asymmetric SQUIDs -> homogeneous coupling to external flux

    array ofSQUIDs

    fingercapacitor

    Eichler et al., Phys. Rev. Lett. 113, 110502 (2014)

  • JPD amplifier: implementation

    Features: Arrays with M SQUIDs to control nonlinearity: lumped element -> large bandwidth possible asymmetric SQUIDs -> homogeneous coupling to external flux

    Eichler et al., Phys. Rev. Lett. 113, 110502 (2014)

  • Linear spectroscopy of JPD device

    Extract

    From fit to input-output model

    Eichler et al., Phys. Rev. Lett. 113, 110502 (2014)

  • Frequency Tuneability: Linear Response

    Eichler et al., Phys. Rev. Lett. 113, 110502 (2014)

  • JPD amplifier: non-degenerate operation

    ~ 0.5 GHz

    Signal gainIdler gain

    Increasepump power

    Eichler et al., Phys. Rev. Lett. 113, 110502 (2014)

  • JPD amplifier: degenerate operation

    Signal gainIdler gain

    Eichler et al., Phys. Rev. Lett. 113, 110502 (2014)

  • Entanglement of signal and idler noise

    vacuum noise+ pump

    Entangledsignal + idlerphotons+ pump

    How does the entanglement become evident?

    detuning from pump

    signalidler

    phase between LO and pump

    Vacuumfluctuations

  • Entanglement of signal and idler fields

    detuning from pump

    phase between LO and pump

    Vacuum level

    squeezing

    anti-squeezing

    sque

    ezin

    g

    Eichler et al., Phys. Rev. Lett. 113, 110502 (2014)

  • Summary JPD

    G

    Very good properties in terms of dynamic range, bandwidth, noise, tunability,

    Two-mode squeezing of more than -12 dB Degenerate and Non-degenerate operation possible Broadly applicable in cryogenic systems

    Eichler et al., Phys. Rev. Lett. 113, 110502 (2014)

  • Quantum Simulation

    simulatinga quantum system

    difficult on classical computer!

    quantumsimulator

    sufficient controllability, flexibility!

    map!

    describes physical system of interest

    (physics, chemistry, biology,)

    encodes hard classical problem

    interesting toy model

    universalquantum computeruse

    Feynman, Int. Journal of Th. Phys. 21, 467 (1982)Llloyd, Science 273, 5278 (1996)

    OR

    large scale one still to be realized!

  • Typically:

    Find Ground State of Hamiltonian

    Quantumsystem

    Coolingor

    Annealing

    Ground state

  • Alternative Paradigm for Quantum Simulation

    Variational Ansatz

    Here, specific class of states:- Matrix product states (MPS)- Projected entangled pair states

    Controllable quantum system

    Ground state well described by

    Use to simulateNot necessarilyidentical!

    Verstraete, Murg & CiracAdvances in Physics (2008)

    Barrett et al., PRL 110, 090501 (2013)Eichleret al., Phys. Rev. X 5, 041044 (2015)

  • Variational Quantum Simulation using Cavity QED

    Proposal: Barrett et al., PRL 110, 090501 (2013)Realization: Eichleret al., Phys. Rev. X 5, 041044 (2015)

    1) Create variational (cMPS) states using CQED 2) Evaluate Hamiltonian of interest using

    correlation measurements of .3) Vary state using external control

  • (Discrete) Matrix Product States1D lattice model (d levels per site):

    has coefficients

    Most general state

    Idea: Reduce states space to relevant one.

    with D-dim. matrices-> matrix elements

    Properties: Satisfy area law for the entanglement entropy Represent exact ground state of specific models Generalization to higher dimensional lattices Close relation to DMRG Continuous limit Connection with cavity QED and input/output

    theory

    Reviews:Verstraete et al., Adv. Phys. (2008)Schollwoeck, Ann. Phys (2012)Orus, Ann. Phys. (2014)

    cMPS and cavity QED:Verstraete et al., PRL 104, 190405 (2010) Barrett et al., PRL 110, 090501 (2013)Osborne et al., PRL 105, 260401 (2010)

  • (Continuous) Matrix Product States

    Verstraete and Cirac, PRL 104, 190405 (2010)

    Definition:

    with

    act on auxiliary systemEquivalence to discrete MPS by choosing(for bosons):

    and taking the continuum limit .

    field operator

    Features: Also possible for fermionic fields Generalization to vector fields with multiple components

  • Cavity QED output as cMPS

    generated by auxiliary system through

    Assumptions made here: Cavity input field is in the vacuum Internal decay negligible

    with

    Compare with non-Hermitian representation of cavity QED Hamiltonian

    Cavity acts like auxiliary system to generate MPS in the 1D continuum.

    Osborne et al., PRL 105, 260401 (2010)Barrett et al., PRL 110, 090501 (2013)

  • What we Simulate

    chemical potentialkinetic energy

    repulsive interaction

    Here: Gas of interacting bosons in 1D continuum

    Described by the Lieb-Liniger model

    onlyone parameterin the model!

    Lieb & Liniger Phys. Rev. 130, 1605 (1963)Paredes et al., Nature 429, 277 (2004)

  • What is needed?

    1) Tunable cavity QED system

    2) Efficient & programmablemeasurement apparatus

    3) Simulation of the Lieb-Liniger model

    4) Future perspectives

  • Cavity QED

    A. Blais, et al., PRA 69, 062320 (2004)A. Wallraff et al., Nature (London) 431, 162 (2004)

    R. J. Schoelkopf, S. M. Girvin, Nature (London) 451, 664 (2008)

    with Superconducting Circuits

    Cavity Transmission line resonator

    Atom Superconducting qubit

    atom

    cavity

    Small mode volume (1D) Large dipole moments Strong coupling

  • Circuit QED Approach to Creating cMPS

    =cavity

    piece of a coax cable

    Radiation field stored inside:

    sum of harmonic oscillators

    atom

    =JosephsonJunction

    =Nonlinearinductor

    g

    ef

    anharmonicsystem

    Changetransition energyon ns timescales!

    Ener

    gy

    qubit

    transmon

    Y. Nakamuraet al., Nature 398, 786 (1999)J. Koch, et al., PRA 76, 042319 (2007)

  • Eichleret al., Phys. Rev. X 5, 041044 (2015)Srinivasan et al., PRL 106, 083601, (2011)

    asymmetric resonator coupling control using global

    field + local flux line tunable frequency and tunable

    coupling

    Mediate effective photon-photon interactions with tunable strength

    Circuit QED Device with Tunable Coupling Transmon

    InOut

    Local flux line

  • Lieb-Liniger Hamiltonian Radiation field

    Field operator Cavity output field

    Measurement Apparatus

    Measure photon correlation functions!

    At GHz frequencies?Variational parameters:

  • Experiments with Propagating Quantum Microwaves

    Lang et al., PRL 107, 073601 (2011)Bozyigit et al., Nat. Phys 7, 154 (2011)Eichler et al., PRL 106, 220503 (2011)

    Time-correlations functions for continuous single photon source since then experiments on:

    Squeezing Wigner Tomography Qubit-Photon-Entanglement Hong-Ou-Mandel interference Photon shaping Superradiance

    linearamplifier

    adds vacuum/thermal

    noise

    Quantum limited amplifiers:(Special requirements in terms of dynamic

    range, bandwidth, phase-insensitivity)

    Eichler et al., PRL . 113 110502 (2014)c.f.: Castellanos-Beltran et al., Nat. Phys. 4, 929 (2008)

    Bergeal et al., Nature 465, 64 (2010)

    improved detection efficiency with quantum limited amplifiers

    reduce g2 measurement time by ~10000

    See ETH Qudev lab publications

  • Time-resolved Correlation Measurements Drive nonlinear cavity mode

    vs. two variational parameters:

    Effective anharmonicity:Drive rate

    Eichleret al., Phys. Rev. X 5, 041044 (2015)

  • Simulate Lieb-Liniger Hamiltonian

    How to measure ?

    Barrett et al., PRL 110, 090501 (2013)

  • Correlations vs. Variational ParametersMeasured correlations vs. variational parameters:

    Energy in variational space

    Chemical Potential: Kinetic energy: Interaction energy:

    Eichleret al., Phys. Rev. X 5, 041044 (2015)

  • Measured Energy Landscape

    Energy landscape vs. variationalparameters:

    Local minimum in variationalspace

    Ground state depends on interaction strength v

    variationalground state

    Parametric amplifier reduces g2measurement time by ~10000

    Eichleret al., Phys. Rev. X 5, 041044 (2015)

  • Properties of the Simulated Ground StateGround state energy vs. interaction strength

    We can do more than that: We can probe any quantity of interest!

    Tonks-Giradeaulimit

    Exact numerical result

    Experimentallyobtained

    at particle density

    Eichleret al., Phys. Rev. X 5, 041044 (2015)

  • Properties of the Simulated Ground State

    Experimentally obtained first order correlation function:

    Conversion of temporal into spatial coordinates Decrease of correlation length with increasing interaction strength No Bose condensation in 1D (Mermin Wagner) Numerical result with small bond dimension D similar to experimental data

  • Properties of the Simulated Ground State

    Experimentally obtainedparticle-particle correlations:

    crossover from weakly to strongly interacting Bose gas (Tonks-Giradeau) qualitative agreement already for a simulation with two variational

    parameters quantitative agreement requires additional variational parameters in

    experiments

  • Continuous Matrix Product States: Summary Variational approach System suitable for creating cMPS

    experimentally Efficient correlation measurements High level of control/tunability Some potential for scaling

    Many-body physics Atomic, solid state, bio-physics Quantum information

    Quantum field theories Discrete Lattice models Vector fields Fermionic systems Extension to higher dims

    Eichleret al., Phys. Rev. X 5, 041044 (2015)

  • The ETH Zurich Quantum Device Labincl. undergrad and summer students

  • Want to work with us?Looking for Excellent Postdoc and PhD Candidates!