quantum monte carlo simulations of hubbard and anderson

210
Louisiana State University LSU Digital Commons LSU Historical Dissertations and eses Graduate School 1990 Quantum Monte Carlo Simulations of Hubbard and Anderson Models. Yi Zhang Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: hps://digitalcommons.lsu.edu/gradschool_disstheses is Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and eses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Recommended Citation Zhang, Yi, "Quantum Monte Carlo Simulations of Hubbard and Anderson Models." (1990). LSU Historical Dissertations and eses. 4966. hps://digitalcommons.lsu.edu/gradschool_disstheses/4966

Upload: others

Post on 24-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Monte Carlo Simulations of Hubbard and Anderson

Louisiana State UniversityLSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1990

Quantum Monte Carlo Simulations of Hubbardand Anderson Models.Yi ZhangLouisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion inLSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please [email protected].

Recommended CitationZhang, Yi, "Quantum Monte Carlo Simulations of Hubbard and Anderson Models." (1990). LSU Historical Dissertations and Theses.4966.https://digitalcommons.lsu.edu/gradschool_disstheses/4966

Page 2: Quantum Monte Carlo Simulations of Hubbard and Anderson

QUANTUM MONTE CARLO SIMULATIONS OF HUBBARD AND ANDERSON MODELS

A Dissertation

Submitted to the Graduate Faculty of the

Louisiana State University and

Agriculture and Mechanical College

in partial fulfillment of the

requirement for the degree of

Doctor of Philosophy

in

The Department of Physics and Astronomy

by Yi Zhang

B.S., University of Science and Technology of China, 1984

M.S., Louisiana State University, 1988

May, 1990

Page 3: Quantum Monte Carlo Simulations of Hubbard and Anderson

TO MY PARENTS

Page 4: Quantum Monte Carlo Simulations of Hubbard and Anderson

ACKNOWLEDGEMENTSa n e w / ia

I wish to express my most sincere gratitude to my advisor Pro­

fessor Joseph Callaway for his continued valuable guidance and help

during my years of studies at Louisiana State University and for the

criticism of the manuscript

Help from all members of the theoretical solid state group, in

particular, Drs. Han Chen and Duanpin Chen, is mostly appreciated.

I also extend my appreciation to the Physics Department and all its

members for their friendness and help throughout my graduate study

period.

I am indebted to Dr. Han Chen for critical readings of portions

of this manuscript I am also grateful to Drs. Goodrich and Browne

for their useful suggestions and criticisms of this dissertation.

My final thanks go to Fei Xu for her constant encouragement,

love and support

Page 5: Quantum Monte Carlo Simulations of Hubbard and Anderson

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION.............................................. 1

CHAPTER 2 . MONTE CARLO SIMULATIONS ................. 14

2.1 Classical Monte Carlo .................................................... 15

2.2 Simulation Procedures ..................................................... 20

2.3 Quantum Monte Carlo .................................................... 23

CHAPTER 3. EXTENDED HUBBARD MODEL................... 36

3.1 Introduction ...................................................................... 37

3.2 The model ........................................................................ 41

3.3 Results .............................................................................. 48

3.4 Summary .......................................................................... 83

CHAPTER 4. PERIODIC AJNDERSON MODEL ................... 85

4.1 Introduction ...................................................................... 86

4.2 The model ........................................................................ 88

4.3 Results.............................................................................. 92

4.4 Summary .......................................................................... 103

CHAPTER 5. CONCLUSIONS ................................................. 104

REFERENCES ............................................................................ 107

APPENDIX. COMPUTER PROGRAMS ................................. 117

iv

Page 6: Quantum Monte Carlo Simulations of Hubbard and Anderson

ABSTRACT

We present) in this dissertation, a numerical simulation method

to study interacting fermion systems. The general simulation pro­

cedures are discussed in connection with a description of a Quantum

Monte Carlo simulation algorithm for interacting electrons on lat­

tices.

The algorithm presented here has been used to simulate interact­

ing electrons on lattices, and it makes possible the study of substan­

tially larger systems than can be studied by other numerical

methods. As long as certain limits of applicability are respected,

model Hamiltonians of interacting electrons can be studied without

resort to uncontrolled approximations. The method then provides

nearly exact solutions to model Hamiltonians of many-body systems,

in the sense that the degree of error can be controlled.

We also discuss some results obtained from simulations of the

extended Hubbard model and the periodic Anderson model.

For the extended Hubbard model in two dimensions, different

regions are identified where electron correlation produces antifer­

romagnetism, charge-density-waves, and singlet pairing supercon­

ducting behaviors. We also find regions where transitions from one

type of correlation to another occur.

v

Page 7: Quantum Monte Carlo Simulations of Hubbard and Anderson

For the symmetric periodic Anderson model, we observe the

formation of local spin momenta at high temperatures and their

quenching at low temperatures, as in the single impurity Anderson

model. In addition, we find antiferromagnetic interaction between /

local momenta at low temperatures which are not present in a single

impurity problem.

Page 8: Quantum Monte Carlo Simulations of Hubbard and Anderson

CHAPTER 1. INTRODUCTION

We present in this dissertation a Monte Carlo method for simu­

lations of model Hamiltonians of interacting electrons in solid state

physics. We also present some resulte obtained from the simulations

of the Hubbard (1) and Anderson (2) models.

Theoretical solid state physics is concerned with the description

of systems of interacting electrons. However, exact solutions to the

complicated many-body problems are almost impossible to obtain.

In general, two approaches have been adopted: 1) approximate

single-particle description of many-electron systems; 2)

simplification by replacement of the physical Hamiltonian by a

model which retains some aspects of the dynamic electron interac­

tions . In the first approach, interactions are approximated by aver­

age potentials, and electrons are described as independent particles

moving in the average field of other electrons and ions. The

independent particle model has been widely used to describe many

phenomena in the solid. The successful classification of many

metals, insulators and semiconductors and explanation of their pro­

perties by band theories is a major success. Although the indepen­

dent particle model has provided us great understanding of the phy­

sics of many solid state phenomena, other phenomena in solids are

intrinsically many-body effects and cannot be explained in the

1

Page 9: Quantum Monte Carlo Simulations of Hubbard and Anderson

2

framework of a single particle picture. Among these many-body

effects are electron correlations and collective excitations such as

spin waves and plasmons. Many-body interactions may also lead to

a ground state which can not be described in a single particle pic­

ture, as in the case of superconductivity. Model manybody Hamil­

tonians have to be considered in such cases.

We are interested in the simulations of models of interacting

electrons having the following general Hamiltonian,

H ” 2 d" U ijnifinjn' ■ (1*1)ijfi linn'

The models are defined here on some convenient single particle

basis states | * > in the second quantized form. In this basis set

c,.+ (cifJ) denotes the creadon(destruction) of an electron of spin fi

( t 4 ) in state |i > and nifi is the corresponding electron occupation

number. The state |i> is generally chosen as either the single parti­

cle Wannier state (3) localized at lattice site i or an atomic orbital

centered at site i. With this choice of basis set, the model is

described as defined on a lattice. The first term of the Hamiltonian

(1.1) describes the electron motion in the solid determined by the

hopping integral t^, in which the average electron-electron interac­

tion has been taken into account (as in electronic band structure cal­

culations). The parameters I/,;- represent short range Coulomb

interactions. The long range electron interaction is not included

Page 10: Quantum Monte Carlo Simulations of Hubbard and Anderson

3

explicitly as justified by Hubbard (1) for the Hubbard model.

Eq. (1.1) defines a class of model Hamiltonians which are appli­

cable only to systems for which a one band picture is appropriate.

However, the utility of Eq. (1.1) is greater than might at first be

realized, and many systems have been modeled successfully in terms

of Eq. (1.1). Two widely used models - the Hubbard and Anderson

models are simple cases of (1.1). The antiferromagnetic Heisenberg

model (4) also can be shown to be a limiting case. The many-body

model incorporates electron interactions into the description of sys­

tems of electron by explicitly retaining the electron-electron interac­

tions in the model Hamiltonian, and thus is expected to explain

some many-body phenomena in the solid. The inclusion of many-

body terms, even in their simplest form, usually makes the problem

much more complicated to solve. In this dissertation, we will

present calculations based on Quantum Monte Carlo simulations for

the Hubbard and Anderson models which provide some partial solu­

tions of the two models. These two models have attracted consider­

able attention in connection with studies of the magnetism of transi­

tion metals, metal-insulator transitions, heavy fermions, and recently

high temperature superconductivity.

The ferromagnetism of 3d transition metals (Fe, Ni, Co) and

their compounds has been long a fascinating problem (5), which has

been considered from two opposite starting points. The localized

Page 11: Quantum Monte Carlo Simulations of Hubbard and Anderson

4

model (Heisenberg model) describes the electrons as localized on

atoms. The interatomic exchange interactions lead to the magnetic

order in these materials. In the band model (6 ), each magnetic

cairier(electron) is itinerant, and the ordered magnetic state is sta-

blized by the weak electron-electron interaction. Both models are

capable of describing some phenomena in magnetic systems (7 ). The

low temperature spin waves (8,9) and high temperature Curie-Weiss

susceptibilities (10) are qualitatively explained by the localized

model, whereas the low temperature specific heat and the famous

non-integral magnetic moments in 3d transition metals can be

explained by the band model (7). A unified theory is needed that

would interpolate between the two extreme limits.

As an attempt to provide a theory of itinerant magnetism and

electron correlations, the Hubbard model was introduced in 1963 (1)

to describe electron interactions in narrow band systems, in particu­

lar the electron correlations and magnetism of d-electrons (11). The

simplest form of Eq. (1.1) is

H = t ^ CipCjn 4" U > (1*2)<b'>p *

where the electron hopping is taken as nearest-neighbor hopping

<$j>, and electron interactions are represented by a short range

repulsion U between electrons of different spins at same site.

Page 12: Quantum Monte Carlo Simulations of Hubbard and Anderson

5

Since the model was proposed, various approximate techniques

have been applied, including the Green’s function decoupling

scheme (1), mean field theory (12), functional integral (13), and

variational approaches (14). However these techniques often give

conflicting results except in the weak interaction limit Most of the

approximate techniques used are uncontrolled and there is no gen­

eral agreement on the properties of the model. Even though the

model is simple in appearance, it is solvable exactly only in a few

limiting cases. In one dimension, the model was solved by Lieb

and Wu (15) using the Bethe-ansatz technique at zero temperature,

and in three dimensions in large U limit by Nagaoka (16) when

there is one extra electron in an otherwise half-filled band for certain

lattices.

The Hubbard model has also been used to describe metal-

insulator and magnetic phase transitions in compounds of transition

metals (FeO, NiO, CoO, MnO, ...) (17). Mott-Hubbard insulators are

usually identical to ordinary magnetic insulators which cannot be

explained by the band theory (they would be metals in the band

theory). A metal-insulator transition is a transition from a Mott-

insulator to a metallic state (18). In Mott’s theory, a crystalline array

of hydrogen-like atoms, or more generally atoms in which there is

an incomplete shell, may make a transition from the metallic to the

non-metallic state as the interatomic distance is increased. For NiO,

Page 13: Quantum Monte Carlo Simulations of Hubbard and Anderson

the transition from the insulating to the metallic state occurs at room

temperature under pressures of about 2 Mbar (19). Mott pointed out

the importance of electron correlations in such materials and the

related breakdown of the conventional Bloch-Wilson band theory.

Early results (1,13) on the Hubbard model show that the ground

state of itinerant electrons in a narrow half filled band becomes

insulating and antiferromagnetic when the electron interaction U is

larger than the band width W.

The second model in which we are interested is the periodic

Anderson model (20-23). Tins model is a natural generalization to

the well-known Anderson impurity model (2), which was originally

introduced to describe the formation of localized magnetic moments

on dilute magnetic impurities in a nonmagnetic host For the single

impurity model, extensive effort finally leads to the renormalization

group (24) and Beihe-ansatz (25) solutions to the problem in some

limiting cases. The results show that the model also exhibits both

Kondo effect and mixed-valence phenomena.

The periodic Anderson model has been widely used to describe

heavy fermion systems and mixed-valence phenomena in / electron

systems (20,21). A heavy fermion system is characterized by its

large specific heat at low temperatures (22). The electronic specific

heat coefficient of a heavy fermion metal 7 (T) — [s two or

Page 14: Quantum Monte Carlo Simulations of Hubbard and Anderson

7

three order of magnitude larger than in ordinary metals, and 7 is so

large that the phonon contribution to the low temperature specific

heat can be ignored (T<2QK). Comparing with a free-electron for­

mula for 7 (proportional to the electronic mass m), the large

enhancement of 7 can be interpreted as due to a large effective *fThelectron mass — of order 103. Heavy fermion systems are also

unusual in their magnetic, electric and superconducting properties.

The periodic Anderson model has the following form for a two

orbital system when defined on a lattice:

H =-< S «%. + v S ( 4J/*. +/£<*»)<&■>(* <#>**

+E/ S. »/.> + E«/.tn/n » f1-3)»/* »

where the conduction electron band is formed by the d electron via

the nearest-neighbor hopping, and / refers to the localized / orbi­

tals with single particle energy level E j. V hybridizes the conduc­

tion band and the localized / levels.

Various approximate approaches and elegant techniques have

been used to study the Anderson model, such as the real-space

renormalization group (26) and the large N expansion (27,28).

These investigations shed some light on the nature of the systems.

Recent exact diagonalization studies provide further understanding

Page 15: Quantum Monte Carlo Simulations of Hubbard and Anderson

8

of the model in the strong interaction and weak hybridization limit

(29). five different regions have been specified in terms of the aver­

age number of / electrons.

An important approach to the study of model Hamiltonians is

the finite cluster approach (29-36). The exact results to the model

Hamiltonians on clusters provide solutions to the model without

uncontrolled approximations. They often provide the first step to

the basic understanding of the general properties of the models, and

guide more elegant theoretical and analytical approaches to the prob­

lem. Generally, two methods have been used in the cluster calcular

tions. The first one is the exact diagonalization method (29-31). This

method deals explicitly with the matrix representation of a model in

a suitable basis set, and diagonalizes the Hamiltonian. It is, how­

ever, limited by the size of the matrix that can be diagonalized by

available computers in a reasonable amount of computing time.

Shiba and Fincus (33) applied this approach to the one dimensional

half-filled Hubbard model, and studied the thermodynamical proper­

ties of the model. Recently Callaway and Chen (29,30,34,35) further

extended the limit of this method by incorporating the symmetrizar

don of basis sets, and studied the Hubbard and Anderson models on

different clusters. Details of the method and some results can be

found in Chen’s dissertation (36).

Page 16: Quantum Monte Carlo Simulations of Hubbard and Anderson

9

Our principal method for the study of model Hamiltonians is

the Monte Carlo simulation method (37). This method has been

widely used to study models of High- Te superconductivity (38), The

Hubbard and similar models (39-42) are used to describe the new

oxide superconductors, particularly in regard to the Cu02 layers.

Calculations (43) of the electron-phonon interaction and the experi­

mental observation of weak or negligible isotope effects (44) in

these materials suggest that phonons alone cannot explain high- Te

superconductivity according to the approach of conventional BCS

theory. The antiferromagnetism and spin fluctuations (45,46) in

these systems also indicate the possible importance of magnetic

interactions for superconductivity. It is believed that the new

mechanism of high- Te may originate from electronic degrees of

freedom. Since analytic methods are usually unable to provide

satisfactory solutions to the models of these complicated systems at

this time, Monte Carlo simulation studies of the models on finite

clusters will certainly provide valuable information about the proper­

ties of the models. The Monte Carlo method can deal with much

larger systems than is possible with the exact diagonalization

method. The results are exact in the sense that the degree of error

can be controlled, in contrast with other uncontrolled analytic or

approximate techniques.

Page 17: Quantum Monte Carlo Simulations of Hubbard and Anderson

10

We have studied the half-filled extended Hubbard model (one

electron per site) on a two dimensional square lattice (47), and

investigated properties of the model in different regions of its

parameter space. We found a phase transition between an antifer­

romagnetic and a charge density wave state. We also identified the

region where the superconducting pairing is stronger than antifer­

romagnetic and charge density wave correlations.

We have also applied the Monte Carlo method to the symmetric

Anderson model (48). The systems under consideration are two

dimensional square clusters. We find various behaviors of the sys­

tems in different regions characterized as free orbitals, local

moment, and Kondo regions, similar to those observed in the impur­

ity Anderson model (24,49,50). In addition we find the system

develops f —f antiferromagnetic correlations at low temperatures,

which contribute to the partial screening to the local moments, as

compared to the complete screening of the local moment by the con­

duction electrons in the single impurity model.

The development of the Monte Carlo simulation technique

began more than thirty years ago when Metropolis et al. (51) intro­

duced the idea of importance sampling, which makes the method

practical and efficient The simulation technique together with

importance sampling have been applied to many topics (52), includ­

ing classical spin systems, classical fluid dynamics, the one

Page 18: Quantum Monte Carlo Simulations of Hubbard and Anderson

11

component plasma, and surface properties. However the direct appli­

cation of the technique to the fermion systems is still a very chal­

lenging problem (53).

The major difficulty for fermion systems has been the incor­

poration of the Pauli principle and fermion statistics into an

efficient simulation algorithm. Development of algorithms remains

an open topic and active area. The Green’s function Monte Carlo

method (54), a generalization of a Monte Carlo method suggested

by von Neumann and Ulam (55), has been widely used to simulate

real material systems. At this point* studies of the ground state have

been restricted to free electrons and light atom system. The fixed

node approximation (56) partially overcomes the difficulty of nega­

tive probability in the simulations.

For fermions and quantum spins on lattice, various algorithms

have been proposed and used (37,57-63). The sizes of the systems

we can study utilizing the existing algorithms are substantially larger

than can be handled by exact diagonalization. In one dimension, an

algorithm (57) exists for which the simulation time scales linearly

with the size of the system. Otherwise, systems of modest sizes can

be studied and results can be extrapolated to larger systems. In

higher dimension, no algorithm existe for fermion systems that

scales like (3N at low temperatures (where /? is the inverse tempera­

ture for a finite temperature simulation and N is the number of

Page 19: Quantum Monte Carlo Simulations of Hubbard and Anderson

12

space sites). The exact updating procedure proposed by Blanken-

becler, Scalapino and Sugar (BSS) requires /3N3 operations (37).

The fermion statistics and Pauli principle have been incorporated

explicitly in the algorithm. As originally proposed and used, the

BSS algorithm becomes unstable at low temperature. Hirsch and Fye

(HF) (60) developed an algorithm based on the BSS algorithm in

which the number of operation is proportional to (where N0 is

the impurity or interaction sites). This algorithm is stable at low

temperature and suitable for the study of dilute magnetic impurity

systems. In addition, Hirsch (61) has recently developed an algo­

rithm which generalizes the BSS algorithm and the HF algorithm

with time proportional to (where f3o<0 is a scale factor).

The most recent advances in regard to algorithms came with the

development of a zero temperature algorithm (62) for simulations of

fermions, and stablizadon procedures for the BSS algorithm at low

temperatures (63), which make possible the simulation of fermion

systems at low temperatures.

The organization of the rest of the dissertation is as follows: In

chapter 2 we describe the method of calculation. Section 2.1 reviews

the basics of the Monte Carlo simulation method. The simulation

procedures are explained in Section 2.2. In section 2.3 the quantum

Monte Carlo simulation method is illustrated with a description of

the BSS algorithm.

Page 20: Quantum Monte Carlo Simulations of Hubbard and Anderson

13

Chapter 3 presents the resultB from the simulation studies of the

extended Hubbard model in a two dimensional square lattice. Fol­

lowing the introduction (section 3.1), we describe the basic proper­

ties of the model in section 3.2. In section 3.3 we discuss the pro­

perties of the model in different regions of itB phase diagram. This

chapter is summarized in section 3.4.

Chapter 4 starts with a brief introduction to the Anderson model

and its general properties (sections 4.1 and 4.2), the results of the

simulations are discussed in section 4.3 and concluded in section

4.4.

Chapter 5 summerizes all chapters and provides some sugges­

tions to further studies. Computer programs are listed in the appen­

dix. Some explanation about the simulation code as well as a flow

diagram of the computer programs is also included.

Page 21: Quantum Monte Carlo Simulations of Hubbard and Anderson

CHAPTER 2. MONTE CARLO SIMULATIONS

This chapter presents the basic aspects of Monte Carlo simular

tion methods. Starting from the classical Monte Carlo method, the

basic simulation procedures are illustrated with a description of the

widely used Metropolis importance sampling algorithm. We then

discuss a Quantum Monte Carlo algorithm for simulations of

interacting fermions on a lattice, which has been used in the current

study of the Hubbard and Anderson models. The results of these

simulations will be presented in the next two chapters.

14

Page 22: Quantum Monte Carlo Simulations of Hubbard and Anderson

15

2.1 Classical Monte Carlo

In classical statistical mechanics, the thermodynamical average

of an observable A at finite temperature T is given by

fA(x)e~PH(x)dx

< 1 > = /e -W > dx ’ (2,1)

where f3=\jkB T , is the inverse temperature, and H(x) is the Ham­

iltonian of the system described by a complete set of dynamic vari­

ables x. In principle, an observable quantity A could be calculated

through the evaluation of Eq. (2.1) once the forms of A(x) and

H(x) are known. However, in practice, the direct evaluation of Eq.

(2 .1) is very difficult, because an extremely complicated integral is

encounted. For many particle systems, the integration (2.1) is high­

dimensional. Standard numerical integration routines can not be

applied here since they are normally designed for lower dimensional

integrations.

The Monte Carlo method approximates the integral (2.1) as the

average of A on M independent sampling configurations of { x } in

phase space. The central limit theorem (64) ensures that the sam­

pling error decreases as the inverse of the square root of sampling

points, independent of the dimension of the integral space or

phase space.

Page 23: Quantum Monte Carlo Simulations of Hubbard and Anderson

16

A direct but naive method to evaluate Eq. (2 .1) is to sample

randomly chosen values of the variables x,- uniformly in the phase

space, and calculate <&>as the average of A(x,-) weighted by the

factor

£ e W ‘>A(Xi)<4>=ii-vj-------------, (2.2)

g e^ « M1=4

where A(xt) is the value of A in the state or configuration x,-. How­

ever this inefficient simple scheme is not of great use. For large sys­

tems, the entire phase space is very big, but the important part of

the phase space that contributes significantly to the integral (2 .1) is

very small, which means that most of the randomly generated

configurations { xi } will not contribute significantly to the average

<A> Since there are not enough configurations generated in the

important region, the statistical errors will be very large unless an

enormous number of sampling points are used.

Metropolis et al. (50) introduced the idea of importance sam­

pling. Here the M configurations xlt x2, ... , xM are not chosen

completely at random, but are constructed according to a probability

P(x) proportional to e~&H(x\ Hie integral (2 .1) is then reduced to a

simple arithmetic average

Page 24: Quantum Monte Carlo Simulations of Hubbard and Anderson

17

£ ^ HMA{Xi)/P(xt)<4 > - 1=1_______________________

S t'4a{',)lP(xi)«=1

1 ^ ^= (2.3)

iW 1=4

Hie generation of configurations according to e~^H^ ensures that

the configurations are distributed over the important part of the

phase space, therefore provides an efficient sampling.

The desired distribution of configurations {a;} can be con­

structed from a random walk of variables x through the phase space

via a Markov process (52,64). A Markov chain of variables ( x x ,

x2, xn, ..., ), a trajectory through phase space, is generated by

specifying a transition probability P(x{ —► x}-) from one point a?,- to

another point x}- in the phase space, for which the distribution of

element of the Markov chain xn+l depends only on the

element xn. It is sufficient that the transition probability P(x{ —^Xj)

satisfies the detailed balance condition:

= _ „ . ) (2.4)

in order that the Markov process converges to the distribution

e-pH{x) gjjj jjgg eventua] access to every configuration in the phase

Page 25: Quantum Monte Carlo Simulations of Hubbard and Anderson

18

space.

There are many ways to specify P(xi —► a: ■) that satisfy Eq.

(2.4), which correspond to different algorithms for generating ran­

dom configurations. One commonly used algorithm to generate a

Markov chain is the Metropolis rejection method which specifies the

transition probability as: (51)

if H ixfi-H ixi) > 0

1 otherwise

In Metropolis algorithm a proposed configuration change

Xf is always accepted if the change lowers the energy of the

system, e.g. H{xi ) < # (# ,). Otherwise, the change is accepted with

the probability e~ ^^ , where AH

The heat bath algorithm is very similar to the Metropolis

method, in which the transition probability is specified as:

P(xi -► */) = j + ^ | % ) ^ ) ] (2‘6^

It can be easily shown that P satisfies the detailed balance condition

Eq. (2.4) for both Metropolis and heat bath algorithms. Using Eq.

(2.5) for the transition probability sometimes makes the system

reach the desired distribution faster than choosing Eq. (2 .6 ). We

shall refer the desired distribution of configurations of {a:} as the

Page 26: Quantum Monte Carlo Simulations of Hubbard and Anderson

thermal equilibrium distribution.

Page 27: Quantum Monte Carlo Simulations of Hubbard and Anderson

20

2.2 Simulation Procedures

The key aspect of the Monte Carlo method described in the pre­

vious sections is the generation of a set of random configurations of

variables x distributed according to which can be achieved

by the use of Metropolis algorithm through acceptance or rejection

of proposed changes of configurations x. A general simulation pro­

cedure consists of the repetition of the following steps for construct­

ing a Markov chain of variables {a}, after an initial configuration x0

is specified: (52)

(I) From configuration a?,*, one proposes a random change

x,- —►a;/, and calculates the energy change associated

with that change AH' = H (xi,) —H(xi).

(II) Calculate the transition probability P =e~P*H for the

proposed change of configuration.

(HI) Generate a random number r uniformly distributed in

[0,1].

(IV) If P > r , the proposed change of x{ is accepted, and the

new configuration x- is counted as the (z-HL) element of

the Markov chain.

(V) If P < r , then a;/ is rejected, and the old configuration a:,-

is counted again as the (z'-K)A element of the Markov chain.

Page 28: Quantum Monte Carlo Simulations of Hubbard and Anderson

21

(VI) Calculate and record the value of observable A in the

configuration A(a;l+l).

For most systems, the number of degrees of freedom N is very

large, and each configuration of a: is a vector (®l, x2, • • *, x N) in

phase space. In proposing a change of a;, it is possible to change the

entire vector, e.g. proposing a random change for each elements of

x:

xk —+x* = x k-t£kAa (2.7)

where £* is uniformly distributed in [—% , % ] , and Ac is the step

size of the changes. Here the variables of x are assumed to have

continuous values. Hie step size Ac must be chosen carefully. If

Ar is too small, a change of configuration ®f will almost always be

accepted, due to the small changes of H{x). On the other hand, if

Ar is too large, it is very likely that a change of will be rejected,

since x, is likely to be moved outside the important region of the

phase space. A good choice of the step size Ar is such that about

50% of the proposed changes are accepted.

In practical simulations, a commonly used method is to update

one or a few elements of a: at a time, and leaving other elements

fixed. This procedure is advantageous because the change of H in

tins case can be evaluated much easier and faster than changing the

full vector of x. If H(x) is local in x and when one element of x

is changed, the change of H(x), AH, usually involves only a few

Page 29: Quantum Monte Carlo Simulations of Hubbard and Anderson

22

operations. All elements may be selected for updating either sequen­

tially or randomly.

Since subsequent configurations of {a:} differ only by one ele­

ment their physical properties are very strongly correlated (52). To

ensure that a set of independent configurations {a;} distributed

according to e~^H^ is used in calculating the averages of physical

quantities, it is necessary to select only a subset of configurations

from the constructed Markov chain, each separated by a number of

Monte Carlo sweeps. Therefore, step (VI) of the simulation pro­

cedure needs only to be performed after every a few Monte Carlo

sweeps. The evaluation of physical quantities in step (VI) is referred

to as a Monte Carlo measurement The quantity M in Eq. (2.3) is

then the total number of Monte Carlo measurements. M should be

large enough to keep the statistical errors within allowed values, and

the number of Monte Carlo sweeps between measurements should

also be large enough to ensure that the selected configurations are

uncorrelated and independent In addition, a large number of

configurations (warm-up sweeps) in the earlier simulation iterations

are always affected by the initial configuration, they are not charac­

teristic of the desired thermal equilibrium distribution. They should

not be used in the evaluations of physical quantities. Only those

configurations that reached thermal equilibrium can be used to cal­

culate the desired thermodynamical averages.

Page 30: Quantum Monte Carlo Simulations of Hubbard and Anderson

23

2.3 Quantum Monte Carlo

Hie major difference between a Quantum Monte Carlo simular

tion and a classical Monte Carlo simulation lies in the evaluation of

the quantity e~$H, where H is the Hamiltonian. In classical mechan­

ics the Hamiltonian H(x) is simply a c-function of a set of dynamic

variables x of the system, and the Boltzmann weight e~^H^ is

known once the configuration x is specified. For a quantum system,

H is an operator, and in general we do not know how to evaluate

e~&H. Fortunately, the Monte Carlo simulation procedures described

in the previous sections can still be used for pure boson systems

with some slight modifications. The starting point is analogous to

the path-integral formulation of the quantum field theory, in which

the average value of an operator A is given by: (65)

[A< *> as ' ( 2 *8 )

where S is the action defined at imaginary time r = it, and tp is the

field on which S and A depend. Eq. (2.8) has the same form as in

Eq, (2.1) except (3H is replaced by the action S, and the integration

is over the boson field i}>, which are commuting c-numbers. Hence

can still serve as a relative probability, and the simulation pro­

cedures of section (2 .2 ) can be applied to pure boson system

directly. For fermion systems, the direct application of previous pro­

Page 31: Quantum Monte Carlo Simulations of Hubbard and Anderson

24

cedures falls because of the anti-commuting fermion fields. In this

case, e-5 is not a c-number, and cannot serve as a relative probabil­

ity. To get around with this difficulty, one approach is to introduce

some auxiliary boson fields and formally integrate out the fermion

degrees of freedom at first (37), leaving an effective action S<ff

which is generally a complicated determinant and non-local in the

auxiliary boson fields.

To illustrate more clearly the method dealing with interacting

fermion systems, we consider here the extended Hubbard model,

defined on lattices:

H = t £ Ci+ citl + t / £ n ^ » (2-9)» <? > i

where i,j denote lattice sites, c,J is the electron creation (des­

truction) operator at site i (j) with spin fx, and

'ft ~ C ip ^ift J n t ~ ^ » ' t *

Hie first term of H describes electron motion and t is the electron

hopping parameter. In this model, electrons are allowed to hop

between nearest neighboring sites <ij> U denotes the short range

Coulomb interaction between electrons with different spins at the

same site, V measures the interaction between electrons at nearest

neighboring sites, and jxc is the chemical potential of the system

which implicitly controls the electron density of the system. The

system under consideration is a finite cluster with N sites.

Page 32: Quantum Monte Carlo Simulations of Hubbard and Anderson

25

To perform Montse Carlo simulation for this model, we write the

partition function of the system as

Z = Tr e ^ H , (2.10)

where /? = l/kB T is the inverse temperature. The problem here is,

in general, the inability to exponentiate the quantum Hamiltonian

and perform the required trace. However, we can transform the par­

tition function Z into a form which can be more easily handled.

Rewriting e~&H as a product of L factors, the partition function Z

becomes

Z = T y , (2.11)i=i

where there are L imaginary time slices (65) and =(3fL. To for­

mally trace out the fermion degrees of freedom, we first break each e-&rH into two terms using the Trotter approximation (66)

e -* H + 0(Ar2) , (2.12)

where H0 consists of the hopping part of Hamiltonian H, and Hx is

the remaining part which contains the electron interactions U and V.

H 0 ~ t C»'/2 Cj(i

X) Cijt cjn > (2.13)

Page 33: Quantum Monte Carlo Simulations of Hubbard and Anderson

26

where K is the hopping matrix, and

= ^ i ; w tTn(i + y £ n ,n y —mc£ * V (2.14)« <a> t

Hie error of the break-up is of the order which can be con­

trolled if the number of the time slices L is made large enough. The

electron-electron interactions in H l can be eliminated through the

use of the discrete forms of the Hubbard-Stratonovich transforma­

t i o n : ^ ^ )

= 4 E e 1 (215)

with cosh(X{/) = e * u* for U >0. For U <0,

___1_ ^ {*>.>+«,y)+*[/K>+»,y) (2 16)

with e~^rf/ =cosh(2\(/)yboshs( \ p ) , and Xy =ln(coshXf/).

One auxiliary Ising variable a0(t,/) is introduced at each space-time

lattice site (i,l) for the interaction U, while for terms involve theinteraction V,

Vrijrij- = V £ n {/injy , (2.17)nn'

four auxiliary Ising variables <r1(<^’>/), c 3(<2i>/) and

a 4(<^y>/) are introduced between each pair of nearest neighboring

Page 34: Quantum Monte Carlo Simulations of Hubbard and Anderson

27

sites <%j >(in a two dimensional lattice ) at each time slice I .

Using Eq. (2.15) and (2.17), we have now for U >0 and V >0,

e-*rHx{i) = J _ exp j Xtf<r0(i%f -n .-J— ^ ( n , - f +n(J) ]

<#>

-A rV x j(n ,-+ n y) + ArV cZ ni}<(j> i

i S c*m c»/i- y e ** • (2-18)

where is the coefficient of the quadratic term c,J ci(l. Substi­

tute Eq. (2.18) and (2.13) into Eq. (2.11). The partition function becomes

L ci,»iZ = £ 21- n « c • (2.19)

£70. <7l ) t r 2i<T8i ° 'A ^=1

The quartic terms in the original H have been replaced by

quadratic terms after introducing auxiliary Ising fields, and the prob­

lem is now reduced to non-interacting fermions coupled to auxiliary

Ising fields.

Since all terms in Eq. (2.19) are now quadratic, the trace over

the fermion degrees of freedom can be taken directly (32,37), leav­

ing a summation over the auxiliary Ising variables,

Page 35: Quantum Monte Carlo Simulations of Hubbard and Anderson

28

z = £ ndetlz+n^l

= s n detM,, (2 .2 0 )<T0 <71 2 8 =44

with B f = e~ ^Ke Vti , and = / 4- B£B£_y * • 'B$B£ , where K

and VJ^l) are N x N matrices (N is the number of space sites of the

system), and

(K)v (2.21)

W o : = i y ( ) '% - (2.22)

With the fermion degrees of freedom removed, the d (in this case 2)

dimensional quantum simulation problem is now transformed into a

d + 1 dimensional classical simulation problem, and the summation

over the Ising spin variables can be evaluated by standard Monte

Carlo methods described in the previous sections. The Boltzmann

weight e~$H is replaced in this case by a product of two deter­minants:

P =detM'|'detM| (2.23)

The Monte Carlo procedures for evaluations of the summation over

these Ising spins now consists of generating a set of Ising spin

configurations cr = (a 0 , cr1, a2, er3, cr4) with probability proportional

to detA/t(<7)-detMj(cr). In deciding whether to accept or reject a

Page 36: Quantum Monte Carlo Simulations of Hubbard and Anderson

29

proposed change of a Ising spin, it is necessary to calculate the

ratios of the determinants between the new and old configurations,

detlWJo7)R“ = d e t '

The total probability for acceptance is P =R^ 'R^. Unfortunately,

detAf^ is nonlocal in the Ising spin a fields, and evaluating R^

directly can be very time consuming, since a direct evaluation of the

determinants would require of order IV3 operations. The exact updat­

ing procedures introduced by Blankenbecler, Scalapino and Sugar

(BSS) (37) requires only TV2 operations per update when a change of

Ising spin is accepted. Using this algorithm, we sweep through the

space-time lattice many times, updating one Ising spin variable at a

time. A t time slice I , a single flip of spin changes B f to

^ ( / - b Y ) with

^ = e V,(/)(<r')-V,(/}(<T)_/ i (2>25)

Since each spin cr0 appears only in one diagonal element of

1fp(l) , and spins cr1,o,2,£73,<74 connect to two diagonal elements of

V ^l) , at most two elements of are non-zero. If a flip of one

Ising spin involves sites p and q , then

(4% .

Page 37: Quantum Monte Carlo Simulations of Hubbard and Anderson

30

+ W M . y (2-26)

The ratio of the determinants is

detM„ (a1) R» = detitf„ (<t)

= det[ / +B£ —Bf‘ (o') —B f ] det[ I +B£ Bi* (<r) — B f ] '

We rearrange the factors in the determinants cyclically and have

_ det[ / + B ^ —B(B£ - B f i l +A f ) ] det [ / - B ( B[ - B f \

= d e t [ / - K / - ? f ( / ) m (2.28)

where

»<•(<) = [ ^ + % - S f —B/1]”1, (2.29)

is related to the equal-time single particle Green’s function (37)

(0 (2-30)

Since Zs/1 has at most two non-zero diagonal elements, the deter­

minant of (2.28) is reduced to a 2>2 determinant, and can be

evaluated, which gives to

Page 38: Quantum Monte Carlo Simulations of Hubbard and Anderson

31

- 9 V \ q9 V ) (2.31)

The ratio of determinants between the new and old configurations

can be easily calculated to determine whether to accept or reject

proposed change of Ising spins, provided that the Green’s function

gP(l) at time / is known. If the Green’s function g ^ l) is known,

and a proposed change of Ising spin at time / is accepted, the

values of g^il) must be updated to its new value for the next

update. The Green’s function for the new Ising spin configuration

satisfies the Dyson’s equation:

J W = [ / + %

= g'‘( l) " (O IA /V W ■ (2.32)

With only two non-zero elements in Af1, the new values of g^{l)f

are easily found to give:

»W = 9 H i k ~ { [(**-*"((),>) - W ] X-**'ft

+ [(Siq-9l‘(l)yN,V)]X

[?',( 0 „ ( i + i ( i - j ' ,(0 w )-^ ',(0 ) + s V ) qP9“(‘)PjN>‘( t)} }(2.33)

With above information, the procedure for the simulation should be

Page 39: Quantum Monte Carlo Simulations of Hubbard and Anderson

32

clear initially a Ising spin configuration is specified

( °o > ai t * a% i a 4 )o the initial equal-time Green’s function attime 1 is directly calculated using its definition (2.29). We then

sweep through the space-time lattice, updating one Ising spin at a

time. For a proposed change of Ising spin at time / , the probabil­

ity

detM / detA/i'P Rj detA/|

is calculated using Eq (2.31) to determine whether to accept or

reject the new configuration. If the new configuration is accepted,

the Green’s function is updated via Eq (2.33). After all spins of a

given time slice I have been updated, the Green’s function for the

next time slice can be obtained through the following relartion

»<■(<-*)=% (2-35)

Ihis process should in principle go on forever, after the initial

configuration is chosen and the Green’s function ff^l) is calculated.

In practice, however, as one proceeds through the lattice, round-off

error builds up due to the finite precision of computers, and it is

necessary to recalculate gp directly from its definition, once the

accuracy of g*1 drops below acceptable level. When the thermal

equilibrium is reached after some warm-up steps, we calculate the

average value of quantities of interest We evaluate the value of

Page 40: Quantum Monte Carlo Simulations of Hubbard and Anderson

33

operator A in a particular Ising spin configuration for every several

MCS. Total M measurements are taken to calculate the final aver­ages.

The main resulte obtained from the simulations are the single

particle Green’s function < c1/l(/1)cyJ(/2) > from which we are able

to calculate all quantities of interest Here the average < > is only

restricted to the trace over fermions, not to the Ising variables. The

single particle equal-time Green’s function is related to <//i(/) via the

following relations:

< « . > ( 0 ^ ( 0 > = g V ) < j • (2.36)

For time-dependent Green’s function, we have

« v > U )e ,i(0 > = [ % - B f »"(!)]o

={[1-9'‘(1)1B/-Brtfy, (2.37)

and

«^ ('K -„(l) > = {[l-9 '‘(l))Bf -B ,V ‘ };,

=[B/‘- B / ?'*(l)]/( . (2.38)

Many-particle Green’s function can be constructed directly from the

single-particle Green’s function using Wick’s theorem (69),

Page 41: Quantum Monte Carlo Simulations of Hubbard and Anderson

34

<cl /)c //)> C c jfc-t( /)Cm( / ) > + < c ^ /)Cm(0><cy(/)cjr t0 > -(2.39)

The average value of an operator A can be obtained in two

steps: First the operator A is averaged over the fermion trace in each

different Ising configuration used for measurements according to a

Monte Carlo probability. Wick’s theorem is generally used to decou­

ple the many-body Green’s function into single-particle Green’s

function which is simply ^(Z). In the second step, values of A from

different measurements are averaged to give a final result and the statistical error.

So far we have implicitly assumed that the weight used in the

simulations, P =detMf -detMj, is always non negative. However,

the product of two determinants need not be positive except in some

special cases. When the product is not positive, an additional aver­

age over the sign of the probability should be performed to take the

negativity into account This problem could become serious if the

average probability goes to zero (70).

Define:

( d e tM f(< 7) -d e tM j(o - )8%gn{a)- detM^ ay detM^ j »

and

Page 42: Quantum Monte Carlo Simulations of Hubbard and Anderson

35

P f((r) = IdetMfcrJ’detM^cr) | . (2.41)

We have

X) A(<r)detMj (o)-detMj (<r)^ A s = _£______________________________

XJ detM| (<r)-detA/ (<r)a

YtA{a)-s%gn[oryP,(a) a

~ J]'sign(a)’P f{a)

<A-sign <sign 'Zpi (2.42)

Here the probability is chosen as die absolute value of the two

determinants, and the average is with respect to die positive probar

bility. Hie negative sign has been incorporated into the operator A

In addition, the average <$ign must be calculated too.

Page 43: Quantum Monte Carlo Simulations of Hubbard and Anderson

CHAPTER 3. EXTENDED HUBBARD MODEL

In this chapter, we will discuss some resulte obtained from the

simulation of the Hubbard model. The system under consideration is

a cluster representing a square lattice. We are interested in the pro­

perties of the system as the electronrelectron interaction parameters

( U, V) vary. The phase diagram of the system in the ( U, V) plane

for the half-filled band case is studied. We find a phase transition

between an antiferromagnetic ordered state and a charge-density

ordered state. We also investigate the transition to a superconducting

state in the negative U case .

36

Page 44: Quantum Monte Carlo Simulations of Hubbard and Anderson

37

3.1 Introduction

The extended Hubbard model has been discussed in chapter 2 in

connection with the development of the quantum Monte Carlo simu­

lation technique for the description of interacting fermions. For con­

venience, we write down the Hamiltonian again,

H (3.1)i <? > i

where t is the nearest neighbor hopping integral, <Sj> denotes

nearest neighbors, and fx, electron spins ( t 4) ; UandV are on-site

and nearest-neighbor interactions respectively. The chemical poten­

tial n e implicitly determines the electron density of the system.

The extended Hubbard model (47) we study here is a direct

extension of the simple one band Hubbard model, in which the

interaction V is set to be zero. Even for the simple Hubbard model,

exact solutions are scare, despite much effort in the past 26 years.

Only in a few instances, do we have exact solutions to the problem.

In one dimension, the exact ground state property were obtained by

Lieb and Wu (15) using Beth-Ansatz technique. They have shown

that the ground state for a half-filled band has short range antifer­

romagnetic correlations and the system is an insulator for all posi­

tive U. Away from half-filling, numerical results indicate that a

Fermi surface may exist in the ground state. (71) The finite

Page 45: Quantum Monte Carlo Simulations of Hubbard and Anderson

38

temperature properties of the ID half-filled Hubbard model were

studied by Shiba and Pincus (33) using the exact diagonalizafion

method for finite clusters. In three dimensions, Nagaoka (16)

proved that the ground state is ferromagnetic in large U limit, when

there is an extra electron or a single hole in an otherwise half-

filled-band for certain lattices. This has been seen in the exact diag-

onalization of clusters (30). However, it has been argued that

Nagaoka’s theorem can not be applied in the thermodynamic limit

where one must consider a finite fraction of holes in an infinite sys­

tem. In the case of half-filled band, the model in strong coupling

limit is equivalent to the antiferromagnetic Heisenberg model (4).

To second order in t, the effective Hamiltonian is

H ,„ = j £ (3-2)<#>

in which is a spin operator on site i. The spins are coupled anti-

4ferromagnetically with J — The large U suppresses double

occupancy of the same sites.

In this paper, we study the extended Hubbard model in two-

dimensions, exploring the effect of the interactions U and V. We

find that the ground state phase diagram shows several regions in

which the properties of the system are qualitatively different

Depending on the values of U and V, the ground state of the

Page 46: Quantum Monte Carlo Simulations of Hubbard and Anderson

39

system can show antiferromagnetic correlations, charge orders, pair­

ing correlations characteristic of superconductivity, or condensations.

Emery (72) obtained a ground state phase diagram for the one

dimensional extended model in the weak coupling limit using renor­

malization group techniques. A transition from an antiferromagnetic

to a charge density wave state was found on the boundary U = 2 V .

Recent exact diagonalization (34) and Monte Carlo simulation (74)

studies are in general agreement with the early results (75). How­

ever, there are still questions about the exact location of the transi­

tion and the order of the transition. The solutions from the exact

diagonalization (34) study indicate that the transition is located

slightly above the line U =2V, and is a sharp one.

The discovery of high Tc superconductivity in cuprates has

attracted much attention to the Hubbard model in general, with spe­

cial emphasis on the 2D square lattice. Anderson (41) suggested that

the half-tilled 2D Hubbard model in the strong coupling limit may

be able to describe the new high temperature superconductivity, for

which the conventional BCS theory is unable to predict the observed

high transition temperatures. The existence of long range antifer-

romagnetic order in the ground state of the half-filled band Hubbard

model, and the effect of holes on magnetic correlations has been a

major interest Anderson argued that the 2D Hubbard model does

not show long range antiferromagnetic order it its ground state,

Page 47: Quantum Monte Carlo Simulations of Hubbard and Anderson

40

instead, the system is in a singlet resonating valence bond (RVB)

state. Recent simulation studies (75-77), however, have overwhelm­

ing evidence to indicate that the 2D half-filled Hubbard model and

the antiferromagnetic Heisenberg model do have antiferromagnetic

long range order in their ground states.

Page 48: Quantum Monte Carlo Simulations of Hubbard and Anderson

41

3.2 The Model

The system under consideration is a square lattice with periodic

boundary conditions, as shown in Fig. 1. The number of sites,

N =4X4. A larger cluster (6X6) has been considered in some

cases. The electron motion in the model is described by t in the Eq.

(3.1). When restricted to nearest-neighbor hopping, the single parti­

cle energy level of non-interacting electron corresponds to a band,

E(7c) = —2t(coskx + cosky), (3.3)

with band width W =8t. The density of states for free electron is

shown in Fig. 2, where a logarithmic singularity occurs at E = 0

due to the topology of the two dimensional system. In addition to

the translational symmetry (with periodic boundary condition) and

point group symmetry, electron-hole symmetry exists in the half­

filled case. The chemical potential is given at all temperatures by

}j>e = ~ + 4 V as will be shown below.

Consider an electron-hole transformation in the square lattice

with two sublattices A and B:

<*,■„ = ( - 1)% + (3.4)

Page 49: Quantum Monte Carlo Simulations of Hubbard and Anderson

42

Fig. 1. A 4X4 cluster on the square lattice. Periodic boundary

conditions are used here.

O O O

O • •

O • •

O • •

O • •

O O O

O O O

• • O

• • O

• • O

• • O

O O O

Page 50: Quantum Monte Carlo Simulations of Hubbard and Anderson

43

Fig. 2. Density of states for free electrons with single particle

energy band Eq. (3.3).

0.4

0.3

^ 0.2

0.1

0.00 2 4-4E

Page 51: Quantum Monte Carlo Simulations of Hubbard and Anderson

44

where

0 if * is on sub lattice A1 if % is on sublattice B * (3.5)

We have

and

d~+d' = 1 —c ~c-

—&ij •

(3.6)

(3.7)

Under the transformation, the Hamiltonian in the hole-representation

is

H = - t £ + tf£ (l-« |/ 't ) ( l - < )i

+V£ (2-f!/)(2-n/)-Me £(2-n,0<tj> i

=-*S *Vt nu +<0>* * < ? >

- ( U+2 VZ-nc )Y^nf + (U+2 VZ-2/xc) W (3.8)I

where Z is the number of nearest neighbor sites. (Z=4 for two-

dimensional square lattices.) When

Page 52: Quantum Monte Carlo Simulations of Hubbard and Anderson

45

U + 2 VZ =fxc

or

= ~ m = ~ H V , (3.9)

R=-* S *&<tj,+USnlWl +VZnfnf-li''£nf. (3.10)<fj P i <i}> i

Therefore H is invariant under the electron-hole transformation . As

a consequence, the average of electron number equals N when

We have used Monte Carlo simulation method (32,37)

described in chapter 2 to study this model in the parameter space

(U,V) . To control the systematic errors within a few percent, the

time slice parameter L is taken so that ( U + 4 V)Ar~0.5. A typi­

cal Monte Carlo run for a square (4X4) cluster involved 2000—4000

measurements separated by two Monte Carlo sweeps {MCS)f and

proceeds by 1000 warm-up sweeps. Calculations were made on

FPS-264 and IBM-3084 computer systems.

As a test of the program, some comparisons were made with

the results of exact diagonalization calculations for some small clus­

ters. Fig. 3 shows the results of one of these comparisons in which

the first and second nearest neighbor charge correlation functions are

shown for a ring of eight sites in the case U =2.0 V = 1.5 . The

Page 53: Quantum Monte Carlo Simulations of Hubbard and Anderson

46

Fig. 3. First (lower curve) and second neighbor (upper curve)

charge correlation functions as functions of temperature for a ring of

eight sites. Solid curves are the results of an exact diagonalization

calculation; dots (•) and open circles (o) are the Monte Carlo

results. Parameters: U =2, V =1.5.

2.0

1.0

0.5

0.0 L_ 0.0 t.O 2.0 3.0 4.0

keTt

Page 54: Quantum Monte Carlo Simulations of Hubbard and Anderson

47

agreement is reasonably good, particular at low temperatures. Hie

small discrepancies (about 5%) at higher temperature are attributed

to the fact that the thermal properties in the exact diagonalization

calculations are obtained using a canonical ensemble while the

current Monte Carlo calculation employs a grand canonical ensem­

ble (30).

In the case of a four site system (a square) we find good agree­

ment between Monte Carlo results and those obtained from exact

diagonalization using a grand canonical ensemble at all temperar

hires. This comparison indicates that the systematic error in the

Monte Carlo calculation is less than 5% for the ZV we used. Hie

statistical error is usually smaller than the size of dots used in our

graphs. For this reason we do not supply error bars in most cases.

Generally we found that statistical errors in correlation functions are

larger than errors in susceptibilities.

Page 55: Quantum Monte Carlo Simulations of Hubbard and Anderson

48

3.3 Results

We now present the ground state phase diagram in the parame­

ter space of U and V. Various thermodynamic quantities are

obtained, including correlation functions and susceptibilities. To

study the magnetic properties of the system, we calculate the spin-

spin correlations, defined as

<SizSjz > = <(nlt “Wli)(nyf-nyi)> , (3.11)

where the on-site spin correlation function <(5,-z)2 > is the local

magnetic moment The magnetic structure factor is obtained from

the Fourier transform of the spin-spin correlation functions,

S ( t) >ij

= 4 » ,r< ^ < ( n , . f X*Vt ) > (3-12)

A peak of 5(F) at F = (7r,7r) would indicate the formation of antifer­

romagnetic ordering. The k -dependent magnetic susceptibility is

the response function of spin-spin correlations, which is given by

= 4 / i r •,(<))>0 ij

Page 56: Quantum Monte Carlo Simulations of Hubbard and Anderson

49

= 4?/<*r S e ‘* ^ " ^ )< [ re.t ( r ) “ n. iW ]‘[» it (° ) - « ; i ( 0 ) l >*JV0 ij

= 4 f s s « 'r‘('5’'^ )<[",',(0 -M O] -Kt(l) ] >JV M l;

(3.13)Similarly, charge-charge correlation functions are defined as

<n,ny > = < K T + « t i )(nyr + n ; i ) > , (3.14)

where <jrc,2> measures the double occupancy or on-site charge

correlation. The charge structure factor which measures the change-

density-wave order is given by

S,(H) = 4 < (« ,-« ,)(ny^ , . ) > , (3.15)ij

where n{ is the average number of electron on site t. The charge

susceptibility is

Xc(£) = 4 ? J d r ^ e lki^ - Rf)<lni{T) -«;-][ny(0) - n y]> .JV o ij

(3.16)

To explore the possibility of electron pairing in the model, we also

consider the pairing correlation functions and susceptibilities. The

local singlet pairing susceptibility is defined as

Page 57: Quantum Monte Carlo Simulations of Hubbard and Anderson

50

a,(*) =4 I dT Se W /5)<Sit(r)ca(r)e/l(°)<!jt(0) >■JV o ij(3.17)

For lc =0,

xp(° ) =4 Jdr S<c,rWcaWcjt (o)cyf (0) >JV 0 i;

1 fi= a? / rfr (°)c^ 't (°) >>(3-18)O k k '

where is the Fourier transform of cf/i.

In the following, we will confine our attention to k = 0 (uni­

form case) and k = (7T,7r) (staggered case). We will refer S{jf) and

yfif) as the staggered structure factor and susceptibility, respectively.

The staggered magnetic susceptibility will diverge at low tempera­

ture if the system is in an antiferromagnetic state. Similarly, we

expect the staggered charge susceptibility to become divergent if the

system is in a charge-density wave state. A divergence in the paring

susceptibility indicates the possibility of forming a superconducting

state.

Page 58: Quantum Monte Carlo Simulations of Hubbard and Anderson

51

A. U>0, V=0

This is the ordinary single band Hubbard model, which has

been studied in the square geometry considered here, by Hirsch

(32), and recently by White et al. (77) for system up to 12X12 in

size. They used a new stabilization method (63) to achieve lower

temperature than previous obtained. There has recently been consid­

erable controversy concerning the possibility that the ground states

of the spin % two-dimensional antiferromagnetic Heisenberg model

and the half-filled single band Hubbard model might lack long-range

order (41). Although a formal analytic proof has not been found,

there is overwhelming evidence from numerical simulations (75-77)

that these two models do in fact exhibit long range antiferromag­

netic order. As the systems we consider are not large, we do not

obtain conclusive results on this point However, our results are in

agreement with those of Hirsch (32) and White (78), showing the

building up of strong antiferromagnetic correlations at low tempera­

ture, and a strongly divergent staggered magnetic susceptibility. We

take the opportunity to introduce the reader to our approach to the

presentation and analysis of data beginning with this rather well stu­

died case.

As temperature decreases, electrons in the half-filled band

become more localized, as a result, local moments form gradually

on each site. In addition, spin-spin correlations between these local

Page 59: Quantum Monte Carlo Simulations of Hubbard and Anderson

52

moments start to develop, resulting in an antiferromagnetic ordered

state.

Fig. 4 shows the spin-spin correlation functions as functions of

temperature for a 4X4 square cluster. The alternation of signs in the

correlation functions on neighboring sites clearly shows the antifer­

romagnetic type of correlations. Correlations begin to develop

around /3 =1 and nearly reach saturation about j3 = 8 or T = 1/8.

We have used a low temperature algorithm of Hirsch (61) to reach

this low temperature. In Fig. 5 we plot the staggered magnetic

structure factor Sijt) for 17=4 . The building up and saturation of

S(t?) at low temperature again indicate that the system is in an anti­

ferromagnetic state at low temperature. Fig. 6 shows the reciprocal

of both the uniform and staggered magnetic susceptibility for U=4 .

The straight lines are linear least-squares fits to the data points with

kB T / t> 1.5. It is apparent that above this temperature, the Curie-

Weiss law applies reasonably well to describe the susceptibilities,

X"1 (3.19)

For the uniform susceptibility, 6 is negative (the least-squares fit

value is $= —0.17±0.07). This is typical of antiferromagnets. On

the other hand, 0 is positive (0.39±0.01) for the staggered suscepti­

bility, indicating a possible divergence and a phase transition. The

behavior of the staggered susceptibility here is similar to the

Page 60: Quantum Monte Carlo Simulations of Hubbard and Anderson

53

Fig. 4. First (•), second (0 ) and third (zS) neighbor spin-spin

correlation functions as functions of the inverse temperature /?.

Parameters: U =4, V =0.

AN

t/TN

inv0

0f t

6 8

Page 61: Quantum Monte Carlo Simulations of Hubbard and Anderson

54

Fig. 5. Staggered magnetic structure factor S(lc) for

U =4, V =0. Notice saturates at low temperature around

/? «8 . (•) for F = ( 7 r , 7 r ) ; (A) for F=(0,0).

4

3

2

1

00 2 4 6 8

P

Page 62: Quantum Monte Carlo Simulations of Hubbard and Anderson

55

Fig. 6. Uniform (•) and staggered (o) reciprocal magnetic sus­

ceptibility for the case U =4, V =0. The straight lines are least-

squares fits to the data points for kB T/t> 1.5. The intercepts are at

kB0/t = -0.17±0.07 and 0.39±0.01, respectively. The negative 0

for x(0) is typical of antiferromagnets.

8.0

6.0

4.0

2.0

0.0 1.0 2.0 4.03.0kBT

t

Page 63: Quantum Monte Carlo Simulations of Hubbard and Anderson

56

uniform susceptibility for bulk ferromagnets, in which 6 would be

approximately the Curie temperature. However, one sees a tail on

the susceptibility so that does not reach zero at finite tem­

perature. This is, in part, a result of the finite size of the sample we

considered. In addition it has been demonstrated many years ago

that the two-dimensional Heisenberg antiferromagnetic model with

finite-range interactions can not have long-range two sublattice order

at finite temperature (78). We expect the same conclusion is appli­

cable here to the Hubbard model, which is equivalent to the antifer­

romagnetic Heisenberg model in large U limit Long range order

probably exists at T =0.

The reciprocal of the uniform susceptibility ^ (O ) deviates from

linear behavior in the range of temperatures where the linear fit to

X-1C5f) is approaching zero. This behavior is similar to that observed

in exact diagonalization calculations for the Hubbard model (30) on

small clusters. In a bulk three-dimensional antiferromagnet, x -1(0)

has a sharp minimum (cusp) at the Neel temperature and approaches

a finite limit as T—>0. Some recent results for the square lattice

Heisenberg antiferromagnet (79) imply that x-1(0) should also have

a minimum at finite temperature and approach a finite limit at T=0 .

Monte Carlo simulations for the Hubbard model at larger sizes and

lower temperature (77) do show the minimum of X"10) at finite tem­

perature. The present results are only partly consistent with these

Page 64: Quantum Monte Carlo Simulations of Hubbard and Anderson

57

expectations, but it is possible that the deviations are due principally

to finite size effects.

We do not show the charge correlation function and susceptibil­

ities, nor the pairing correlations and susceptibilities here, because

they are in this case, generally small, and not dramatically tempera­

ture dependent

Page 65: Quantum Monte Carlo Simulations of Hubbard and Anderson

58

B. 17=0, V>0.

We turn our discussion to the other limit, where the on-site

interaction U is zero. In this case, the system behaviors completely

different from the previous case A. The system appears to approach

a state [usually described as a charge-density-wave (CDW)j in

which sites are alternately almost doubly occupied or almost empty.

The nearest neighbors of a doubly occupied site would be empty,

and the second neighbors occupied, and so on, conceptually similar

to a two sublattice antiferromagnet

We show in Fig. 7 the development of double occupancy with

decreasing temperature. Three different values of V: 0.5, 0.75, and

1.0 are considered. The tendency toward double occupancy obvi­

ously increases with increasing V and decreasing temperature. For

the two larger values of V , there are indications of saturation of

< n2> at low temperature. This behavior is similar to the local

moment formation in the antiferromagnetic case. However the local

moment < S '/> and spin-spin correlation functions in this case do

not show significant increase at low temperature, and remain small.

At first sight, it may appear surprising that the high temperature

limit of < i2> is not 1. However, a simple argument shows that the

correct value is 3 /2 when the electron are uncorrelated. (In a large

system in which the number of electrons equals the number of sites,

if one electron is on a given site, the probability that another one

Page 66: Quantum Monte Carlo Simulations of Hubbard and Anderson

59

Fig. 7. The development of partial double site occupancy for

U =0, V >0 as the temperature decreases is illustrated by the plot

of the average of the square of the site occupation number < n 2 >

The curves are guides to the eye only.

(•) V =0.5; (o) 7 =0.75; (A) 7 = 1.0.

2.0

0.0 1.0 2.0 3.0KbT

t

Page 67: Quantum Monte Carlo Simulations of Hubbard and Anderson

60

will be present is only 1/2 because only one spin state is available

there, where other sites have two states). If <&2> is calculated for

the case studied in case A above ( U >0, V— 0) the high temperature

limit for < n 2>is approached from below rather than from above.

Fig. 8 shows the dependence of the charge-correlation function

on the separation of sites for V =0.5 and 1.0 at temperature

kB T/t =1/4. It is quite obvious from the graph that the system is in

a CDW state. It is seen that if site "0” is occupied, first and fourth

neighbors have depressed occupancy, and second, third, and fifth

neighbors have enhanced occupancy. Increasing V increases the

magnitude of the charge alternation. Perhaps the most interesting

point about Fig. 7 is that the magnitude of the charge-charge corre­

lation function does not show any appreciable decrease with dis­

tance over the range considered, in this case, the whole lattice.

In addition, the reciprocal staggered charge susceptibility xT1

will approach zero, similar to the staggered magnetic susceptibility

in case A above. The staggered charge structure factor shows similar

development and saturation at low temperatures. We will show this

behavior in the next two subsections for charge-density-wave state.

Page 68: Quantum Monte Carlo Simulations of Hubbard and Anderson

61

Fig. 8. The charge-charge correlation function is shown for the

central site and the first through fifth neighbors for U =0, and

kB Tft =0.25. (•): V —1.0; (o) V =0.5.

2.0

< n 0 nj>1.0

o . o 1.0 2.0 3.0 4.0 5.0

Page 69: Quantum Monte Carlo Simulations of Hubbard and Anderson

62

c . u > o, v>o.

This is the region between the two limiting cases A and B, and

the interesting physics in this region is the competition between U

and V leading to a transition between spin-ordered and charge-

ordered states, as we would expect In one dimension, this crossover

occurs near the line U= 2 V (34,72,73). In the present case of a

two-dimensional square lattice, we find a similar transition near

U=4V. Unfortunately, we can not carry out this calculation to low

enough temperatures to determine accurately the exact location and

order of the transition. The primary difficulty is due to the negative

probability problem we mentioned in chapter 2. The average sign

becomes small at low temperature as the condition U = 4 V is

satisfied.

Fig. 9 shows the average sign [defined in Eq. (2.40)] as parame­

ter V increases for U—4 at temperature kB T =1/2. For small

V< U /4 or V<1, the average sign is well behaved, ie. <Sign>is

close to X. At the other end V' U (4, the average sign behaves simi­

larly, and we don’t have a problem with negative probability. How­

ever, as the system crosses the boundary U «4U , the average sign

drops away from 1 to about 0.6 at temperature kB T—\ f l ,

As the temperature becomes lower, the problem associated with

the negative sign becomes more severe, and the average sign is very

Page 70: Quantum Monte Carlo Simulations of Hubbard and Anderson

<Sig

n>

63

Fig. 9. Average sign as a function of parameter V for

U —4, kB T/t = l/J. The average sign drops well below 1.0 as the

condition U —4 V is satisfied.

1

.8

.6

.4

2

0.8.6 1.21 1.4

V

Page 71: Quantum Monte Carlo Simulations of Hubbard and Anderson

64

close to zero. As a result of this, the statistical errors become very

large, hence it is very difficult (almost impossible) to calculate phy­

sical quantities accurately. Loh et al. pointed out that the average

sign decays exponentially to zero as temperature decreases, prevent­

ing us from reaching very low temperature (70). Despite this

difficulty in the simulation, we are still able to see the transition

from antiferromagnetic state to charge-density-wave state as the

interaction V increases and acrosses V ~ U /i .

Fig. 10 shows the behavior of the charge-density-wave order

parameter m defined by

" > = < ( ] f E « iF' \ ) ! > (3-20)

for A = (7r,7r) as a function of V for the cases U—2 and 17=4 . For

small V , m is small (in the range of 0.1 and 0.2) indicating the

absence of charge-density-wave order. On the other hand, m begins

a rapid rise near U—A.V to approach 1 for large V.

Figs. 1 1 - 1 3 compare the behavior of staggered magnetic and

charge structure factors for U= 4 and 17=0.5, 1.0, and 1.25 as func­

tions of temperature. For V—0.5, the charge structure factor remains

small and is nearly temperature independent, but the magnetic struc­

ture factor is developing to become dominant at low temperature.

This is similar to the U >0, V==0 case, where it has been shown

Page 72: Quantum Monte Carlo Simulations of Hubbard and Anderson

65

Fig. 10. Behavior of the CDW order parameter m as a function

of V. m begins a rapid rise near U = 4 V.

(o): U = 2 and kgT/t =1/5; (•): U = 4 and kB T /t =0.5.

m 0.5

o.o 0.5

Page 73: Quantum Monte Carlo Simulations of Hubbard and Anderson

66

Fig. 11. Staggered magnetic (•) and charge (o) structure factors

as functions of temperature. U = 4 , V =0.5. Staggered magnetic

structure factor is dominant and increases at low temperature , while

the staggered charge structure factor remains small.

2.0

1.0s

0.5

0.0 1.0 2.0 3 .0

t

Page 74: Quantum Monte Carlo Simulations of Hubbard and Anderson

67

Fig. 12. Same as Fig. 11. Parameters are U =4 , ^ = 1.0.

Both structure factors rise at low temperature.

2.0

S

0.5

0.02.0 3 .0

koTt

Page 75: Quantum Monte Carlo Simulations of Hubbard and Anderson

68

Fig. 13. Same as Fig. 11. Parameters are V =4 , V = 1.25.

The staggered charge structure factor develops rapidly at low tem­

perature, but the staggered magnetic structure factor is suppressed.

10.0 r

5.0

___ i3 .00.0 2.0

kBTt

Page 76: Quantum Monte Carlo Simulations of Hubbard and Anderson

69

that a long-range antiferromagnetic order exists at low temperature.

When V is increased to 1.0 so that the condition 17=4 V is satisfied,

both magnetic and charge structure factors increase at low tempera­

ture. Although the magnetic structure factor appears to grow faster,

it is not clear what will happen at T==0. In the case of V=1.25,

the charge structure factor is strongly dominant and the magnetic

structure factor is being suppressed as the temperature decreases. It

is consistent with the exact diagonalization calculations to expect

that the transition occurs for V slightly larger than t / / l (34).

Fig. 14 shows the behavior of magnetic and charge susceptibili­

ties for the same set of parameters (U, V). The two types of suscep­

tibilities behave similar to the structure factors in the sense that for

small V , the magnetic susceptibility is the dominant one and

diverges at low temperature, but for large V , charge susceptibility

dominates and diverges strongly at low temperature. It is evident

that the system changes from an antiferromagnetic to a charge-order

state near U—4 V. Similar transitions are observed at other values of

U .

At high temperatures, Curie behavior (x « T 4) is expected for

all susceptibilities in view of the expressions for the susceptibilities,

for example, assuming,

Page 77: Quantum Monte Carlo Simulations of Hubbard and Anderson

70

Fig. 14. Temperature dependence of staggered spin ( — ) and

charge susceptibilities ( — ) for U =4. Curves are labeled by the

values of V. For small V, the spin susceptibility increases rapidly at

low temperatures. For large V, the charge susceptibility is strongly

dominant as the temperature decrease.

20.0

10.0

5.0

2.0 0 . 5

tx t.O

0.5

0.20.5

1.25

.05 L- 0.0 1.0 2.0 3.0 4.0

ksTt

Page 78: Quantum Monte Carlo Simulations of Hubbard and Anderson

71

is finite. Terms of first order in t in Eq. (3.21) then determine the

intercept 6 (in the extrapolated plot of x-4 against T), while high

terms lead to curvature in the plot In many bulk ferromagnetic sys­

tems, plotB of x-1(0) versus T are quite linear until one gets close to

the Curie temperature . The $ determined by a straight-line extrapo­

lation is often quite close to the actual transition temperature. In an

antiferromagnetB, x~l(0) should be expected to show a minimum,

while the staggered susceptibility, if it could be measured, should

behave similarly to the uniform susceptibility in a ferroraagnet We

are not aware of any demonstration that a similar situation prevails

in regard to either charge-density-wave or superconductive systems

and there is a question as to whether a sharp phase transition at a

finite temperature is to be expected in any of these 2D systems.

However, we think it remains informative to consider the behavior

of 0 as a function of the parameters of the system.

We show in Fig. 15, the intercept 0 from the least squares fits

to the staggered spin and charge susceptibilities for U—A as a func­

tion of V. Clearly, for small values of V, the only indication of a

susceptibility divergence at finite temperature, ie. , 0>O, occurs in

the magnetic susceptibility. In the neighborhood of V=1 , Be for

charge susceptibility becomes positive , and rapidly rises to become

large than 0a . We observe that $a does not go to zero as V

approaches 1 from below. This leads to the plausible conjecture

Page 79: Quantum Monte Carlo Simulations of Hubbard and Anderson

72

Fig. 15. Intercept 9 in a Curie-Weiss law least-squares fit to the

staggered spin (•) and charge (o) susceptibilities for 17 = 4 as func­

tions of V. Lines are guides to the eye only.

0.5

T

-0.5

- 1.00.4 0.6 0.8 1.0 1.2 1.4V

Page 80: Quantum Monte Carlo Simulations of Hubbard and Anderson

73

that the transition between antiferromagnetic and charge-density-

wave states is sharp as V increases as seen from the exact diagonal-

ization study of small clusters.

Page 81: Quantum Monte Carlo Simulations of Hubbard and Anderson

74

D. U < 0 .

Since the parameter U was introduced to describe electron

repulsion on a single site, it seems, at first* unlikely that negative U

values could arise. However, the possibility of negative U was sug­

gested by Anderson (80) in regard to localized electronic states in

amorphous semiconductors. It is also possible that an effective

negative U could arise as a result of competing electronic interac­

tions, for example, including polarization effects (81). Further, the

negative U case has attracted some interest in that superconductivity

is expected to result (82). Scalettar et al. (83) have discussed the

phase diagram for the negative U Hubbard model on a square lat­

tice, and found that away from half-filling there is a transition at a

finite temperature into a superconducting state. We have considered

negative U in our calculations, as well as negative V.

For the positive U case, we have seen that a transition from an

antiferromagnetic state to a charge-density-wave state occurs near

U =4V, we shall see below that a similar transition for negative U

case exists. The transition from eharge-density-wave to singlet

superconducting state occurs at V =0. there is no pairing for small

positive V. On the other hand, charge-density-wave state is unstable

against even a small negative V.

Page 82: Quantum Monte Carlo Simulations of Hubbard and Anderson

75

In the presence of an attractive on-site interaction U, electron

pairs form on lattice sites. With a positive nearest-neighbor repul­

sion V>0, these pairs avoid each other and form a charge-density-

wave. These electron pairs are quite localized on lattice sites. How­

ever, if V is small but negative, pairing correlations develop at low

temperature, and electron pairs become more delocalized. The sys­

tem is in a singlet pairing state. The transition between these two

states occurs for V = 0 . In addition, the charge-density-wave order

and singlet pairing order coexist in the ground state of the negative

U Hubbard model.

Consider a transformation that maps the positive U into nega­

tive U when V = 0 ,

= c tf > = (~0 ' cit (3.22)

where Si has been defined in Eq. (3.6) ,

H = ~ t £ citcfr+ U £ n,t ni{ ~ £ nt-i i

— * E W i v - V E "n n?l +-ST- S *?■ (3-23)<ij> « «■

The Sg —Sg correlations in the antiferromagnetic case for the posi­

tive U half-filled Hubbard model are directly mapped to the CDW

Page 83: Quantum Monte Carlo Simulations of Hubbard and Anderson

76

correlation for negative U Hubbard model.

S<z 'Sjz =Kt - n,i)(n;t_nyi)

— l)(ny “ !)• (3.24)

In addition, the long-range spin-spin correlations in the x direction

are mapped into pairing correlations,

Therefore, the ground state of the pure negative U Hubbard model

( U <0, V = 0 ) exhibits both long-range CDW and singlet super­

conducting pairing order. (In the presence of a small first neighbor

interaction V, one of them is unstable and will disappear). We have

done simulations explicitly for the negative U Hubbard model, and

find that indeed the charge-charge correlation maps to the spin-spin

correlation in z direction of antiferromagnetic case,

<(n,‘ —1 )(n}- — 1 )> is the same as <Siz‘SJg > of Fig. 4. The

singlet pairing correlation function maps to the spin-spin correlation

in x direction.

In Fig. 16, we show the reciprocal of the staggered charge sus­

ceptibility xc 0*0 88 a function of T at U = -4 for some positive

’ S j x ( C,"!" Cfj + C,’!" C,-|) ( CyJ Cj j + Cyj Cjf )

(3.25)

Page 84: Quantum Monte Carlo Simulations of Hubbard and Anderson

P" Pmi i

Fig. 16. Reciprocal of the staggered charge susceptibility for

U = —4 and V = 0 .2(0 ), 0.5(«), and 1.0(A). Lines are least-squares

fits to the data points at high temperatures.

5.0

4.0

3.0

2.0

0.0 3.0 4,0

t

Page 85: Quantum Monte Carlo Simulations of Hubbard and Anderson

78

values of V( 0.2, 0.5, and 1.0). The susceptibilities suggest the pos­

sibility of a divergence at low temperatures. The values of the

intercept of a linear least squares fit increases with V , although all

cases show substantial deviations from linear behavior for low tem­

perature or small Xc"4 0?) • Fig. 17 shows the development of the

staggered charge structure factor at low temperature in this case,

indicating, we believe, the formation of a CDW state at low tem­

perature, as in the case of positive U when V > U / 4. In fact, the

charge correlation seems to be enhanced by negative U. In the case

of V =1.0, the values of Sc(lf} saturates around 14.7, close to the

maximum possible value of 16. The saturation of ^ (n 1) is similar to

what we have seen for S(7f) in the antiferromagnetic case.

Fig. 18 shows the pairing susceptibility Xp(0)t Eq. (3.17), as a

function of temperature for U = —4, and V =0.2, 0.0, and -0.2. It

is seen, that the pairing correlations are suppressed for small posi­

tive V, but are enhanced by a small negative V. The pairing state,

hence, is unstable against a small perturbation of positive V. On

the otiier hand, the charge-density-wave disappears in the presence

of a negative V. (We did not show a graph here). Fig. 19 shows

the reciprocal of the pairing susceptibility for U = —4 and V =0.0

and -0.2 . The results are very close. As in the case of other sus­

ceptibility it appears that a kind of Curie-Weiss law is reasonably

Page 86: Quantum Monte Carlo Simulations of Hubbard and Anderson

79

Fig. 17. Staggered charge structures factor as function of tem­

perature for U = - 4 . V =Q.2(*), 0.5(Z^, and 1.0(o). For V = 1.0,

the value of Se (7?) saturates around 14.7 at low temperatures (max­

imum possible value 16).

16.0

12.0

8.0

4.0

IJ .0.0 1.0 2.0 4.03.0kBT

t

Page 87: Quantum Monte Carlo Simulations of Hubbard and Anderson

80

Fig. 18. Singlet pairing susceptibility xP (0) as functions of tem­

perature for U = —4 and V =0.2(A)f 0.0(o), and —0.2(«). The

pairing correlations are suppressed by small positive V, but are

slightly enhanced by a small negative V.

4.0

3.0

Xp2.0

0.0 0.5 1.5 2.0

t

Page 88: Quantum Monte Carlo Simulations of Hubbard and Anderson

81

Fig. 19. Reciprocal of the singlet pairing susceptibility as a

function of temperature for U =-A and V = 0 (o), and — 0.2(*).

The straight line indicates linear extrapolation of the high tempera­

ture data.

16.0

12.0

4.0

0.0 1.0 2.0k0T

3.0 4.0

t

Page 89: Quantum Monte Carlo Simulations of Hubbard and Anderson

82

well satisfied at high temperatures with a positive intercept 9 .

It would be interesting to explore the entire phase diagram of

the extended Hubbard model, including the region of large negative

V . In the present Monte Carlo simulation the algorithm appears to

become unstable for negative V as the magnitude of V becomes

larger. This maybe an indication of an approach to a condensed

phase as seen from the diagonalization study of small clusters.

Page 90: Quantum Monte Carlo Simulations of Hubbard and Anderson

3.4 Summ ary

We summarize our quantum Monte Carlo simulations performed

for the extended Hubbard model on a square lattice: We have stu­

died properties of the model in different regions of its phase

diagram, and observed the formation of antiferromagnetic, charge-

density-wave, and singlet pairing states. An antiferromagnetic to

charge-density-wave transition is found near the line U = 4 V for

positive U, and a transition from charge-density-wave wave to

singlet pairing state occurs at V = 0 for negative £/; Singlet pairing

of the superconducting type becomes significant for negative U and

V <0, but disappears when V >0. On the other hand, charge-

density-wave is unstable in the presence of a negative V. The phase

diagram of the two-dimensional half-filled Extended Hubbard model

is illustrated in Fig. 20.

Page 91: Quantum Monte Carlo Simulations of Hubbard and Anderson

84

Fig. 20. The phase diagram of the half-filled extended Hubbard

model in the two dimensional square lattice.

CDW

U = 4V

U

Page 92: Quantum Monte Carlo Simulations of Hubbard and Anderson

CHAPTER 4. PERIODIC ANDERSON MODEL

This chapter presente some results from the simulation of the

periodic Anderson model. The systems under consideration are 4X4

and 6X6 square lattices. Quantum Monte Carlo calculations are

performed for the symmetric case 2Ef +17 =0. Results show a

qualitative sim ilarity to the single-impurity Anderson model in

regard to the formation of local moments, the behavior of magnetic

susceptibilities, and the screening of / moments by conduction elec­

trons. At low temperature we find the development of antiferromag­

netic correlations between / local moments, which are not present

in the single impurity case.

85

Page 93: Quantum Monte Carlo Simulations of Hubbard and Anderson

86

4.1 Introduction

The impurity Anderson model (2) was proposed in 1961 in

order to explain the formation of local moments on dilute transition

metals impurities in nonmagnetic hosts. The properties of the model

proved to be much more complicated and difficult to determine, par­

ticularly at low temperatures, than originally anticipated However,

extensive theoretical efforts ultimately led to an elucidation of the

properties of the model via renormalization group techniques (24)

and an exact solution in certain cases through the Bethe-ansatz

approach (25). Ihe model has been found to exhibit both Kondo

and mixed-valence behaviors, as well as the formation of local mag­

netic moments. Recent quantum Monte Carlo calculations (60) pro­

vide additional information concerning correlation functions.

Hie Anderson lattice Hamiltonian (20,21,22) provides a natural

generalization of the impurity Anderson model, and may be

appropriate for the description of many rare-earth and actinide ele­

ments and compounds, due to the fact that these systems are

involved in the mixed valence and heavy Fermion phenomena. The

idea of hybridization of localized / orbitals with extended s, p and d

orbitals in these systems seems to be applicable. Many of the

phenomena described by the impurity Anderson model occur for the

lattice case, but new physics arises from the hybridization-mediated

interaction between electrons occupying localized orbitals (48).

Page 94: Quantum Monte Carlo Simulations of Hubbard and Anderson

87

We are interested in the results which can be obtained for the

Anderson-lattice Hamiltonian by numerical techniques. There are

two types of calculations: (1) exact diagonalization for small clus­

ters, and (2) quantum Monte Carlo simulations. The exact diagonali­

zation procedure gives resultB for the excited state, and thermo­

dynamic properties. However, the number of possible states and

hence the dimension of the Hamiltonian matrix which must be diag-

onalized increases extremely rapidly with the number of sites, so

that the method is applicable only to systems which are quite small.

To date the largest system studied is a tetrahedral cluster (29). The

Monte Carlo method can be used for systems which are significantly

larger, but numerical difficulties arise at low temperatures, such as

the negative probability problem.

The Monte Carlo method used here has been described in

chapter 2. The results that can be obtained can be regarded as

almost exact; the qualifier refers both to the use of finite-size sys­

tems (although the variation with the size of the system can be stu­

died), and to the presence of some statistical error. There are, how­

ever, limitations in regard to the applicability of the method both in

regard to temperature and other parameters.

Page 95: Quantum Monte Carlo Simulations of Hubbard and Anderson

88

4.2 The Model

Our specific model is that of a two-dimensional periodic Ander­

son square lattice. The geometry of the system is shown in Fig. 1,

where each lattice site has two lands of orbitals which will be called

d and / here. The d orbitals form the d electron conduction band,

while the / orbitals represent the localized / states. The orbital

degeneracy of actual d and / states is not considered here. The Ham­

iltonian of the system is

» =-« S <W, +v S (<#/,„+/.}<*,*)

+ # / £ ”/ , > ( 4 . 1 ) •> *

where <5/> denotes nearest neighbor pairs, and /x refers to electron

spins ( t 4). The first term gives rise to the conduction electron band

with energy levels of Eq. (3.3). The second term represents the

hybridization between the conduction d electrons and the / elec­

trons. Ej is the energy of the unhybridized single particle / level.

17 the / electron interaction parameter which measures the short

range Coulomb repulsion between two / electrons with different

spins on the same site. The parameter t is the hopping integral and

sets the energy scale of the system. We will choose units in which

Page 96: Quantum Monte Carlo Simulations of Hubbard and Anderson

89

The properties of the system turn out to be very complex, and

very different in different ranges of parameter space (U ,V ,E j).

Our calculations are made for the symmetry case where

2Ej +U =0. In this case, electron-hole symmetric existB as in the

half-filled Hubbard model, and we have < n ^ > = < n d > = 0.5 at

all temperatures. The time slice was chosen so that (A t)2 U =

UfPfL2 =0.07. The systematic error introduced by the breakup is

quite small (about 3%). For the symmetric case, it can be shown

that the product detM|(/)*detM^(/) used in the Monte Carlo simula­

tion steps is always positive (32) for any configurations of cr's, so it

can be used directly as a Boltzmann weight, and we do not have a

negative probability problem as we have for the extended Hubbard

model.

A typical Monte Carlo run for a fixed set of parameter

(U,V,Ef,{3) on a 4X4 square cluster involved 3000 measurements

separated by two Monte Carlo sweeps through the lattice, and pre­

ceded by 1000 warm up sweeps. We also made some calculation

for a large 6X6 system with a smaller number of measurements.

Calculations were mostly made on the FPS-264 floating-point sys­

tem.

Fig. 21 compares the present Monte Carlo results with an exact

diagonalization calculation. The results presented show the Monte

Page 97: Quantum Monte Carlo Simulations of Hubbard and Anderson

90

Carlo results for the local / moment <5y2>and the first neighbor

/ —/ spin correlation function >■$$*>and exact diagonaliza-

tion results for a small 2X2 cluster. This cluster is, however, the

largest for which we believe exact diagonalization to be practical

(zero temperature properties can be studied for larger cluster using

Lanczos method). The first neighbor spin-spin correlation functions

agree very well, as do the local moments at low temperature. At

high temperatures the calculated local moments show systematic

differences, which we already have in similar Hubbard model calcu­

lations (30), and are attributed to the use of the canonical ensemble

in the thermodynamic calculations by the exact diagonalization

method, while the grand canonical ensemble is employed in the

Monte Carlo Calculations. Hence, charge fluctuations are included

in the Monte Carlo results but not in those obtained by exact diago­

nalization.

Page 98: Quantum Monte Carlo Simulations of Hubbard and Anderson

91

Fig. 21. First neighbor /-/ spin correlation functions

and / local moment <5/>for a 2 X2 cluster. (•) Monte Carlo results

for < $ /> left-hand scale; (o) Monte Carlo results for <St S ^ P > ,

right-hand scale. The solid curves are results from exact diagonali­

zation calculations using a canonical ensemble.

i.o - 0.13

<sf>

0.5 0.002 3

KTt

Page 99: Quantum Monte Carlo Simulations of Hubbard and Anderson

4.3 R esults

92

In this section, we present some results from the simulation of

the symmetric periodic Anderson model. As we will see from the

results, the properties of the model at high temperature are reminis­

cent of those of the impurity Anderson model (20). The system will

pass through several different regions as temperature decreases: the

free orbital region, local moment region and strong coupling region.

In addition to behaviors similar to those of single impurity model,

new physics arises due to the correlations between the localized /

moments at low temperature.

The first quantity we present is the / local moment, defined as

< S f > —<( rij^ —rifiJ 2>= < nAt > + <nm > - 2 < n/lT nfi[ > (4.2)

as a function of temperature for a 4X4 system. As the temperature

is lowered, the effective hybridization between / and conduction

electrons is reduced. As a result, local / electron moments begin to

develop. Fig. 22 shows the gradual formation of the local / moment

in the temperature range 2>kB T /t >1. As expected, increasing U

favors local moment formation and increasing V opposes i t For

U = 0 , <Sy2>= 0.5 , and it is evident that the tendency toward

local moment formation is quite weak for U — I. However, in a

Page 100: Quantum Monte Carlo Simulations of Hubbard and Anderson

93

Fig. 22. The local moment <$y >for a 4X4 cluster.

(.) U = 6 , 7 =0.8; ( i ) = 4 , 7 = 0 .8 ; (d) U = 2 , 7 = 0 .8 ;

(o) = 1 , V" =0.8. The solid curves are a guide to the eye only.

<s t>

0.50 2 3KT

Page 101: Quantum Monte Carlo Simulations of Hubbard and Anderson

94

finite system, we do not expect a sharp separation between situations

with and without a local moment Below kB T /t = 2 , the local

moment is nearly independent of temperature, and / electrons are

quite localized.

In the single impurity Anderson model, electron correlations

develop at low temperature between the electrons on the impurity

site and the conduction electrons (24,60). The short range correla­

tions tend to screen the local moment At temperatures much lower

than the Kondo (24) temperature, the local moment is completely

screened by the conduction electrons, leading to a nonmagnetic

state. The system is effectively a N — 1 electron system when the

impurity site is screened out Somewhat similar behavior occurs in

the lattice model, where the short range correlations between the

conduction electrons and electrons in the localized / orbital also

tend to screen the local moments (29,48).

We show in Fig. 23 through 25 the total uniform susceptibility

(Xt) f electron susceptibility (x /)- The quantities are defined as:

(4.3)

and

(4.4)

Page 102: Quantum Monte Carlo Simulations of Hubbard and Anderson

95

where MT and Mf are the total and / electron moments in the sys-

Fig. 23 shows Tx t ^ d Txj as functions of temperature on a

(1.0 and 0.75). The upper-two curves are for T \ / and lower-two

curves show Tx t - The open circles and triangles are the results for

a 4X4 system. The solid dots are results for a 6X6 system with the

same parameters. Increasing the size of the system does not affect

the susceptibility appreciably in the temperature range studied. The

differences between 6X6 and 4X4 systems appear to be within star

tistical errors.

When the temperature is lowered, Tx t and Tx t both increase

first from the high-temperature value (0,25) of the free orbital

region, as the local moments form. In the temperature range

kB T f t> 5, both susceptibilities follow a Curie-Weiss law,

tem:

Mt — £ ( rei/T ~ nif i + n« t ~ nidi )> (4.5)

Mf — S ( n«/t ~ nifl ) (4.6)

logarithmic scale for two values of the hybridization parameter V

(4.7)

Page 103: Quantum Monte Carlo Simulations of Hubbard and Anderson

96

Fig. 23. Susceptibilities Xt and Xf (multiplied by kB T) for

U =5. Upper dashed line (£) for kB Tx/ ( V =0.75); Lower

dashed line (£) for kB T xr {V =0.75); Upper solid line (o) for

kB Txj (V =1.0); Lower solid line (o) for kBT \r (V =1.0); The

dots (•) show the results for a 6 X6 cluster.

0.4

KT X0.2

0.0

KT

Page 104: Quantum Monte Carlo Simulations of Hubbard and Anderson

97

in which 0 is positive, and C «0.25 (in unit of pB2) as expected.

The paramagnetic Curie temperature 9 is different for Xf and Xr>

and depends on U and V, increasing with U for fixed V and

decreasing with increasing V for fixed U. This behavior is con­

sistent with that found for the Hubbard model in the high tempera­

ture limit (30).

The quantities Txj and Tx t give some measure to the

effective / moments. A t high temperature, or free orbital region,

their values are close to 0.25. As temperature is lowered, local

moments develop, as shown in Fig. 23, the quantities T x/ and

Txf reach maximum close to, but slightly above that at which

moment formation has saturated. The system is in the local moment

region in this temperature range. As the temperature further

decreases, the effective momentB or the quantities T xf and T \ t

start to decrease as correlations build up between the / moments and

the conduction electrons. The decreases in Txf and Tx t as T

decreases is qualitatively similar to that observed in the single

impurity Anderson model. Also, the temperature dependence of the

susceptibility times the temperature resembles those in the single

impurity model. In the strong coupling limit (low temperature

limit), the local moment on the impurity site is completely screened

out, leading to a zero value for Tx& where Xi is the impurity sus-

Page 105: Quantum Monte Carlo Simulations of Hubbard and Anderson

98

ceptibility. In the present case, we were unable to reach a temperar

ture as low as those in the renormalization group studies to see the

complete quench of local moments, but we do see that Txj and

Tx t decrease from their maximum value as temperature is lowered.

Fig. 24 and 25 supplement the resultB shown in Fig. 22 by

showing the effects of variation of U and V on Tx t and Tx/- The

expected tendencies appear. Hie susceptibilities are increased by

larger electron interaction U, and decreased by stronger hybridizar

tion V. In the case of relatively small U (U—l ), Tx t and T \ f do

not have a region of increase with decreasing temperature, below the

free orbital limit This implies that local moments are insignificant

in this case as seen in Fig. 22. The system directly goes into strong

coupling region as temperature is lowered.

We have seen the screening effect on / local moments by con­

duction electrons at low temperature in the decrease of Tx/ and

Tx t - However, the screening is only partially due to the conduction

electrons (34,84). At temperature lower than that at which the /

moments form, the local / moments become correlated through their

interaction with the conduction electrons [as in the Ruderman-

Kitde-FCasuya-Yosida (RKKY) approach]. In Fig. 26, we show the

magnetic structure factor of the / electron defined by

Page 106: Quantum Monte Carlo Simulations of Hubbard and Anderson

99

Fig. 24. / electron susceptibility X/ (multiplied by kB T) for a

4X4 cluster, (o) U = 3 , V =0.6; (ty U = 3 , V =0.8; (A) U = 3 ,

V =1.0; (•) U = 1 , V =1.0.

0.4

KT- Xp

0.2

0.0

KTt

Page 107: Quantum Monte Carlo Simulations of Hubbard and Anderson

100

Fig. 25. Total susceptibility x t (multiplied by kB T) for a 4 X4

cluster, V =0.8. (•) U =6; (A) U =4; U =2; (o) U =1;

0.4

K T X

0.2

0.0

KTt

Page 108: Quantum Monte Carlo Simulations of Hubbard and Anderson

101

-■Jr (4-8)

for the cases F = 0 and F = (tt, tt). The results show the building up

of strong antiferromagnetic correlations, characterized by the

increasing 5(7?). The uniform structure factor £(0) remains nearly

temperature independent) and may be suppressed slightly as tem­

perature decreases. As expected, both 5(0) and 5(7?) increase with

increasing U. Unfortunately, the saturation of 5(7?) resides at much

lower temperature range, which we were unable to reach at this

point

As in the single impurity model, the ground state is a singlet

state. We expect this to be true for the lattice model, except that the

screening or compensation is only partially by the conduction elec­

trons and partially by the correlations between the / local moments

themselves. Zero temperature Monte Carlo simulations for a one­

dimensional periodic Anderson model (84) and exact diagonalizadon

for small clusters (34) show that the ground state of the model is

indeed a singlet, and correlation between /-/ local moments persists

at low temperature. The / moments are compensated in part by

conduction electrons, but are also coupled antiferromagnetically.

Similar results were obtained in the finite temperature Monte Carlo

calculations for the one-dimensional periodic Anderson model (85).

Page 109: Quantum Monte Carlo Simulations of Hubbard and Anderson

102

Fig. 26. The magnetic structure factor S(lc] for f electrons.

Dashed line (A) U = 6 , V = 1 ; Solid line (£) U = 4 , V =1;

Upper pair of lines at low temperatures k =(7r,7r); low pair of lines

k =(0,0).

2.0

S( K)

1.0

0.0

KT

Page 110: Quantum Monte Carlo Simulations of Hubbard and Anderson

4.4 Sum m ary

The symmetric periodic Anderson model has been studied by

Monte Carlo simulation technique. The system we consider here are

square lattice in size 4X4 and 6X6. We observe behavior qualita­

tively similar to that found in the single-impurity Anderson model in

regard to the formation of f local moments, temperature dependence

of the susceptibility, and screening of local moments by conduction

electrons. Three different regions are identified, namely, the free

orbital region, local moment region and strong coupling region. At

low temperature, correlations develop between local moments,

resulting in the partial screening of local moments by conduction

electrons. The antiferromagnetic correlations between local

moments remain strong at low temperature.

Page 111: Quantum Monte Carlo Simulations of Hubbard and Anderson

CHAPTER 5. CONCLUSIONS

In tins chapter we summerize previous chapters and provide

some suggestions for further studies. We also point out what can be

done using tile simulation program we have developed.

A computer simulation program for the study of interacting

electrons is developed. The Quantum Monte Carlo simulation

method provides nearly exact results for many-body model Hamil­

tonians where conventional analytic techniques are not very useful

because of uncontrolled approximations. In addition, this method

can be used to study much larger systems than is possible with other

numerical techniques. The general simulation procedures are based

on the Quantum Monte Carlo simulation algorithm proposed by

Blankenbecler, Scalapino and Sugar (37). The program has been

extended to include Hirsch’s algorithm (61) to allow simulations of

quantum many-body systems at low temperatures.

We have applied the Quantum Monte Carlo simulation method

to the extended Hubbard model in two dimensions and considered a

4X4 square lattice. We studied the properties of the system as the

electron-electron interaction parameters (17, V*) vary. For the half-

filled extended Hubbard model, a transition from an antiferromag­

netic to a charge-density-wave state is found near the line U = 4V

for positive U. On the other hand, a transition from a charge

104

Page 112: Quantum Monte Carlo Simulations of Hubbard and Anderson

105

density-wave to a singlet pairing state occurs at V = 0 for negative

U. Hie singlet paring of the superconducting type becomes

significant for negative U and V <0, but disappears when V >0. In

the presence of a negative V, charge-density-wave state becomes

unstable

In addition to simulations of the Hubbard model, we have also

done some calculations for the symmetric periodic Anderson model.

Lattices of 4X4 and 6X6 have been considered. Depending on

parameters of the model, three different regions are identified: the

free orbital region, / local moment region and strong coupling

region. Results show a qualitative similarity to the single-impurity

Anderson model at high temperatures in regard to the formation of /

local moments and the behavior of magnetic susceptibilities. At low

temperatures, electron correlations develop between / local moments

and conduction electrons, resulting in the partial screening of local

moments by conduction electrons. We also find the development of

antiferromagnetic correlations between / local moments, which are

not present in the single impurity Anderson model.

There are several additional problems which can be studied by

these methods. One possible and interesting topic is the existence

of extended singlet pairing correlations in the non-half filled

extended Hubbard model. This type of correlation has been sug­

gested in small cluster calculations (34). Another important issue is

Page 113: Quantum Monte Carlo Simulations of Hubbard and Anderson

106

the existence of ferromagnetism in the one band simple Hubbard

model, which the model was originally intended to describe.

Although conclusive results on whether the simple one band Hub*

bard model can have a ferromagnetic ground state have not yet been

obtained, it is suggested that the non-half-filled Hubbard model in

FCC (or BCC) structure might be favorable for the ferromagnetism

(86). It is generally believed that geometry plays an important role

in determining properties of the Hubbard model. This problem can

be studied using the existing programs with slight modifications.

Using the density of state program for electronic structure calcular

tion, the parameters of the Hubbard model can be better chosen to

model reasonablely the structure of a FCC band.

The development of an efficient and stable algorithm for simu­

lations of fermion systems remains a very challenging topic. An

algorithm that scales like Nj3 in simulation time is a major need in

order to allow simulations of interacting electrons in larger systems.

Meanwhile the negative probability problem needs to be solved in

order to permit the investigation of the low temperature properties of

interacting electron systems.

Page 114: Quantum Monte Carlo Simulations of Hubbard and Anderson

REFERENCES

1. J. Hubbard, Ptoc. R. Soc. Londen Ser A 270, 238 (1963);

277, 237 (1964); 281, 401 (1964); 285, 542 (1965); 290, 82

(1966); 290, 100 (1967)

2. P. W. Anderson, Phys. Rev. 124, 41 (1961)

3. J. Callaway, Quantum Theory of the Solid State (Academic,

New York, 1974), and references therein.

4. P. W. Anderson, Solid State Phys. 14, 99 (1966)

5. C. Herring, et ai, Magnetism IV (Academic, New York,

1966)

6. F. Bloch, Zeit Phys. 57, 545 (1929); N. F. Mott, Proc. Roy.

Soc. 47, 571 (1935); J. C. Slater, Phys. Rev. 49, 537, 931

(1936); E. C. Stoner, Proc. Roy. Soc. A 154, 656 (1936).

7. See Magnetism of Metals and Alloys, edited by M. Cyrot

(North-Holland, 1982).

8. R. D. Lowde, Proc. Roy. Soc. A235, 305 (1956); B. Hennion

and M. Hennion, J. Phys. : M et Phys. 8, 287, (1978); M. A.

Mook, J. W. Lynn and R. M. Niklow, Phys. Rev. Lett 30,

556 (1973).

9. J. W. Lynn, Phys. Rev. 11, 2624 (1978); J. W. Lynn and H.

A. Mook, Phys. Rev. 23, 198 (1981).

107

Page 115: Quantum Monte Carlo Simulations of Hubbard and Anderson

108

10. S. Hiroka and M. Shimizu, Phys. Rev. Lett 46, 209 (1973);

M. Shimizu and M. Sakoh, J. Phys. Soc. Japan 36, 1000

(1974).

11. See Electron Correlation and Magnetism in Narrow-Band

System, edited by T. Moriya.

12. D. Penn, Phys. Rev. 142, 350 (1966)

13. M. Cyrot, J. Phys. (Paris) 33, 125 (1972)

14. M. Gutzwiller, Phys. Rev. Lett 10, 159, (1963); Phys. Rev.

A 137, 1726 (1963)

15. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett 20, 1445 (1968)

16. Y. Nagaoka, Phys. Rev. 147, 392 (1966)

17. B. H. Brandow, Adv. Phys. 26, 651 (1977) and references

therein.

18. N. F. Mott, Proc. Phys. Soc. A 62, 416 (1949); Can. J. Phys.

34, 1356 (1956); Phil. Mag. 6, 287 (1961); Rev. Mod. Phys.

40, 677 (1968).

19. K. Kawai and S. Mizoguchi, Solid State Comm. 9, 1393

(1971); Phys. Lett 36, 54 (1971).

20. See Valence Instabilities and Related Narrow Band

Phenomena, edited by R. D. Parks (Plenum, New York,

1977); Valence Fluctuations in Solids, edited by L. M. Fal-

icov, W. Hanke, and M. B. Maple (North-Holland,

Page 116: Quantum Monte Carlo Simulations of Hubbard and Anderson

109

Amsterdam, 1981)

21. C. M. Varma, Comm. Solid State Phys. 12 (1985); P. A.

Lee, T. M. Rice, J. W. Serene, L. J. Sham and J. W. Wil­

kins, Commun. Condens. Matter Phys. 12, 99 (1986);

22. G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984)

23. B. T. Matthias, M. Peter, H. J. Williams, A. M. Clogston, E.

Corenzwit, and R. C. Sherwood, Phys. Rev. Lett 5, 542

(1960).

24. H. R. Krishnamurthy, J. W. Wilkins, and K, G. Wilson,

Phys. Rev. B 21, 1003 (1980); Phys. Rev. B 21, 1044 (1980)

25. P. B. Wiegmann, V. M. Filyov and A. M. Thvelick, JETP

Lett 35, 92 (1982); P. Schlottmann, Z. Phys. B 51, 49

(1983)

26. T. M. Rice and K. M. Ueda, Phys. Rev. Lett 55, 995

(1985); T. M. Rice, K. Ueda, H. R. Ott and H. Rudigier,

Phys. Rev. B 31, 594 (1985); C. M. Varma, W. Weber and

L. J. Randall, Phys. Rev. B 33, 1015 (1986)

27. B. H. Brandow, Phys. Rev. 33, 215, (1986)

28. O. Gunnarson and K Schonhammer, Phys. Rev. Lett 50,

604 (1983); P. Coleman, Phys. Rev. B 28, 5255 (1983); B

29, 3035 (1984)

Page 117: Quantum Monte Carlo Simulations of Hubbard and Anderson

110

29. J. Callaway, D. P. Chen, D. G. Kanhere, and P .K. Misra,

Phys. Rev. B 38, 2583 (1988); J. Callaway, D. P. Chen, J.

Appl. Phys. B 4 5944 (1988)

30. J. Callaway, D. P. Chen, R. Tang, Phys. B 35, 3705 (1987);

J. Callaway, D. P. Chen, and Y. Zhang, Phys. Rev. B 36,

2084 (1987);

31. O. J. Heilman and E. H. Lieb, Trans. N.Y. Acad. Sci. 33,

116 (1971); L. M. Falicov and R. H. Victors, Phys. Rev. B

30, 1695 (1984)

32. J. E. Hirsch, Phys. Rev. B 31, 4403 (1985)

33. H. Shiba and P. A. Fincus, Phys. Rev. B 5, 1966 (1972); H.

Shiba, Prog. Theor. Phys. 48, 2171 (1972)

34. J. Callaway, D. P. Chen, D. G. Kanhere, and Qiming Li, in

Proceedings of the Workshop of Quantum Simulations of

Condensed Matter Phenomena, edited by J. E. Gubematis

and J. Doll (World Scientific Publishing, 1990)

35. D. P. Chen and J. Callaway, Phys. Rev. B 38, 11869 (1988)

36. D. P. Chen, Ph.D. Dissertation, Louisiana State University

(1989)

37. R. Blankenbecler, D. Scalapino and R. L. Sugar, Phys. Rev.

D 24, (1981)

Page 118: Quantum Monte Carlo Simulations of Hubbard and Anderson

I l l

38. J. G. Bednorz and K A. Muller, Z. Phys. B64, 189 (1987);

C. W. Chu, P. H. Hor, R. L. Meng, L. Gao., Z. J. Huang,

and Y. Q. Wang, Phys. Rev. Lett 58, 405 (1987).

39. V. J. Emery, Phys. Rev. Lett 58, 2794 (1987)

40. J. E. Hirsch, S. Tang, E. Loh, Jr. and D. J. Scalapino, Phys.

Rev. Lett 60, 1668 (1988).

41. P. W. Anderson, Science, 235, 1196 (1987)

42. J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Phys. Rev.

Lett 60, 944 (1988).

43. W. Weber, Phys. Rev. Lett 58, 1371 (1987); L. F.

Mattheiss, Phys. Rev. Lett 58, 1028 (1987).

44. B. Batiogg, R. J. Cava, A. Jayaraman, R. B. van Dover, G.

A. Kourouklis, S. Sunshine, D. W. Murphy, L. W. Rupp, H.

S. Chen, A. White, A. M. Mujsce, and E. A. Rietman, Phys.

Rev. Lett 58, 2332 (1987); L. C. Boume, M. F. Crommie,

A. Zetd, H. C. zur Loye, S. W. Keller, K. L. Leary, A. M.

Stacy, K. J. Chang, M. L. Cohen, and D. E. Morris, Phys.

Rev. Lett 58, 2337 (1987).

45. D. Vaknin, S. K Sinha, D. E. Moncton, D. C. Johnston, J.

M. Newsam, C. R. Safinya, and H. E. King, Jr. Phys. Rev.

Lett 58, 2802 (1987); T. Freltroft, J. E. Fischer, G. Shirane,

D. E. Moncton, S. K. Sinha, D. Vaknin, J. P. Remeika, A. S.

Page 119: Quantum Monte Carlo Simulations of Hubbard and Anderson

112

Cooper, and D. Harshmana, Phys. Rev. B 36, 826 (1987).

46. J. M. Tranquada, D. E. Cox, W. Kunnmann, H. Moudden,

G. Shirane, M. Suenaga, P. Zolliker, D. Vaknin, S. K.

Sinha, A. J. Jacobson, and D. C. Johnston, Phys. Rev. Lett

60, 156 (1988); G. Shirane, Y. Endoh, R. J. Birgeneau, M.

A. Kastner, Y. Hidaka, M. Oda, M. Suzuki, and T.

Murakami, Phys. Rev. Lett 60, 156 (1988).

47. Y. Zhang and J. Callaway, Phys. Rev. B 39, 9397 (1989)

48. Y. Zhang and J. Callaway, Phys. Rev. B 38, 641 (1988)

49. J. E. Gubematis, Phys. Rev. B 36, 394 (1987)

50. J. E. Gubematis, J. E. Hirseh and D. J. Scalapino, Phys. Rev.

B 35, 8478 (1987)

51. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. H. Teller,

and E. Teller, J. Chem. Phys. 21, 1087 (1953)

52. Application of the Monte Carlo Method in Statistical Physics,

edited by K. Binder (Springer-Verlag, N.Y. 1984); Monte

Carlo Method in Statistical Physics, edited by K. Binder

(Springer-Verlag, N.Y. 1986);

53. E. Y. Loh, Jr. and J. E. Gubematis in Electrons Phase Tran­

sition9, editors by W. Hauke and Y. Y. Kopaev (Elsevier,

N.Y. 1990)

Page 120: Quantum Monte Carlo Simulations of Hubbard and Anderson

113

54. M. H. Kalos, ibid, 128, 1791(1962); J. Comp. Phys. 2, 257

(1967); D. P. Ceperly and M. H. Kalos, in Monte Carlo

Methods in Statistical Physics, edited by K. Binder

(Springer, Berlin, 1979) ppl45-197

55. G. E. Forsythe and R. A. Leibler, MTAC 4, 127 (1950)

56. J. B. Anderson, J. Chem. Phys. 68, B499 (1975)

57. J. E. Hirsch, D. J. Scalapino, and R. L. Sugar, Phys. Rev. B

26, 5033 (1982); J. E. Hirsch, D. J. Scalapino, R. L. Sugar,

and R. Blankenbecler, Phys. Rev. Lett 30, 1628 (1981)

58. J. Kuti, Phys. Rev. Lett 49, 183 (1982); R. Blankenbecler

and R. L. Sugar, Phys. Rev. D 27, 1304 (1983); D. Dahl and

R. Blankenbecler, Phys. Rev. D 32, 977 (1985); D. Kung, R.

Blankenbecler, and Sugar, Phys. Rev. B 32, 3058 (1985);

R.T. Scaletter, D. J. Scalapino, R. L. Sugar and D. Toussaint*

Phys. Rev. 36, 8632 (1987)

59. R. T. Scalettar, D. J. Scalapino, and R. L. Sugar, Phys. Rev.

B 34; 7911 (1986);

60. J. E. Hirsch, R. M. Fye, Phys. Rev. Lett 56, 2521 (1986); R.

M. Fye and J. E. Hirsch, Phys. Rev. B 38, 433 (1988)

61. J. E. Hirsch "Stable Monte Carlo Algorithm for the Simula­

tion of Many Electron Systems at Low Temperatures", Phys.

Rev. B, to be published.

Page 121: Quantum Monte Carlo Simulations of Hubbard and Anderson

114

62. S. Sorella, S. Baroni, R. Car, and M. Parrinello, Europhys.

Lett 8, 663 (1989)

63. E. Y. Loh, Jr., J. E. Gubematis, R. T. Scalettar, R. L. Sugar,

and S. R. White, "Matrix-Multiplieation Methods for the

Low Temperature Simulations of Fermions", Phys. Rev. B,

to be published

64. John W. Negele and Henri Orland, Quantum Many-Particle

Systems, (Addison Wesley, N.Y. 1988)

65. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and

Path Integrals (McGraw-Hill, N.Y. 1965)

66. H. F. TVotter, Rroc. Am. Math. Soc. 10, 545 (1959); Suzuki,

Commun. Math. Phys., 51, 183 (1976)

67. J. Hubbard, Phys. Rev. Lett 3, 77 (1959)

68. J. E, Hirsch, Phys, Rev. B 28, 4059 (1983)

69. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Body System, (McGraw-Hill, N.Y. 1971)

70. E. Y. Loh, Jr., J. E. Gubematis, R. T. Scaletter, S. R. White,

D. J. Scalapino and R. L. Sugar, Phys. Rev. B. to be pub­

lished.

71. S. Sorella, E. Tosatti, S. Baroni, R. Car and M. Parrinello,

Int, J. Mod. Phys. 1, 993 (1988); C. Bourbonnais, H. Nel-

isse, A Reid and A. M. S. Tremblay, "Fermi Surface of the

Page 122: Quantum Monte Carlo Simulations of Hubbard and Anderson

115

One-Dimensional Hubbard Model’, to be published; W. R.

Somsky, J. E. Gubematis, and D. K. Campbell, Proceedings

of the Workshop of Quantum Simulations of Condensed

Matter Phenomena, edited by J. E. Gubematis and J. Doll

(World Scientific Publishing, 1990)

72. V. J. Emery, in Highly Conducting One-Dimensional Solid,

edited by J. Devreese, R. Evrard, and V. van Doren (Ple­

num, N.Y. 1979); V. J. Emery, Phys. Rev. B 14, 2989

(1976)

73. J. E. Hirsch, Phys. Rev. Lett 53, 2327 (1984); H. Q. Lin and

J. E. Hirsch, Phys. Rev. B 33, 8155 (1986)

74. P. Hncus, P. Chaikin, and C. Coll, Solid State Commun. 12,

1265 (1973); R. A. Bari, Phys. Rev. B 3, 2662 (1971); B.

Fourcade and G. Spronken, Phys. Rev. B 29, 5096 (1984);

L. M. del Bosch and L. M. Falicov, Phys. Rev. B 37, 6073

(1988)

75. J. D. Reger and A. P. Young, Phys. Rev. B 37, 5978 (1988)

76. E. Manousakis and R. Salvador, Phys. Rev. B 39, 575

(1989)

77. S. B. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E.

Gubematis and T. Scalettar, Phys. Rev. B 40, 506 (1989)

Page 123: Quantum Monte Carlo Simulations of Hubbard and Anderson

116

78. N. D. Mermin and H. Wagner, Phys. Rev. Lett 17, 1133

(1966)

79. A. Auerback and D. P. Arovas, Phys. Rev. Letts. 61, 617

(1988)

80. P. W. Anderson, Phys. Rev. Letts. B 34, 953 (1975)

81. J. Callaway, D. G. Kanhere, and P. K. Misra, Phys. Rev. B

36, 7141 (1987)

82. P. Nozieres and S. Schmitt-Rink, J. Low, Temp. Phys. 59,

195 (1985)

83. R. T. Scalettar, E. Y. Loh, J. E. Gubematis, A. Moreo, S. R.

White, D. J. Scalapino, R. L. Sugar and E. Dagotto, Phys.

Rev. Lett, 60, 1668 (1989)

84. R. Blankenbecler, J. R. Fulco, W. Gill, and D. J. Scalapino,

Phys. Rev. Lett 58, 411 (1987)

85. J. Saso and Y. Seino, J. Phys. Soc. Jap. 55, 3729 (1986)

86. J. Callaway, Phys. Rev. 170, 576 (1968).

Page 124: Quantum Monte Carlo Simulations of Hubbard and Anderson

a ppe n d ix : co m pu ter pr o g r a m s

1.0 General Information ............ 119

2.0 Simulation Flow Diagram..................................... 121

3.0 Extended Hubbard M odel..................................................... 124

3.1 Main Program .................................................................. 124

3.2 Subroutines ............................................................. 139

3.2.1 gnpud ....................................................................... 139

3.2.2 gtotal........................................................................ 141

3.2.3 gbtO .......................................................................... 142

3.2.4 g b tl ........................................................................... 145

3.2.5 expekt....................................................................... 148

3.2.6 h e k ............................................................................ 149

3.2.7 links .......................................................................... 150

3.2.8 hev l........................................................................... 151

3.2.9 inhevl........................................................................ 152

3.2.10 bubdl ...................................................................... 154

3.2.11 inbubdl ................................................................... 155

3.2.12 exam ....................................................................... 156

117

Page 125: Quantum Monte Carlo Simulations of Hubbard and Anderson

118

3.2.13 div .......................................................................... 157

3.2.14 matrirw...................................................... 157

3.2.15 deirn........................................................................ 158

3.2.16 results..................................................................... 159

3.2.17 su sll........................................................................ 164

4.0 Periodic Anderson Model ........ 166

Page 126: Quantum Monte Carlo Simulations of Hubbard and Anderson

119

1.0 General Information

This section gives some explanation about the simulation pro­

grams. A detail flow diagram is given in the next section as imple­

mented for the Hubbard and Anderson models.

The geometry of a system under simulation is specified in the

subroutine hek. In addition, link gives information about the

nearest-neighbor pairs (as used in the extended Hubbard model).

Subroutine expekt is called to calculate the matrix eK as defined in

Eq. (20). Similarly, hevl and inhevl calculate and e-VW. The

B(l) matrices are calculated in subroutines bubdl and inbubdi

gnpud returns the equal-time Green’s function g(l) used in the

updating procedures. The time-dependent Green’s functions are cal­

culated through subroutines g total, gbtO, and gbtl. Finally, Monte

Carlo measurements are performed in results, within which susll

calculates susceptibilities.

The programs have been developed mainly on FPS-264 vector

processors, although part of calculations was run on IBM-3084. The

programs can be easily converted to run on the LSU IBM-3090

supercomputer. The following is a summary of the space and time

requirements for the 4X4 extended Hubbard model running on

FPS-264 and IBM-3084. Note that the calculation made on IBM

uses quadruple precision. MC stands for Monte Carlo

Page 127: Quantum Monte Carlo Simulations of Hubbard and Anderson

120

measurements. The units of computer space and time are Mega

words and minutes, respectively.

u V 0 L MC Space Time Machine

4 1 2 24 2000 1 300 IBM(64bits)

4 0 3 24 4000 1 300 FPS(32bite)

Page 128: Quantum Monte Carlo Simulations of Hubbard and Anderson

121

2.0 Simulation Flow Diagram

5)

^ Start Program ^

Read input parameters

ICalculate useful parameters

ISpecify initial Ising spin variables

' " IStart simulation;

Warm_up sweep=0; MC_measurement=0

Begin first time slice, / =1

ICalculate Green's function g(/) using Eq. (2.29)

IBegin first Ising spin, i =1 for time slice I.

VAssuming an Ising spin flipCalculate the probability P using Eq.(2,34)

©

Page 129: Quantum Monte Carlo Simulations of Hubbard and Anderson

122

Generate a random number x between 0 and 1

Compare P > x ?

Accept the proposed flip

Updating Green's function g(/) using Eq.(2.33)

Last Ising spin for time slice / ?Y

Advance to next Ising spin i = / + 1

Last time slice I - L I

Page 130: Quantum Monte Carlo Simulations of Hubbard and Anderson

123

Correct round-off error for g(/) ?

Monte Carlo measurements = NMEMS ?

Warm_up sweep < MMM ? or C_sweep between measurements < NSWEPJ>

Perform Monte Carlo Measurement

Advance to next time slice 1 = 1 + 1

Update Green’s function for newtime slice Eq.(2.35)

Calculate averages and errors of Monte Carlo data. Simulation Ends

Page 131: Quantum Monte Carlo Simulations of Hubbard and Anderson

124

//HBN4P1 JOB ( 1 1 0 3 , 6 6 9 4 5 , 1 5 , 4 ) , 'YZ',MSGCLASS=S,REGION=4096K / / * NOTIFY=PHHANG/*JOBPARM SHIFT=D /*AFTER NONE/ /* S 1 EXEC FPSCL, FTNPARM=’LIST, LIN, SUBCHK1, VOPT=0/ / S I EXEC FPSCL,FTNPARM='LIST,UN,XOFF(ALL)' ,VOPT-3 //FORT.SYSIN DD *C .......................................................................................................................................CCn

EXTENDED HUBBARD MODEL (U > / 0 , V > / 0 ) IN 2-D.

c SYSTEM SIZE: N = ND X ND SITES.cp

PAIRS OF NEAREST NEIGHBORS : N2 = 2*NUc FOR FALF-FILLED CASE : CHEMICAL POTENTIAL UMcn

UM = U/2+4V : AT ALL TEMPERATURESVj

c OTHER PARAMETERS:c LTIME -> INPUT TIME SLICES (FOR EACH PARTITION;c ( TIME SLICES IN BSS ALGORITHM )c IPMAX - > PARTITION NUMBERc ( IN HIRSCH’S ALGORITHM )c ( FOR BSS ALGORITHM, SET IPMAX=1)cp

IPMAX * LTIME - > MAXIMUM TIME SLICES ALLOWED

c NP = N*IPMAX - > GREEN'S FUNCTION MATRIX SIZEc (FOR BSS ALGORITHM NP=N)c MATRICES USED:c EXPEK(I,J), EKIN - > EXP(K), EXP(-K) USED TO CALCULATE B'Sc K: HOPPING MATRIXc EVU(L,I), EVD - > EXP{VU(L){ , EXP{VD(L)jc V: POTENTIAL DUE TO ISING SPINS.c EVUIN(L.I), EVDIN - > EXP(-VU(L)} , EXP{-VD(L)}c E K I(I .J ) - > ITH NEAREST NEIGHBORSc E ( I ,J ) = 1 .0 IF < I ,J >c EQQ(I.J) - > 1, -1 FOR TWO SUBLATTICESc EQ Q (I,J)=1.0 IF I , J ARE INc THE SAME SUBLATTICEc SIGMA(L.I) AND - > ISING SPIN VARIABLES:c S 1 ( L ,K ) . . . S4 SIGMA FOR U --SITE Ic S I . . .S4 FOR V - - LINK-Kc LINKI(K) , LINKJ - > RETURN SITES CONNECTING LINK-Kcr

I=LINKI(K), J=LINKJ(K)V

c GU(NP.NP), GD(NP.NP) - > SUBSET OF GREEN'S FUNCTIONSc USED IN UPDATING PROCEDURESc TIME DEPENDENT GREEN'S FUNCTIONS:c GUT0(L,I, J ) , GDTO - > < CI(L) * CJ+(1) >c GUTL , GDTL - > < CJ+(L) * CI(1) >cc

GUL , GDL - > < CI(L) * CJ+(L) >

Page 132: Quantum Monte Carlo Simulations of Hubbard and Anderson

125

c MEASURED QUANTITIES:G SIG(MES) -> SIGNC TLN, TLNU, TLND -> TOTAL# , TOTAL # UP, TOTAL # DOWN.C UDN -> < NI(UP) * NI(DN) >C ENRY -> TOTAL ENERGYc S S . . . SSS -> LOCAL MOMENT, SPIN CORRELATIONSc SSI: FIRST NEIGHBOR SPIN CORRELATIONc CCO. . . SSS -> DOUBLE OCCUPANCY, CHARGE CORRELATIONSc CC1: FIRST NEIGHBOR CHARGE CORRELATIONc SUS , SUSQ -> SPIN STRUCTURE FACTOR: K=0, K=PIc SUST, SUSQT -> SPIN SUSCEPTIBILITIES: K=0, K=PIc SUSC, SUSCQ - > CHAGRE STRUCTURE FACTOR: K=0, K=PIc SUSCT.SUSCQT -> CHARGE SUSCEPTIBILITIES: K=0, K=PIc PPC, PPCQ -> PAIRING STRUCTURE FACTOR: K=0, K=PIcr*

PPSt PPSQ -> PAIRING SUSCEPTIBILITIES: K=0, K=PILi " ■

cIMPLICIT REAL*8(A-H,0- Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N*IPMAX)

cDIMENSION EK1(N,N),EK2(N,N),EK3(N,N),EK4(N,N),EK5(N,N),EQQ(N,N) DIMENSION LINKICN2) , LINKJ(N2)DIMENSION SP1(LTT,N2) , SP2(LTT,N2) , SIGMA(LTT.N)DIMENSION SP3(LTT,N2) , SP4(LTT,N2)

CDIMENSION EXPEK(N.N) , EKIN(N.N)DIMENSION EVU(LTT.N) , EVD(LTT.N)DIMENSION EVUIN(LTT,N), EVDIN(LTT,N)

CDIMENSION GU(NP,NP), SU(NP,NP) , XU(N.N) , EU(N,N) , YU(N,N)DIMENSION GD(NP,NP), SD(NP.NP) , XD(N,N) , ED(N,N) , YD(N,N)DIMENSION GU1(NP,NP), GD1(NP,NP)DIMENSION KII(NP*NP), KJJ(NP*NP)

CDIMENSION SIG(LB),TLN(LB),TLND(LB),TLNU(LB),UDN(LB)DIMENSION SPIN(LB), ASPIN(LB) ,ENRY(LB)DIMENSION ZM(LB), CZ(LB)

GDIMENSION SS(LB), S S l(L B ),SS2(L B ),S S3(L B )tSS4(LB),SS5(LB) DIMENSION CCO(LB),CCl(LB),CC2(LB),CC3(LB),CC4(LB),CC5(LB)

CDIMENSION SUS(LB), SUSQ(LB)DIMENSION SUST(LB), SUSQT(LB)DIMENSION SUSC(LB), SUSCQ(LB)DIMENSION SUSGT(LB),SUSCQT(LB)DIMENSION PPC(LB), PPCQ(LB)DIMENSION PPS(LB), PPSQ(LB)

CDIMENSION GUTO(LTT,N,N), GDTO(LTT,N,N)DIMENSION GUTL(LTT,N,N), GDTL(LTT,N,N)

Page 133: Quantum Monte Carlo Simulations of Hubbard and Anderson

126

READfl,1112) LTIME, LG READ(1 ,1 1 1 2 ) NMEMS, MMM, NSWEP READ(1,1112) IR,IW READC1,1112 ) ISEED READfl,1112) MID CL0SE(UNIT=1)

1111 F0RMAT(F11,6)1112 F0RMATCI6)C

C INITIALIZING THE PROGRAM:C

NUPDATE=0 NWARMUP=MMM*NSWEP DELTAT=BETA/(LTIME*IPMAX)WRITE(6,*) ’ SITES =' ,N , ' PMAX=’ ,IPMAXWRITE(6,*) ' U=, ,UO,' V = \ V O / UM=',UM,' IU=',IUWRITE(6,*) ' BETA = ' .BETA,' LTIME=', LTIME,' LG=',LGWRITE(6,*)' MONTE CARLO MESUREMENTS:' , NMEMSWRITE(6,*)' MONTE CARLO STEPS (MCS): ' , NSWEPWRITE(6,*)' WARMUP STEPS: \NWARMUPWRITE(6,*)' IR,IW’ ,IR,IW

DLU : LAMBDA(U) ; DLV LAMBDA(V)DLU= DTANH( DELTAT*UO*0. 25D0)DLU=DLOG(( 1 . 0D0+DSQRT(DLU))**2/(1 .ODO-DLU)) DUU=DSINH(- 2 . ODO*DLU)DUD=DCOSH(- 2 . ODO*DLU)- 1 . 0D0 DLV= DTANH( DELTAT*VO*0.2 5 )DLV=DLOG(( 1 . ODO+DSQRT(DLV) ) * * 2 / ( l . ODO-DLV)) DVU=DSINH(- 2 . ODO*DLV)DVD=DCOSH(- 2 . ODO*DLV) - 1 . ODO

C SPECIFY THE INITIAL ISING SPIN CONFIGURATION: C

DO 50 I=1,LTIME*IPMAX C SIGMA'S

DO 511 K=1,N LX=MOD(K,2)IF(LX.EQ.O) THEN

SIGMAfI,K)=-1 . ODO ELSE

SIGMAfl,K)= l.ODO ENDIF

511 CONTINUEC SI THROUGH S4

DO 512 K -l,N 2 X=RAN(ISEED)IF(X.LT.0.5D0) THEN

Page 134: Quantum Monte Carlo Simulations of Hubbard and Anderson

nn

nn

on

nn

on

nn

nn

no

on

nn

nn

o

127

DIMENSION GUL(LTT,N,N), GDL(LTT,N,N)C

COMMON /CDELTAT/DELTATCOMMON /CLTIME/LTIMECOMMON /CDL/DLU.DLVCOMMON /CUI/UO.VOCOMMON /CEI/UMCOMMON / CEXPEK/EXFEKCOMMON /CEKIN/EKINCOMMON /CLINK/LINKI,LINKJCOMMON /CSPINS/SIGMA,SP1,SP2, SP3, SP4COMMON /CHEV/EVU.EVDCOMMON /CHEVIN/EVUIN,EVDINCOMMON /GB/GUTO, GDTO, GUTL, GDTL, GUL, GDLCOMMON /CIJX/IJXCOMMON /CEKS/EK1, EK2, EK3, EK4, EK5, EQQCOMMON /CNS/SIG.TLN,TLNU, TLND, UDN, S PIN, ASPIN, ZM, CZ,ENRYCOMMON /CSS/SS, SS1 , SS2, SS3, SS4, SSSCOMMON /CCC/CCO,CC1,CC2,CC3, CC4, CCSCOMMON /CSS1/SUS, SUSQ, SUST, SUSQTCOMMON /CSS2/SUSC, SUSCQ, SUSCT, SUSCQTCOMMON /CSS3/PPC, PPCQ, PPSQ, PPS

COPEN(UNIT=l)

READ INPUTS:T : HOPPING CONSTANCE, USUALLY T=1

UO : INPUT PARAMETER U VO : VUM : CHEMICAL POTENTIAL.

BETA : 1 OVER TEMPERATUREIU : IF U=0 SET IU=1 ; ELSE IF V=0 SET IU=2 ; ELSE SET IU=0 LG : AFTER UPDATING GREEN'S FUNCTION FOR LG TIME SLICES

RECALCULATE G'S FROM SCRACH.WHY : ROUND-OFF ERRORS.GENERALLY: USE LG=4

LTIME: TIME SLICES. FOR BSS ALGORITHM, THIS IS THE TOTAL SLICES. NMEMS: NUMBER OF MONTE CARLO MEASUREMENTS NSWEP: NUMBER OF MC STEPS BETWEEN MEASUREMENTS

MMM : (MMM * NSWEP) IS THE WARM-UP SWEEPS IR : IF NOT EQUAL TO 0 , SIGMA READ FROM CHANNEL 2 IW : IF NOT EQUAL TO 0 , SIGMA WRITTEN TO CHANNEL 3

SET IR AND IW TO 0 IF THE CALCULATION IS ONE SHOT.

MID : AFTER EVERY MID MEASUREMENTS, CALCULATE RESULTS.

READ(1,1111) T,UO,VO READ(1 ,1111 ) UM READ(1 ,1111 ) BETA READ(1 ,1112) IU

Page 135: Quantum Monte Carlo Simulations of Hubbard and Anderson

128

SP1(I,K)= 1 .ODO SP2(I,K)=-1.ODO SP3(I,K)=-1.0DO SP4(I,K )= l.ODO

ELSE SP1(I,K )=-1.0D 0 SP2(I,K )= l.ODO SP3(I,K)= l.ODO SP4(I,K )=-1.0D 0

END IF 512 CONTINUE 50 CONTINUECC ..................................................................... - ............................ - ...........C IF IR IS NOT 0 , ISING SPINS ARE READ FROM CHANNEL 2.

IF (IR.NE.O) THEN OPEN (UNIT=2)WRITE(6,* ) 'SIGMAS READ FROM 2'READ(2,2000) ((SIGMA(K1,K2),K2=1,N) ,K1=1,LTIME*IPMAX) READ(2 ,2 0 0 0 ) ((SP1(K1,K2) ,K2=1,N2),K1=1,LTIME*IPMAX) READ(2,2000) ((SP2(K1,K2) ,K2=1,N2),K1=1,LTIME*IPMAX) READ(2,2000) ((SP3(K1,K2) ,K2=1,N2),K1=1,LTIME*IPMAX)READ(2,2000) ((SP4(K1,K2) ,K2=1,N2),K1=1,LTIME*IPMAX)CL0SE(UNIT=2)

END IFCC ==============— ===============================*====C GEOMETRY: EK1,. , . , EK5 DEFINE THE GEOMETRY OF THE SYSTEMC

CALL HEK(EK1,EK2,EK3,EK4,EK5,EQQ)CC INITIALIZING THE LINKS BETWEEN NEIGHBORS C

CALL LINKS(EK1)CC CALCULATE EXP(K) AND EXP(-K)C

CALL EXPEKT(EKl)CC CALCUATE THE INITIAL GREEN'S FUNCTIONS FOR MC UPDATING.C

CALL GNPUD(GU,GD,1)CC INITIAL DETERMINANTS OF. THE GREEN'S FUNCTIONS C

CALL DETM(GU,DETGU)CALL DETM(GD,DETGD)WRITE( 6 , * ) 'DETGU=', DETGU, ' DETGD=' , DETGD SIGN=DETGU/DABS(DETGU)SIGN=DETGD/DABS(DETGD)*SIGN WRITE(6,* ) 'SIGN=',SIGN

Page 136: Quantum Monte Carlo Simulations of Hubbard and Anderson

129

cc = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

C MONTE CARLO STEP STARTS HERE:C

MES=0DO 66 MT=1.MMM+NMEMS

CC BEGIN MEASUREMENT AFTER (MMM * NSWEP) WARM-UP SWEEPS THROUGHC THE WHOLE SPACE-TIME LATTICEC SUBROUTINE ^RESULTS* CALCULATES THE AVERAGES OF THE QUANTITIES.C

IF (MT.GT.MMM) THEN CALL GTOTAL(GU.GD)MES=MES+1CALL RESULTS(MES, SIGN,GU,GD)

END IFC

DO 64 MS=1,NSWEPCC MC STEPS : NSWEP SWEEPS BETWEEN EACH MEARSUREMENT.C ======================================================CC SWEEP THROUGH THE TIME SPACE : LTIME SLICEC

DO 100 L=l,LTIMECC RECALCULATE GREEN'S FUNCTION AFTER LG SLICESC TO RESTORE PRECISION.

LL=MOD(L,LG)IF (LL.EQ.O) THEN

CALL GNPUD(GU,GD,L)END IF

CDO 1000 IPP=1,IPMAX

CC SWEEP WITHIN EACH TIME PARTITIONS. (FOR BSS, IPMAX=1)C

LIPP=(IPP-1)*LTIME+LCC UPDATE ISING SPIN AT LATTICE SITES : SIGMA

IF (IU .N E .l) THENDO 110 1=1 ,N

IIPP=(IPP-1)*N+IDNU= DUU*SIGMA(LIPP,I)+DUDDND=-DUU*SIGMA(LIPP, I)+DUDRU=1. 0D0+(1 . 0D0-GU(IIPP,IIPP))*DNURD=1. 0D0+(1 . 0D0-GD(IIPP,IIPP))*DNDRUD=RU*RDPRO=DABS(RUD)IF(DABS(VO).GT.1 .OD-2) PRO=PRO/(1 . ODO+PRO)

C

Page 137: Quantum Monte Carlo Simulations of Hubbard and Anderson

C FLIP PROBABILITY: PROC RANDOM NUMBER : X

X=RAN(ISEED)C

IF(PRO.GT.X) THENCC PROPOSED SPIN FLIP SIGMA -> -SIGMA ACCEPTED.C

NUPDATE=NUPDATE+1 IF (RUD.LT.O.ODO) SIGN=-SIGN

SIGMA(LIPP,I)=-SIGMA(LIPP,I)RU=DNU/RURD=DND/RD

CC UPDATING THE GREEN’S FUNCTION ■C

DO 55 J l= l ,N P DJ1I=0. ODOIF (J l.E Q .IIP P ) DJ1I=1. ODO TRU1=-(DJ1I-GU( J l , IIPP ) )*RU TRD1=-(DJ1I-GD( J l , IIPP ) )*RD DO 55 J2=1,NPS U (J l , J2)=GU(J1, J2)+TRU1*GU(IIPP,J2)

55 SD(J1, J2)=GD(J1, J2)+TRD1*GD(IIPP»J2)C

DO 56 K1=1,NP DO 56 K2=l,NP GU(K1,K2)=SU(K1,K2)

56 GD(K1,K2)=SD(K1,K2)CC GREEN’S FUNCTION UPDATED

END IF 110 CONTINUE CC UPDATE ALL SIGMA’ S FOR THE CURRENT TIME SLICE.

END IFCC : UPDATE LINKS : TOTAL N2 LINKS C

IF(IU .N E .2) THEN DO 111 K=1,N2

I=LINKI(K)J=LINKJ(K)IIPP=(IPP-1)*N+IJIPP=(IPP-1)*N+J

CC : SPIN 2 , S2C

DNU= DVU*SP2(LIPP,K)+DVD DND=-DVU*SP2(LIPP,K)+DVD RU=1.0D0+(1 .0D0-GU(IIPP,IIPP))*DNU

Page 138: Quantum Monte Carlo Simulations of Hubbard and Anderson

131

RD=1. 0D0+(1 .ODO-GD(JIPP,JIPP))*DNDRUD=RU*RDPRO=DABS(RUD)IF(DABS(VO).GT.1.0D-2) PRO=PRO/(1 .ODO+PRO)

CC FLIP PROBABILITY : PROC RANDOM NUMBER : XC

X=RAN(ISEED)IF(PRO.GT.X) THEN

C FLIP ACCEPTEDC

NUPDATE=NUPDATE+1 SP2(LIPP,K)=-SP2(LIPP,K)RU=DNU/RURD=DND/RD

CC UPDATE GREEN'S FUNCTIONSC

DO 551 J l= l ,N P DJ1I=0. ODOIF (J l.E Q .IIP P ) DJ1I=1.ODO DJ1J=0. ODOIF(Jl.E Q .JIPP) DJ1J=1.0D0 TRU1=-(DJ1I-GU(J1,IIPP))*RU TRD1=-(DJlJ-GDfJl, JIPP))*RD DO 551 J2=1,NPSUCJ1, J2)=G U (Jl, J2)+GU(IIPP,J2)*TRU1

551 SD(J1, J2)=GD(Jl,J2)+GD(JIPP,J2)*TRD1DO 561 K1=1,NP DO 561 K2=1,NP GU(K1,K2)=SU(K1,K2)

561 GD(K1,K2)=SD(K1,K2)END IF

CC : SPIN 3 , S3C

DNU= DVU*SP3(LIPP,K)+DVDDND=- DVU*SP3(LIPP, K) +DVDRU=1. ODO+(1 . ODO-GU(JIPP,JIPP))*DNDRD=1. ODO+(1 . ODO-GD(IIPP, IIPP))*DNURUD=RU*RDPRO=DABS(RUD)IF(DABS(VO).GT.1.0D-2) PRO=PRO/(1 . ODO+PRO)

CC FLIP PROBABILITY : PROC RANDOM NUMBER : XC

X=RAN(ISEED)IF(PRO.GT.X) THEN

C

Page 139: Quantum Monte Carlo Simulations of Hubbard and Anderson

C SPIN FLIP ACCEPTEDC

NUPDATE=NUPDATE+1IF (RUD.LT.O.ODO) SIGN=-SIGNSP3(LIPP,K)=-SP3(LIPP,K)RU=DND/RURD=DNU/RD

CC UPDATE GREEN'S FUNCTIONC

DO 554 J1=1,NP DJ11=0.ODOIF (J l.E Q .IIP P ) DJ1I=1.ODO DJ1J=0. ODOIF(Jl.E Q .JIPP) DJ1J=1.ODO TRU1=-( DJ1J-GU( J l , JIPP))*RU TRD1=-(DJ1I-GD(Jl, IIPP))*RD DO 554 J2=1,NPS U (J l , J2)=G U (Jl, J2)+GU(JIPP,J2)*TRU1

554 SD (J1,J2)=G D (Jl, J2)+GD(IIPP,J2)*TRD1DO 564 Kl=l,NP DO 564 K2=l,NP GU(K1,K2)=SU(K1,K2)

564 GD(K1,K2)=SD(K1,K2)

END IFCC: SPIN 1, SI C

DNU= DVU*SP1(LIPP, K) +DVDDND=- DVU*SP1(LIPP,K)+DVDDETC1=1. 0D0+(1 . ODO-GUQIPP, IIPP))*DNUDETC2=1. ODO+(1 . ODO-GUCJIPP,JIPP))*DNDDETC3= GU(JIPP,IIPP) *DNUDETC4= GU(IIPP,JIPP) *DNDRU=DETC1*DETC2-DETC3*DETC4RUD=RUPRO=DABS(RUD)IF(DABS(V0).GT.1.0D-2) PRO=PRO/(1 . ODO+PRO)

CC FLIP PROBABILITY : PROC RANDOM NUMBER : XC

X=RAN(ISEED)IF(PRO.GT.X) THEN

CC SPIN FILP ACCEPTEDC

NUPDATE=NUPDATE+1 IF (RUD.LT.O.ODO) SIGN=-SIGN

SP1(LIPP,K)=-SP1(LIPP,K)

Page 140: Quantum Monte Carlo Simulations of Hubbard and Anderson

133

RD=DND/RURU=DNU/RU

CC UPDATE GREEN'S FUNCTIONC

DO 552 J1=1,NP DJ11=0.ODOIF(J1.EQ .IIPP ) DJ1I=1.ODO DJ1J=0. ODOIF(J1.EQ.JIPP ) DJ1J=1.ODO TRU1=-(DJ1I-GU(Jl, IIPP) )*RU TRU2=-(DJ1J-GU(Jl, JIPP) )*RD TRUI=TRU1*DETC2+TRU2*DETC3 TRUJ=TRU1*DETC4+TRU2*DETC1 DO 552 J2= l,N P

552 S U (J l , J2)=GU(J1, J2)1 +TRUI*GU(IIPP,J2)+TRUJ*GU(JIPP,J2)

DO 562 Kl=l,NP DO 562 K2=l,NP

562 GU(K1,K2)=SU(K1,K2)END IF

CC: SPIN 4 , S4 C

DNU= DVU*SP4(LIPP,K)+DVDDND=-DVU*SP4( LIPP, K) +DVDDETC1=1. 0D0+(1 . ODO-GD(IIPP,IIPP))*DNUDETC2=1. ODO+(1 . ODO-GD(JIPP, JIPP))*DNDDETC3= GD(JIPP,IIPP) *DNUDETC4= GD(IIPP,JIPP) *DNDRU=DETC1*DETC2-DETC3*DETC4RUD=RUPRO=DABS(RUD)IF(DABS(VO).GT.1 . OD-2) PRO=PRO/(1 . ODO+PRO)

CC FLIP PROBABILITY : PROC RANDOM NUMBER : XC

X=RAN(ISEED)IF(PRO.GT.X) THEN

CC SPIN FLIP ACCEPTEDC

NUPDATE=NUPDATE+1 IF (RUD.LT.O.ODO) SIGN=-SIGN

SP4(LIPP,K)=-SP4(LIPP,K)RD=DND/RURU=DNU/RU

CC UPDATE GREEN'S FUNCTIONC

Page 141: Quantum Monte Carlo Simulations of Hubbard and Anderson

134

DO 553 J l= l ,N P DJ1I=0. ODOIFCJ1.EQ.IIPP ) DJ1I=1. ODO DJ1J=0.ODOIF(J1.EQ.JIPP ) DJ1J=1.0D0 TRD1=-(DJ1I“GD(J1,IIPP) )*RU TRD2=-(DJ1J-GD(Jl, JIPP) )*RD TRDI=TRD1*DETC2+TRD2*DETC3 TRDJ=TRD1*DETC4+TRD2*DETC1 DO 553 J2=l,NP

553 SD(J1, J2)=G D (Jl, J2)1 +TRDI*GD(IIPP,J2)+TRDJ*GD(JIPP,J2)

DO 563 K1=1,NP DO 563 K2=1,NP

563 GD(K1,K2)=SD(R1,K2)END IF

111 CONTINUE CC ALL SPINS FOR THE CURRENT TIME SLICE UPDATED

END IFC1000 CONTINUE CC UPDATE GREEN'S FUNCTION TO NEXT TIME SLICE:C

DO 120 IP1=1,IPMAX DO 120 IP2=1,IPMAX

DO 121 J1=1,N DO 121 J2=1,N J1G=(IP1-1)*N+J1 J2G=(IP2-1)*N+J2 YU(J1,J2)=GU( JIG, J2G )

121 YD(J1,J2)=GD( JIG, J2G )CALL BUBDL(EU,ED,IP1,L)CALL FMMM(EU,YU,XU,N,N,N)CALL FMMM(ED,YD,XD,N,N,N)CALL INBUBDL(EU,ED,IP2,L)CALL FMMM(XU,EU,YU,N,N,N)CALL FMMM(XD,ED,YD,N,N,N)

DO 122 J1=1,NDO 122 J 2= l,NJ1G=(IP1-1)*N+J1J2G=(IP2-1)*N+J2GU( JIG, J2G) =YU(J1,J2)

122 GD( JIG, J2G) =YD(J1,J2)120 CONTINUECC FINISH ONE SWEEP THROUGH THE WHOLE TIME-SPACE LATTICE C100 CONTINUE C

Page 142: Quantum Monte Carlo Simulations of Hubbard and Anderson

c =*======================================================C WHEN MS IS LESS THAN THE MC STEPS BETWEEN MEASUREMENTS (NSWEP) C UPDATE GREEN'S FUNCTION AFTER EACH SWEEPC

I F ( ( MT. LE. MMM). OR. (MS. LT. NSWEP)) THEN CALL GNPUD(GU,GD,1)

END IFCC ========================================================C *NSWEP* MONTE CARLO SWEEPS BETWEEN MEASUREMENTS DONE.64 CONTINUECC ========================================================C66 CONTINUE CC AFTER EACH MID MEASUREMENTS , REPORT THE RESULTS.C

MESMOD=MOD(MES,MID)IF(MESMOD. EQ. 0 . AND. MES. NE.0 ) THEN

CWRITE(6,*) 'MEASUREMENT MES',MES CALL DIV(SIG,ASIGN,XSIGN,MES,l.ODO)CALL DIV(TLN,ATLN,XTLN,MES,ASIGN)CALL DIV(TLNU,ATLNU,XTLNU,MES,ASIGN)CALL DIV(TLND, ATLND, XTLND, MES, ASIGN)CALL DIV(SPIN,ASPIN1.XSPINl,MES,ASIGN)CALL DIV(ASPIN,ASPIN2,XSPIN2,MES,ASIGN)CALL DIV(ZM,AZM,XZM,MES,ASIGN)

AZM=AZM/N XZM=XZM/N

CALL DIV(CZ,ACZ,XCZ,MES,ASIGN)ACZ=ACZ/N XCZ=XCZ/N

CALL DIV(SS,ASS,XSS,MES,ASIGN)ASS=ASS/N XSS=XSS/N

CALL DIV(CCO, ACCO, XCCO,MES, ASIGN)ACCO=ACCO/N XCCO=XCCO/N

CALL DIV(UDN,AUDN,XUDN,MES,ASIGN)AUDN=AUDN/N XUDN=XUDN/N

CALL DIV(SSI,ASS1 ,XSSI, MES,ASIGN)ASS1=ASS1/N*0. 5D0 XSS1=XSS1/N*0.5D0

CALL DIV(CC1,ACC1,XCC1,MES,ASIGN)ACC1=ACC1/N*0.SD0 XCC1=XCC1/N*0. 5D0

CALL DIV(SS2, ASS2.XSS2, MES, ASIGN)ASS2=ASS2/N*0.5D0 XSS2=XSS2/N*0. 5D0

Page 143: Quantum Monte Carlo Simulations of Hubbard and Anderson

CALL DIV(CC2,ACC2,XCC2,MES,ASIGN) ACC2=ACC2/N*0.5D0 XCC2=XCC2/N*0. SDO

CALL DIV(SS3,ASS3,XSS3,MES,ASIGN) ASS3=ASS3/N XSS3=XSS3/N

CALL DIV(CC3, ACC3, XCC3, MES.ASIGN) ACC3=*ACC3/N XCC3=XCC3/N

CALL DIV(SS4,ASS4,XSS4,MES,ASIGN) ASS4=ASS4/N*0.5D0 XSS4=XSS4/N*0.5D0

CALL DIV(CC4,ACC4,XCC4,MES,ASIGN) ACC4=ACC4/N*0. 5D0 XCC4=XCC4/N*0.5DO

CALL DIV(SS5.ASS5.XSS5, MES.ASIGN) ASS5=ASS5/N*2.0D0 XSS5=XSS5/N*2. ODO

CALL DIV(CC5,ACC5,XCC5, MES,ASIGN) ACC5=ACC5/N*2. ODO XCC5=XCC5/N*2. ODO

CALL DIVCSUST, ASUST.XSUST, MES, ASIGN) ASUST=ASUST/N*0. 5DO XSUST=XSUST/N*0. 5D0

CALL DIV(SUS, ASUS, XSUS, MES, ASIGN) ASUST1=ASUS/N XSUST1=XSUS/N ASUS=ASUST1*BETA*0. 5D0 XSUS=XSUST1*BETA*0. 5D0

CALL DIV(SUSQ,ASUSQ,XSUSQ,MES,ASIGN) ASUSQ=ASUSQ/N XSUSQ=XSUSQ/N

CALL DIVCSUSQT, ASUSQT, XSUSQT, MES, ASIGN) ASUSQT=ASUSQT/N*0. 5DO XSUSQT=XSUSQT/N*0.5D0

CALL DIVC SUSCQ, ASUSCQ, XSUSCQ, MES.ASIGN) ASUSCQ=ASUSCQ/N XSUSCQ=XSUSCQ/N

CALL DIVC SUSCQT, ASUSCQT, XSUSCQT, MES, ASIGN) ASUSCQT=ASUSCQT/N XSUSCQT=XSUSCQT/N

CALL DIVCSUSC, ASUSC, XSUSC, MES, ASIGN) ASUSC=eASUSC-ATLN*ATLN)/N XSUSC=XSUSC/N

CALL DIVCSUSCT, ASUSCT, XSUSCT, MES.ASIGN) ASUSCT=ASUSCT/N-ATLN*ATLN/N*BETA XSUSCT-XSUSCT/N

CALL DIVe PPC, APPC, XPPC, MES, ASIGN) APPC=APPC/N XPPC=XPPC/N

CALL DIVePPCQ, APPCQ, XPPCQ,MES, ASIGN)

Page 144: Quantum Monte Carlo Simulations of Hubbard and Anderson

o o o

137

APPCQ=APPCQ/N XPPCQ=XPPCQ/N

CALL DIV( PPS, APPS, XPPS, MES,ASIGN) APPS=APPS/N XPPS=XPPS/N

CALL DIV(PPSQ, APPSQ, XPPSQ, MES, ASIGN) APPSQ=APPSQ/N XPPSQ=XPPSQ/N

CALL DIV(ENRY, AENRY, XENRY, MES, ASIGN) WRITE(6,* ) ' ............................................................

WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITEC6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITEC6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITE(6 WRITEC6 WRITE(6 WRITEC6 WRITEC6

*) ' SIGN ' , ASIGN , ' + / - XSIGN*) ' TOTAL # ' , ATLN , ' + / - ' XTLN*) ' T# UP ' , ATLNU , ' + / - ' XTLNU*) ' T# DN , ATLND , ' + / - ' XTLND*) 1 SPIN 1 , ASPIN1, ' + / - ’ XSPIN1*) ' |SPIN| ' , ASPIN2, ' + / - ' XSPIN2*) ' < s * s > ' , ASS , ’ + / - ' XSS*) ' #U*D , AUDN , ' + / - ' XUDN*) ’ S-S 1 1 , ASS1 , ' + / - ' XSSI*) ' S-S 2 , ASS2 , ' + / - ' XSS2*) ' S-S 3 1 , ASS3 , ' + / - ' XSS3*) ' S-S 4 1 , ASS4 , ' + / “ ' XSS4*) 1 S-S 5 ' , ASS5 , ' + / - ’ XSS5*) 1 C-C 0 ' , ACCO , ' + / - ‘ XCCO*) ' C-C 1 , ACC1 , ' + / - ' XCC1*) ' C-C 2 , ACC2 , ' + / - ' XCC2*) ' C-C 3 1 , ACC3 , ' + / - ' XCC3*) ’ C-C 4 ‘ , ACC4 , ’ + / - ’ XCC4*) ' C-C 5 ' , ACCS , ' + / - * XCC5* ) ' <H> ' , AENRY , ' + / - ' XENRY*) ’ ZM , AZM , ’ + / - ' XZM*) CZ ’ , ACZ , ' + / - ’ XCZ* ) ' s u s , ASUS , ' + / - ' XSUS*) ' SUST ' , ASUST , ' + / - ' XSUST*) 1 SUSQ , ASUSQT, 1 + / - ' XSUSQT*) ' SQ(K=0) ’ , ASUST1, ' + / - ' XSUST1*) ' SQ(K=PI)1 , ASUSQ, ' + / - ’ XSUSQ*) ' CQ(K=0) ' , ASUSC, ’ + / “ ' XSUSC*) ' CQ(K=PI)' , ASUSCQ, ' + / - ' XSUSCQ* ) ' SUSCT ' , ASUSCT + / - ' XSUSCT*) ' SUSCQT ' , ASUSCQT,1 + / - ' XSUSCQT*) ' PPC ' , APPC , ’ + / - ’ XPPC* ) 1 PPCQ ' , APPCQ , ' + / - ’ XPPCQ*) ' PPS ' , APPS , ' + / - ' XPPS*) ' PPSQ ' , APPSQ , ' + / - ' XPPSQ

PRINT OUT THE TOTAL NUMBER OF UPDATES ACCEPTED. USED TO CALCULATE THE ACCEPTANCE RATIO.

Page 145: Quantum Monte Carlo Simulations of Hubbard and Anderson

138

WRITE( 6 , * ) 'NUPDATE', NUPDATEC

IF (IW.NE.O) THEN C SAVE THE ISING SPIN CONFIGURATION, WRITE TO CHANNEL 3.C

OPEN(UNIT=3)WRITE(6,*) 'SIGMAS WRITTEN TO 3'WRITE(3,2000) ((SIGMA(K1,K2),K2=1,N),KI=1,LTIME*IPMAX) WRITEC3 ,2 0 0 0 ) ((SPlfKl,K2),K2=1,N2),K1=1,LTIME*IPMAX) WRITE(3,2000) ( (SP2(K1,K2),K2=1,N2),K1=1,LTIME*IPMAX) WRITEC3 ,2 0 0 0 ) ((SP3(K1,K2),K2=1,N2),K1=1,LTIME*IPMAX) WRITEC3 ,2 0 0 0 ) CCSP4CK1,K2),K2=I,N2),K1=1,LTIME*IPMAX) CLOSECUNIT=3)

END IF 2000 FORMATC10F8.2)CC INTERMEDIATE RESULTS AFTER MID MEASUREMENTS * DONE *

END IFC66 CONTINUE

ENDCC MONTE CARLO MAIN PROGRAM ENDSC

Page 146: Quantum Monte Carlo Simulations of Hubbard and Anderson

139

c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cC SUBROUTINES CG Cc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cC .GNPUD. CALCULATES THE GREEN'S FUNCTION AT TIME SLICE L CC MAXIMUM ALLOWED TIME SLICES LA=40 CC INPUT TIME SLICES : LTIME MUST BE V< IA CC GREEN'S FUCTION SIZE: NP X NP MATRICES CC FOR BSS ALGORITHM, USE IPMAX=1 CC CC ....................................................................................................................................CC

SUBROUTINE GNPUD(GUNP,GDNP,L)IMPLICIT REAL*8(A-H,0-Z)PARAMETER(LA=40, IPMAX=1J PARAMETER( ND=4, N=ND**2, NP=N*IPMAX)DIMENSION GUNP(NP,NP) , GDNP(NP,NP)DIMENSION GUINP(NP.NP), GDINP(NP,NP)DIMENSION GU(N,N) , EU(N,N) , SU(N,N)DIMENSION GD(N,N) , ED(N,N) , SD(N,N)COMMON /CLTIME/LTIME

CC INITIALIZE THE WORK AREA.

DO 555 1=1 ,NP DO 555 J=1,NP GUINP(I, J ) = 0 . ODO

555 GDINP(I,J ) = 0 . ODO CC....................................... ...........................................................

DO 100 IPP = 1 , IPMAX C CALCULATE B(L)

CALL BUBDL(EU, ED, IPP, L)CC CALCULATE ALL B'S ; AND B (L -1 ) . .B ( 1 ) . B(LTIME). . . B(L+1). B(L)

DO 5 I=L+1,LTIME+L-1 IS=I IPS=IPP

IF ( IPP.EQ.IPMAX .AND. I.GT.LTIME ) THEN IS=IS-LTIME IPS=1

ENDIFC

CALL BUBDL( SU, SD, IPS, IS )CALL FMMM(SU,EU,GU,N,N,N)CALL FMMM(SD,ED,GD,N,N,N)

CDO 7 J1=1,N DO 7 J2=1,N E U (J l , J2)=G U (Jl, J2)

Page 147: Quantum Monte Carlo Simulations of Hubbard and Anderson

140

7 ED(J1, J2)=G D (Jl, J2 )C

5 CONTINUEC

IF(IPP.LT.IPMAX) THEN DO 8 1= 1 ,N DO 8 J=1,N

II=IPP*N+I JJ=(IPP-1)*N+J GUINP(II, JJ )= -G U (I , J )GDINPfII, JJ )= -G D (I , J )

8 CONTINUEC

ELSEC THIS IS THE CASE FOR BSS ALGORITHM, IPP=IPMAX=1

DO 9 1=1 ,N DO 9 J=1,N

JJ=(IPMAX-1)*N+J GUINP(I, JJ)=GU( I , J )GDINP(I, JJ)=GD(I, J )

9 CONTINUE ENDIF

C100 CONTINUE

FULL MATRIX BEFORE THE INVERSION: *M* OR *0*DET(M) OR DET(O) IN THE PARTION FUNCTIN.

DO 110 1=1 ,NPGUINPC1 , 1 ) =GUINP(I, I ) + l . ODO GDINP(I, I)=GDINP(I, I ) + 1 .ODO

10 CONTINUE

CALCULATE THE INVERSE, AND FIND G =(I+B .. . B ) - lTHE GREEN'S FUNCTION

CALL MATRINV(GUINP.GUNP)CALL MATRINV(GDINP.GDNP)

RETURNEND

Page 148: Quantum Monte Carlo Simulations of Hubbard and Anderson

u o

u u

o u

u O

u o

o a

u cjuu

oo

uu

uu

141

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

GTOTAL CALCULATES THE TIME-DEPANDENT GREEN'S FUCNTIONS C CALLED BEFORE TAKING MEASUREMENT. C

CTOTAL TIME SLICE LTIME*IPMAX : C

CGUT0(L,I,J) = < CI(L)CJ+(1) > CGUTL(L,I,J) = < CJ+(L)CI(1) > CGUL(L,I, J ) = < CI(L)CJ+(L) > C

C■.............................................................................................. C

SUBROUTINE GTOTAL(GUNP, GDNP)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N*IPMAX) DIMENSION GUNP(NP.NP), GDNP(NP.NP)DIMENSION GUTO( LTT, N, N ) , GDTO( LTT, N,N)DIMENSION GUTL(LTT,N,N),GDTL(LTT,N,N)DIMENSION GUL(LTT,N,N), GDL(LTT,N,N)COMMON /CLTIME/LTIME COMMON /GB/GUTO, GDTO, GUTL, GDTL, GUL, GDL

CALCULATE GU AND GD FIRST

CALL GNPUD(GUNP, GDNP,1 )

CALCUALTE ALL G'S IN TWO STEPS:FISRT G'S FOR TIME SLICE \< HALF OF THE TOTAL SLICES SECOND G'S FOR TIME SLICE > HALF OF THE TOTAL SLICES

PURPOSE: REDUCE THE ROUND-OFF ERROR

DO 10 IP=1,IPMAXCALL GBTO(GUNP,GDNP,IP)

10 CALL GBTL(GUNP,GDNP, IP)RETURNEND

Page 149: Quantum Monte Carlo Simulations of Hubbard and Anderson

uo

ou

ou

ua

uu

uu

ou

u

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

GTBO CALCULATES THE TIME-DEPANDENT GREEN'S FUCNTIONS CALLED BY GTOTALFOR TIME SLICE L \< HALF OF TOTAL TIME SLICES

GUT0(L,I, J ) = < CI(L)CJ+(1) >GUTL(L,I, J ) = < CJ+(L)CI(1) >GULfL,I, J ) = < CI(L)CJ+(L) >

INPUT : GREEN'S FUNCTIONS USED IN THE UPDATING PROCEDURES IP : PARTITION NUMBER; FOR BSS, IP=IPMAX=1

SUBROUTINE GBTO(GUNP,GDNP,IP)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N*IPMAX)

CDIMENSION GUNP(NP.NP) ,GDNP(NP,NP)DIMENSION GUTO( LTT, N, N) , GDTO( LTT, N,N)DIMENSION GUTL(LTT,N,N),GDTL(LTT,N,N)DIMENSION GUL(LTT,N,N), GDL(LTT,N,N)

CDIMENSION BU(N,N),BD(N,N)DIMENSION BUI(N,N),BDI(N,N)DIMENSION EU1(N,N),EU2(N,N)DIMENSION ED1(N,N),ED2(N,N)DIMENSION SU1(N,N),SU2(N,N)DIMENSION SD1(N,N),SD2(N,N)DIMENSION TU1(N,N),TU2(N,N)DIMENSION TD1(N,N),TD2(N,N)

CCOMMON /CLTIME/LTIMECOMMON /GB/GUTO, GDTO, GUTL, GDTL, GUL, GDL

CC INITIALIZE THE LOOP IP C

I F (IP .E Q .l) THEN C THIS IS ALSO THE CASE FOR BSS ALGORITHM: IP=IPAMX=I C

DO 125 M4=1,N DO 125 M5=1,N

GUT0(1,M4,M5)= GUNP(M4,M5)GDTO( 1 ,M4,M5)= GDNP(M4,M5) GUTL(1,M4,M5)=-GUNP(M4,M5) GDTL(1,M4,M5)=-GDNP(M4,M5)GUL(1,M4,M5) = GUNP(M4,M5)GDL(1,M4,M5) = GDNP(M4,M5)EU1(M4,MS) = GUNP(M4,M5)

no

on

nn

nn

nn

no

o

Page 150: Quantum Monte Carlo Simulations of Hubbard and Anderson

143

ED1(M4,M5) = GDNP(M4,M5) SU1(M4,M5) =-GUNP(M4,M5) SD1(M4,M5) =-GDNP(M4,M5) TU1(H4,M5) = GUNP(M4,M5)

125 TD1(M4,M5) = GDNP(M4,M5)C

DO 1255 M4=l,NGUTL( 1 , M4, M4)=-GUNP(M4, M4) + 1 .ODO GDTL(1 ,M4,M4)=-GDNP(M4,M4)+1.ODO SU1(M4,M4) =-GUNP(M4,M4)+l. ODO

1255 SD1(M4,M4) =-GDNP(M4,M4)+1.0D0C

ELSELIP=(IP-1)*LTIME+1 DO 126 M4=1,NDO 126 M5=1,N

IPM4=(IP-1)*N+M4 IPM5=(IP-1)*N+M5 GUTO(LIP,M4,M5)= GUNP(IPM4,M5) GDTO(LIP, M4, M5)= GDNP(IPM4,M5) GUTL(LIP,M4,M5)=-GUNP(M4,IPM5) GDTL(LIP,M4,M5)=-GDNP(M4,IPM5) GUL(LIP,M4,M5) = GUNP(IPM4,IPM5) GDL(LIP,M4,M5) = GDNP(IPH4,IPM5) EU1(M4,M5)= GUNP(IPM4,M5) ED1(M4,M5)= GDNP(IPM4,M5) SU1(M4,M5)=-GUNP(M4,IPM5) SD1(M4,M5)=-GDNP(M4,IPM5) TU1(M4,M5)= GUNP(IPM4,IPM5)

126 TD1(M4,M5)= GDNP(IPM4,IPM5)END IF

CC HALF OF THE TOTAL TIME SLICES (L2)

L2=LTIME/2+lC

DO 234 LK=2,L2 LK1=LK-1

* CALL BUBDIN(BU,BD,BUI,BDI,IP,LK1)CALL BUBDL(BU,BD,IP,LK1)CALL INBUBDL(BUI,BDI,IP,LK1)

CC * FOR GUTO, GDTOC

CALL FMMM(BU,EU1,EU2,N,N,N)CALL FMMM(BD,ED1,ED2,N,N,N)

CC * FOR GUTL, GDTLC

CALL FMMM(SU1,BUI,SU2,N,N,N)CALL FMMM(SD1,BDI,SD2,N,N,N)

C

Page 151: Quantum Monte Carlo Simulations of Hubbard and Anderson

cc

c

c

127C234

144

* FOR GUL, GDL

CALL FMMM(BU,TU1,TU2,N,N,N)CALL FMMM(BD,TD1,TD2,N,N,N)CALL FMMM(TU2,BUI,TU1,N,N,N) CALL FMMM(TD2,BDI,TD1,N,N,N)

IPLK=(IP-1)*LTIHE+LK

DO 127 M6=1,N DO 127 M7=1,N

GUT0(IPLK,M6,M7)=EU2(M6,M7) GDT0(IPLK,M6,M7)=ED2(M6,M7) EU1(M6,M7)=EU2(M6,M7) ED1(M6,M7)=ED2(M6,M7)GUTL(IPLK,M6,M7)=SU2(M6,M7) GDTLfIPLK,M6,M7)=SD2(M6,M7) SU1(M6,M7)=SU2(M6,M7) SD1(M6,H7)=SD2(M6,M7) GUL(IPLK,M6,M7)=TU1(M6,M7) GDL(IPLK,M6,M7)=TD1(M6,M7)

CONTINUE

CONTINUERETURNEND

Page 152: Quantum Monte Carlo Simulations of Hubbard and Anderson

c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cC GTBL CALCULATES THE TIME-DEPANDENT GREEN'S FUCNTIONS CC CALLED BY GTOTAL CC FOR TIME SLICE L > HALF OF TOTAL TIME SLICES Cc cC GUTO(L,I,J) = < CI(L)CJ+(1) > cC GUTL(L,I,J) = < CJ+(L)CI(1) > CC GUL(L,I,J) = < CI(L)CJ+(L) > CC CC ..................................................... C

SUBROUTINE GBTL(GUNP,GDNP,IP)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N*IPMAX)

CDIMENSION GUNP(NP,NP) ,GDNP(NP,NP)DIMENSION GU(N,N) ,GD(N,N)DIMENSION GUT0(LTT,N,N),GDTO(LTT,N,N)DIMENSION GUTL(LTT,N,N),GDTL(LTT,N,N)DIMENSION GUL(LTT,N,N), GDL(LTT,N,N)

CDIMENSION BU(N,N),BD(N,N)DIMENSION BUI(N,N),BDI(N,N)DIMENSION EU1(N,N),EU2(N,N)DIMENSION ED1(N,N),ED2(N,N)DIMENSION SU1(N,N),SU2(N,N)DIMENSION SD1(N,N),SD2(N,N)DIMENSION TU1(N,N),TU2(N,N)DIMENSION TD1(N,N),TD2(N,N)

CCOMMON /CLTIME/LTIMECOMMON /GB/GUTO,GDTO,GUTL,GDTL,GUL,GDL

CIF(IP.EQ.IPMAX) THEN

C THIS IS ALSO THE CASE FOR BSS ALGORITHM; IP=IPMAX=1 C

LIP=(IPMAX"1)*LTIME DO 125 M4=1,N DO 125 M5=1,N

EU1(M4,M5)=-GUNP(M4,M5)ED1CM4,M5)=-GDNP(M4,M5)SU1(M4,M5)= GUNP(M4,M5)SD1(M4,M5)= GDNPCM4.M5)TU1(M4,M5)= GUNP(M4,M5)

125 TD1(M4,M5)= GDNP(M4,M5)C

DO 1255 M4=1,NEU1(M4,M4)=1.0D0+EU1(M4,M4)

1255 ED1(M4,M4)=1.0DO+ED1(M4,M4)

Page 153: Quantum Monte Carlo Simulations of Hubbard and Anderson

onn

non

non

o o

n

146

ELSEDO 126 M4=1,N DO 126 M5=1,N

IPM4=IP*N+M4 IPM5=IP*N+M5EU1(M4,M5)= GUNP(IPM4,M5) ED1(M4,M5)= GDNP(IPM4,M5) SU1(M4,M5)=“GUNP(M4,IPM5) SD1(M4,M5)=-GDNP(M4,IPM5) TU1(M4,M5)= GUNP(IPM4,IPM5)

126 TD1(M4,M5)= GDNP(IPM4,IPM5)END IF

HALF OF THE TOTAL TIME SLICES (L2) L2=LTIME/2 L21=L2+2

DO 334 LP=LTIME,L21,-1CALL BUBDL(BU, BD, IP , LP)CALL INBUBDL(BUI,BDI, IP,LP)

* GUTO.GDTO **

CALL FMMM(BUI,EU1,EU2,N,N,N)CALL FMMM(BDI, EDI, ED2, N, N, N)

* GUTL.GDTL **

CALL FMMM(SU1,BU,SU2,N,N,N)CALL FMMM( SD1 , BD, SD2, N, N, N )

* GUL,GDL **

CALL FMMM(BUI,TU1,TU2,N,N,N)CALL FMMM(BDI,TD1,TD2,N,N,N)CALL FMMM(TU2,BU,TU1,N,N,N)CALL FMMM(TD2,BD,TD1,N,N,N)

DO 226 M1=1,N DO 226 M2=1,N

IPLP=(IP-1)*LTIME+LP GUL(IPLP,M1,M2)=TU1(M1,M2) GDL(IPLP,M1,M2)=TD1(M1,M2) GUT0(IPLP,M1,M2)=EU2(M1,M2) GDT0(IPLP,M1,M2)=ED2(M1,M2) EU1(M1,M2)*EU2(M1,M2) ED1(M1,M2)=ED2(M1,M2)GUTL(IPLP.Ml,M2)=SU2(M1,M2) GDTL(IPLP,M1,M2)=SD2(M1,M2) SU1(M1,M2)=SU2(M1,M2)SD1(M1,M2)=SD2(M1,M2)

Page 154: Quantum Monte Carlo Simulations of Hubbard and Anderson

147

226C334

CONTINUE

CONTINUERETURNEND

Page 155: Quantum Monte Carlo Simulations of Hubbard and Anderson

c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cC EXPERT CALCULATES THE MATRCIES EXP(K) AND EXP(-K)CC INPUT: HOPPING MATRIX K,C SPECIFIES THE GEOMETRY OF THE SYSTEM.CC RESULTS: EXPEK, AND ERIN CC .............................................................- ...........................................................

SUBROUTINE EXPEKT(EKO)PARAMETER( ND=4, N=ND**2)DIMENSION E 1(N ,N ),E 2(N ,N ),E0(N ,N )DIMENSION EXPEK(N,N),EKIN(N,N),EK1(N,N),EK0(N,N)

CCOMMON /CDELTAT/DELTAT COMMON /CEXPEK/EXPEK COMMON /CEKIN/EKIN

CDO 10 1 = 1 ,N DO 10 J=1,N

EO(I,J)=O.ODO IF (I .E Q .J ) E 0 (I ,J )= 1 .0 D 0

10 EK1(I,J)=-DELTAT*EKO(I,J)C

DO 20 1 = 1 ,N DO 20 J=1,N

EXPEK( I , J ) = E 0 ( I , J)+E K 1(I, J )20 EKIN(I,J) =EO(I, J ) -E K 1 (I ,J )C

FACT= l.ODO FACI=-1.0D0CALL FMMM(EK1,E0,E1,N,N,N)

CDO 30 M=2,100

FACT= FACT*M FACI=-FACI*M HH=1.0D0/FACT IF(HH.LE.1.0D-99) GOTO 70 CALL FMMM(EK1,E1,E2,N,N,N)

CDO 40 1=1,N DO 40 J=1,N

EXPEK(I, J)=EX PEK (I,J)+ l. 0D0/FACT*E2(I, J )40 EKIN(I, J ) =EKINCI,J)+1.0D0/FACI*E2(I,J)30 CALL FMMM(E2,E0,E1,N,N,N)C70 CONTINUE

RETURN END

nn

nn

no

nn

n

Page 156: Quantum Monte Carlo Simulations of Hubbard and Anderson

nn

nn

no

nn

nn

149

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

THIS SUBROUTINE SPECIFIES THE GEOMETRY OF THE SYSTEM.TO PERFORM CALCULATIONS FOR A DIFFERENT SYSTEM, WE NEED CHANGE THIS SUBROUTINE.

EK1 THROUGH EK5 ARE THE FIRST THROUGH FIFTH NEAREST NEIGHBORS.EQQ SPECIFIES THE TWO SUB-LATTICES

SUBROUTINE HER( EK1 , EK2, EK3, EK4, EK5, EQQ)IMPLICIT REAL*8(A-H,0-Z)PARAMETER( ND-4, N=ND**2)DIMENSION EKl(N.N),EK2(N,N),EK3(N,N),EK4(N,N),ER5(N,N),EQQ(N,N) DIMENSION IJX(N.N)COMMON /CIJX/IJX

CC ( I 1 , J 1 ) j COORDINATE OF THE FIRST LATTICE SITE C N1 : LABEL NUMBER OF THE FIRST LATTICE SITE C ( 1 2 , J 2 ) : COORDINATE OF THE SECOND LATTICE SITE C N2 : LABEL NUMBER OF THE SECOND LATTICE SITE

DO 1 I I =1,ND DO 1 J1 =I,ND DO 1 12 = 1 ,ND DO 1 J2 = 1 ,ND

N1=(I1-1)*ND+J1 N2=(I2-1)*ND+J2 EK1(N1,N2)=0. ODO EK2(N1,N2)=0. ODO EK3(N1,N2)=0. ODO EK4(N1,N2)=0.ODO EK5(N1,N2)=0.ODO EQQ(N1,N2)=1. ODO

CC FIND THE DISTANCE (L ) BETWEEN THE TWO SITESC USE THE PERIODIC BOUNDARY CONDITIONSC

I= IA B S (I1 -I2 )IF(I.EQ .C ND -l)) 1=1 J=IABS(J1-J2)IF(J.EQ.CND-l)) J=1 L=I*I+J*J LL=MOD((I+J),2 )

CIF (L .E Q .l) EK1(N1,N2)=1.ODO IF(L.EQ.2) EK2(N1,N2)=1. ODO IF(L.EQ.4) EK3(N1,N2)=1.0D0 IF(L.EQ.5) EK4(N1,N2)=1.ODO IF(L.EQ.S) EK5(N1,N2)=1.0D0 IF(LL.EQ.l) EQQ(N1,N2)=-1 . ODO 11=12-11+1

nn

nn

nn

nn

n

Page 157: Quantum Monte Carlo Simulations of Hubbard and Anderson

oo

no

oo

oo

on

or

jI F ( I I .L T . l ) 11= II+ND JJ=J2-J1+1I F (J J .L T . l ) JJ= JJ+ND NT=(II-1)*ND + JJ IJX(N1,NT)=N2

C1 CONTINUE

RETURN END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc.LINKS. INITIALIZES THE TWO SITES ( I , J ) CONNECTING LINK K

I=LINKI(K); J=LINKJ(K)

RESULTS: COMMON /CLINK/LINKI.LINKJ

SUBROUTINE LINKS(EKl)IMPLICIT REAL*8(A-H,0-Z)PARAMETER(ND=4, N=ND**2, N2=N*2) DIMENSION LINKICN2),LINKJ(N2),EK1(N,N) COMMON /CLINK/LINKI,LINKJ

CK=0DO 10 1= 2 ,N DO 10 J = 1 ,I -1IF( E K 1(I ,J ) .G T .0 .5D 0) THEN

K=K+1 LINKI(K)=I LINKJ(K)=J

END IF 10 CONTINUE

RETURN END

uo

ou

oo

ou

Page 158: Quantum Monte Carlo Simulations of Hubbard and Anderson

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c cc cC SUBROUTINE HEVL CALCULATES EXP{V(L)} CC WHERE V IS THE POTENTIALS DUE TO ISING SPINS CC CC L: TIME SLICE CC IP : PARTITION NUMBER ; FOR BSS IP=IPMAX=1 CC CC RESULTS: COMMON /CHEV/EVU(L), EVD(L) CC CC ...............................................................................................................................................c

SUBROUTINE HEVL(IP,L)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N*IPMAX)

CDIMENSION SIGMA(LTT.N)DIMENSION SP1(LTT,N2),SP2(LTT,N2)DIMENSION SP3(LTT,N2),SP4(LTT,N2)DIMENSION EVU(LTT.N) , EVD(LTT.N)DIMENSION LINKI(N2) , LINKJ(N2)

CC : COMMON INPUT DATA :C

COMMON /CLTIME/LTIMECOMMON /CDL/DLU,DLVCOMMON /CUI/UO.VOCOMMON /CEI/UMCOMMON /CDELTAT/DELTATCOMMON /CLINK/LINKI.LINKJCOMMON /CSPINS/SIGMA, SP1, SP2, SP3, SP4

CC : OUTPUT DATA /COMMON OUT/ :C

COMMON /CHEV/EVU.EVDC

LL=(IP-1)*LTIME+LCC FOR SPIN SIGMAC

DO 20 1=1 ,NEVU(LL, I )= DLU*SIGMA(LL, I)+DELTAT*(UM-0 . 5DO*UO)

20 EVD(LL, I ) =-DLU*SIGMA(LL, I ) +DELTAT*(UM-0 . 5DO*UO)CC FOR SPINS S I , S2, S3 , AND S4C

DO 30 K=1,N2 I=LINKI(K)J=LINKJ(K)EVU(LL, I ) =EVU( LL, I ) +DLV*(SP1(LL,K)+SP2(LL,K))-DELTAT*VO EVD(LL, I)=EVD(LL, I ) +DLV*(SP3(LL, K) +SP4(LL, K)) -DELTAT*VO

Page 159: Quantum Monte Carlo Simulations of Hubbard and Anderson

152

EVU(LL,J)=EVU(LL,J)-DLV*(SP1(LL,K)+SP3(LL,K))-DELTAT*VO 30 EVD(LL,J)=EVD(LL,J)-DLV*(SP2(LL,K)+SP4(LL,K))-DELTAT*VOC

DO 40 1=1,NEVU(LL,I)=DEXP(EVU(LL,I))

40 EVDfLL,I)=DEXP(EVD(LL, I ) )RETURNEND

CCCCc c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c cc cC *INHEVL* CALCULATES EXP{-V(L)} CC WHERE V IS THE POTENTIALS DUE TO ISING SPINS CC CC L: TIME SLICE CC IP: PARTITION NUMBER ; FOR BSS IP=IPMAX=1 CC CC RESULTS: COMMON /CHEVIN/EVU(L), EVD(L) CC CC ...................................................................................................................................... C

SUBROUTINE INHEVL(IP.L)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N*IPMAX)

CDIMENSION SIGMA(LTT.N)DIMENSION SP1(LTT,N2),SP2(LTT,N2)DIMENSION SP3(LTT,N2),SP4(LTT,N2)DIMENSION EVU(LTT.N) , EVD(LTT,N)DIMENSION LINKICN2) , LINKJCN2)

C :C : INPUT DATA :C :

COMMON /CLTIME/LTIMECOMMON /CDL/DLU, DLVCOMMON /CUI/UO.VOCOMMON /CEI/UMCOMMON /CDELTAT/DELTATCOMMON /CLINK/LINKI,LINKJCOMMON /CSPINS/SIGMA, SP1, SP2, SP3, SP4

C :C : OUTPUT DATA /COMMON OUT/ :C :

COMMON /CHEVIN/EVU.EVDC

LL=(IP-1)*LTIME+LCC FOR SPIN SIGMA

Page 160: Quantum Monte Carlo Simulations of Hubbard and Anderson

153

cDO 2 0 1 = 1 , N

EVU(LL, I )= DLU*SIGMA(LL, I)+DELTAT*(UM-0. 5DO*UO)20 EVDfLL, I ) =-DLU*SIGMA( LL, I ) +DELTAT*(UM-0 . 5DO*UO)CC FOR SPIN S I , S2, S3, AND S4 C

DO 30 K=1,N2 I=LINKICK)J=LINKJ(K)EVU( LL, I ) =EVU(LL, I ) +DLV*( SP1 (LL, K)+S P2( LL, K) ) - DELTAT*VO EVD( LL, I ) =EVD(LL, I ) +DLV*( SP3( LL, K) +SP4( LL, K) ) -DELTAT*VO EVU( LL, J ) =EVU( LL, J ) - DLV*(SP1 (LL, K) +SP3( LL, K) ) -DELTAT*VO

30 EVD(LL,J)=EVD(LL,J)-DLV*(SP2(LL,K)+SP4(LL,K))-DELTAT*V0C

DO 40 1=1 ,NE VU ( LL, I ) =DEXP ( - E VU ( LL, I ) )

40 EVD(LL,I)=DEXP(-EVD(LL,I))RETURNEND

Page 161: Quantum Monte Carlo Simulations of Hubbard and Anderson

154

c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cC *BUBDL* CALCULATES (BU.BD) AT TIME SLICE : (IP-1)*LTIME+L C C WHERE IP : PARTITION NUMBER, FOR BSS IP=IPMAX=1 CC L : TIME SLICE CC CC .................................................................................................................................................. c

SUBROUTINE BUBDL(BU,BD,IP,L)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N*IPMAX) DIMENSION BU(N,N),BD(N,N)DIMENSION EEK(N,N)DIMENSION EVU(LTT,N),EVD(LTT,N)

CCOMMON /CLTIME/LTIME COMMON /CEXPEK/EEK COMMON /CHEV/EVU,EVD

CC FIRST CALCULATE EXP{V(L)J C

CALL HEVL(IP,L)CC THEN CALCULATE BL{I,J}C

LL=(IP-1)*LTIME+L DO 10 1= 1 ,N DO 10 J=1,N

BU(I, J)=EEK(I, J)*EVU(LL, J)10 BD(I, J)=EEK(I, J)*EVD(LL,J)

RETURNEND

Page 162: Quantum Monte Carlo Simulations of Hubbard and Anderson

155

c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cC INBUBDL CALCULATES (BU-l.BD-l) AT TIME SLICE: (IP-1)*LTIME+L C C WHERE IP : PARTITION NUMBER, FOR BSS IP=IPMAX=I CC L : TIME SLICE CC Cc .............................................................C

SUBROUTINE INBUBDLfBU.BD,IP,L)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N*IPMAX) DIMENSION BU(N,N),BD(N,N)DIMENSION EEK(N,N)DIMENSION EVU(LTT,N),EVD(LTT,N)

CCOMMON /CLTIME/LTIME COMMON /CEKIN/EEK COMMON /CHEVIN/EVU.EVD

CC FIRST CALCULATE EXP{-V(L)}C

CALL INHEVL(IP.L)CC THEN CALCULATE BL(-l)fI,J]C

LL=(IP-1)*LTIME+L DO 10 1=1,N DO 10 J=1,N

BU(I,J)=EEK(I,J)*EVU(LL,I)10 BD(I,J)=EEK(I,J)*EVD(LL,I)

RETURNEND

Page 163: Quantum Monte Carlo Simulations of Hubbard and Anderson

156

C GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcC EXAM IS USED TO CHECK THE PRECISION OF GREEN'S FUNCTIONS C GUI, GDI: GREEN’S FUNCTIONS AT TIME L AFTER UPDATING STEPS.CC NEW GREEN’S FUNCTION GU, GD ARE CALCULATED FROM THE SCRACHC PRECISION IS CHECKED.C ..................................................................................................................................................

SUBROUTINE EXAMfGUl,GD1,L)IMPLICIT REAL*8(A*H,0-Z)PARAMETER( LA=40, ND=4, N=ND**2, IPMAX=1, NP=N*IPMAX)DIMENSION GUl(NP.NP),GD1(NP,NP)DIMENSION GU(NP.NP), GD(NP.NP)DIMENSION EU(NP.NP), ED(NP,NP)

CC INPUT GREEN’S FUNCTIONS AT TIME LC

WRITE( 6 , * ) ’ L=',L WRITE(6,* ) 'GU AFTER UPDATE*WRITE(6,*) ( (G U 1(II , J J ) , JJ=1,N P ),1 1 = 1 ,NP)WRITEC6,*) 'GD AFTER UPDATE'WRITE(6,*) ( (G D 1(II, J J ) , JJ=1 ,N P ),1 1 = 1 ,NP)

CC CALCULATED GREEN'S FUNCTIONS AT TIME LC

CALL GNPUD(GU,GD,L)WRITEC6,*) 'GU FROM GNPUD'WRITEC6,*) ( (G U (II , J J ) , JJ=1,N P ), II=1,NP)WRITE(6,*) 'GD FROM GNPUD'WRITEC6,*) ( (G D (II , J J ) , JJ=1 ,N P ),11= 1 ,NP)

CC CHECK ERRORSC

DO 787 11=1,NP DO 787 JJ=1,NP

E U (II , JJ)=G U 1(II , J J ) -G U (I I , JJ)787 E D (II , JJ)=G D 1(II, J J ) -G D (I I ,JJ )C

WRITE(6,*) 'DIFF GU 'WRITEC6,* ) ( (E U (II , J J ) , JJ= 1 ,N P ),1 1 = 1 ,NP)WRITE( 6 , * ) 'DIFF GD 'WRITEC6,*) C (E D (I I ,J J ) ,J J = 1 ,N P ) ,I I = 1 ,N P )

CC CALCULATE DETERMINANTS:C

CALL DETM(GU,DETGU)CALL DETM(GD,DETGD)WRITE(6,*)'DETGU=',DETGU,' DETGD=' ,DETGDRETURNEND

Page 164: Quantum Monte Carlo Simulations of Hubbard and Anderson

c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cC *DIV* CALCULATES THE AVERAGE AND STANDARD DIVIATION CC A : INPUT ARRAY CC D : ACTUAL INPUT NUMBERS; DIMENSION OF A CC B : RETURNS THE AVERAGE OF A CC C : STANDARD DIVIATION OF A, CC SIGN: INPUT AVERAGE SIGN OF THE DERMINANT(M). CC CC ...........................................................................................................................................C

SUBROUTINE DIV(A,B,C,M,SIGN)IMPLICIT REAL*8 (A-H.O-Z)DIMENSION A (10000)

CB=0. ODO DO 10 1= 1 ,M

10 B=B+A(I)B=B/FLOAT(M)B=B/SIGN

CC=0. ODO DO 20 1= 1 ,M

20 C=C+(A(I)-B)**2C=C/FLOAT(M-1)C=DSQRT(C/FLOAT(M))C=C/SIGN

CRETURNEND

CCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc cC INVERSE A MATRIX A - -> TO AINV CC INTORMAKE THERINVERSIONTSUBROUTINE MORE PORTABLE. CC CC ................................................................................................................................................C

SUBROUTINE MATRINV(A,AINV)IMPLICIT REAL*8(A-H,0-Z)PARAMETER(ND=4, N=ND**2, IPMAX=1, NP=IPMAX*N) DIMENSION A(NP,NP), AINV(NP,NP)DIMENSION WV(NP+1)CALL PFINV(NP,A,WV,AINV,IERR)RETURNEND

Page 165: Quantum Monte Carlo Simulations of Hubbard and Anderson

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c cC *DETM* CALCULATES THE DETERMINANT OF AN ORDINARY MATRIX B.CC USES THE CROUT REDUCTION METHODC NP IS ACTUAL DIMENSION OF MATRIXC C(NP.NP) ARE WORK SPACE.CC ........................................................ - .- ....................... ................ ...........

SUBROUTINE DETM(B,DET)IMPLICIT REAL*8(A-H,0-Z)PARAMETER(ND=4, N=ND**2, IPMAX=1, NP=N*IPMAX )DIMENSION B(NP,NP),C(NP,NP)

CDO 10 1=1 ,NP DO 10 J=1,NP

10 C(I,J)=O.ODOC

DO 50 1=1,NP DO 50 J=1,NP

Q=B(I,J)DO 20 K=1,NP

20 Q=Q-C(I,K)*C(K,J)C

IF (I .L T .J ) THEN C (I ,J )= Q /C (I ,I )

ELSEC ( I , J)=Q

ENDIFC50 CONTINUEC

DET=1. ODO DO 60 1=1,NP

60 DET=DET*C(I,I)RETURN END

on

on

on

on

Page 166: Quantum Monte Carlo Simulations of Hubbard and Anderson

on

no

nn

nn

159

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c

*RESULTS* PERFORMS MONTE CARLO MEASUREMENTS. CMEASUREMENT NUMBER : MES CSIGN OF DETMINANTS FOR THIS MEASUREMENT: SIGN CALL MEASUREMENT COMMONED OUT. C

C............................................................................................................................................. C

SUBROUTINE RESULTS(MES,SIGN,GU,GD)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N*IPMAX)

DIMENSION GU(NP,NP), GD(NP,NP)DIMENSION EK1(N,N), EK2(N,N),EK3(N,N),EK4(N,N),EK5(N,N),EQQ(N,N) DIMENSION LINKI(N2), LINKJ(N2), IJX(N,N)DIMENSION SIG(LB), TLN(LB), TLND(LB), TLNU(LB)DIMENSION SS(LB), UDN(LB)DIMENSION SPIN(LB),ASPIN(LB),ENRY(LB)DIMENSION ZM(LB), CZ(LB)DIMENSION S S l(L B ), SS2(LB), SS3(LB), SS4(LB), SS5(LB)DIMENSION CCO(LB), CCl(LB), CC2(LB), CC3(LB), CC4(LB),CC5(LB)DIMENSION SUS(LB), SUSQ(LB), SUST(LB), SUSQT(LB)DIMENSION SUSC(LB),SUSCQ(LB),SUSCT(LB).SUSCQT(LB)DIMENSION PPC(LB), PPCQ(LB), PPSQ(LB), PPS(LB)DIMENSION PTC(LB), PTCQ(LB), PTSQ(LB), PTS(LB)

COMMON /CUI/UO,VO COMMON /CLINK/LINKI,LINKJ COMMON /CIJX/IJXCOMMON /CEKS/EK1,EK2,EK3,EK4, EK5, EQQCOMMON /CNS/SIG,TLN, TLNU, TLND, UDN, SPIN, ASPIN, ZM, CZ, ENRYCOMMON /C S S /S S ,S S 1 ,S S 2 , SS3, SS4, SS5COMMON /CCC/CCO, CC1 ,CC2, CC3, CC4, CC5COMMON /CSS1/SUS, SUSQ, SUST, SUSQTCOMMON /CSS2/SUSC, SUSCQ, SUSCT, SUSCQTCOMMON /CSS3/PPC, PPCQ, PPSQ, PPSCOMMON /CSST/PTC, PTCQ, PTSQ, PTS

T=1.0DOSIG(MES) =SIGN TLN(MES) = 0 .ODO TLNU(MES) = 0 .ODO TLND(MES) = 0 .ODO SS(MES) = 0 .ODO CCO(MES) * 0 .ODO UDN(MES) =0.0D0 SPIN(MES) = 0 .ODO ASPIN(MES)=0. ODO ZM(MES) = 0 .ODO CZ(MES) = 0 .ODO

Page 167: Quantum Monte Carlo Simulations of Hubbard and Anderson

160

ENRY(MES) = 0 .ODOCC SUM OVER THE SITES C

DO 651 1 = 1 ,NZM(MES) = ZM(MES) + ( G D (I ,I ) -G U (I ,I ) ) * EQQ(1,I)CZ(MES) = CZ(MES) + ( 2 . ODO -GD(I, I ) -G U (I , I ) ) * EQQ(l.I)SPIN(MES) = SPIN(MES)+ GD(I, I ) -G U (I , I )TLN(MES) = TLN(MES) + 2 .0 D 0 -G U (I ,I ) -G D (I ,I )TLNU(MES) = TLNU(MES)+ 1 . ODO-GU(I, I )TLND(MES) = TLND(MES)+ 1 . ODO~GD(I, I )SS(MES) = SS(MES) + GU(I, I)+G D (I, I ) - 2 . QDO*GU(I,I)*GD(I, I )CCO(MES) = CCO(MES) + 4.0D0-3.OD0*( G U (I ,I )+ G D (I ,I ) )

1 + 2 . ODO*GU(I, I)*GD(1 ,1 )651 UDN(MES) = UDN(MES) + ( 1 . ODO-GU(I, I ) ) * ( 1 . ODO-GD(I, I ) )C

ASPIN(MES)= DABS(SPIN(MES))ZM(MES) = DABS(ZMCMES))CZ(MES) = DABS(CZ(MES))

CC SUSCEPTIBILITIES AND STRUCTURE FACTORS C

SUS(MES) = O.ODO SUST(MES) = O.ODO SUSQ(MES) = O.ODO SUSQT(MES)= O.ODO SUSC(MES) = O.ODO SUSCT(MES)= O.ODO SUSCQ(MES)= O.ODO SUSCQT(MES)=0. ODO PPC(MES) = O.ODO PPCQ(MES) = O.ODO PPS(MES) = O.ODO PPSQ(MES) = O.ODO PTC(MES) = O.ODO PTCQ(MES) = O.ODO PTS(MES) = O.ODO PTSQ(MES) = O.ODO

CCC

DO 85 1=2 ,N DO 85 J = 1 ,I -1

TES + ( 1 .ODO-GU(I,I)) * ( 1 . 0 -G U (J ,J )) -G U (J,I)*G U (I, J ) + ( 1 . ODO-GD(I, 1 ) ) * ( 1 . 0-GD(J, J ) ) -G D (J,I)*G D (I, J) - ( 1 . ODO-GU(I, I ) ) * ( 1 . ODO-GD(J, J ) )

111 - ( 1 . ODO-GU(J, J ) ) * ( 1 . ODO-GD(I, I ) )

111

TEC + (1 .0 D 0 -G U (I ,I ) )* (1 .0 -G U (J ,J ) ) -G U (J ,I )* G U (I ,J ) + ( 1 .ODO-GD(I, I ) ) * ( 1 . 0*G D (J,J)) -G D (J,I)*G D (I,J) + ( 1 . ODO-GU(I, I ) ) * ( 1 . ODO-GD(J,J))+ (1 .0 D 0 -G U (J ,J ) )* (1 .0 D 0 -G D (I ,I ) )

Page 168: Quantum Monte Carlo Simulations of Hubbard and Anderson

no

n

161

SUS(MES) = SUS(MES) + TESSUSQ(MES) = SUSQ(MES) + TES*EQQ(I,J)SUSC(MES) = SUSC(MES) + TECSUSCQ(MES)= SUSCQ(MES)+ TEC*EQQ(I,J)PP = G U (I,J)*G D (I,J) + G U (J ,I)*G D (J ,I)PPC(MES) = PPC(MES) + PPPPCQ(MES) = PPCQ(MES) + PP* EQQ(I,J)PTIJ = 0 .ODO

CDO 855 K -l,N

IX=IJX(I,K)JX=IJX(J,K)PTIJ=PTIJ + GU(I, J ) * GU(IX,JX) - GU(I.JX) * GU(IX,J)

1 + G U (J,I)* GU(JX.IX) - GU(J,IX) * GU(JX.I)855 CONTINUE C

PTC(MES) = PTC(MES) + PTIJ/N PTCQ(MES) = PTCQ(MES) + PTIJ/N * EQQ(I.J)

85 CONTINUEC

SUS(MES) = 2 .ODO*SUS(MES)SUSQ(MES) = 2 . 0D0*SUSQ( MES)SUSC(MES) = 2.0D0*SUSC(MES)SUSCQ(MES)= 2 . 0D0*SUSCQ(MES)

CDO 86 1=1 ,N

PPC(MES) = PPC(MES) + GU(I, I)*GD(1 ,1 )PPCQ(MES) = PPCQ(MES)+ G U (I ,I )* G D (I ,I )PTIJ=0. ODO

CDO 865 K=1,N IX=IJX(I,K)

865 PTIJ = PTIJ + GU(I, I)*GU(IX,IX) - GU(I,IX)*GU(IX,I) C

PTC(MES) = PTC(MES) + PTIJ/N PTCQ(MES)= PTCQ(MES)+ PTIJ/NSUSC(MES)= SUSC(MES)+ 4 .0 D 0 -3 .0 D 0 * (G U (I ,I )+ G D (I ,I ) )

1 + 2 . 0D0*GU( 1 , 1 )*GD(1 ,1 )86 SUSCQ(MES)=SUSCQ(MES)+4.ODO-3. 0D0*(GU(I, I)+GD(1 ,1 ) )

1 + 2 .0 D 0 * G U ( I ,I )^ D ( I , I )C

SUS(MES) = SUS(MES) +SS(MES)SUSQ(MES)= SUSQ(MES)+SS(MES)

CALCUALTE SUCEPTIBILITIES

CALL SUSLL(EQQ, SST, SSQ, CCT, CCQ, PPS1 , PPS2, PTS1 , PTS2) SUST(MES) = SST SUSQT(MES) = SSQ SUSCT(MES) = CCT SUSCQT(MES)= CCQ

Page 169: Quantum Monte Carlo Simulations of Hubbard and Anderson

1 Cr2

PPS(MES) = PPS1 PPSQ(MES) = PPS2 PTS(HES) = PTS1 PTSQ(MES) = PTS2

CC TOTAL ENERGY C

DO 856 1 = 1 ,N DO 856 J=1,N

856 ENRY(MES) = ENRY(MES) - T * (G U (I,J)+G D (I,J) ) * EK1(I,J)C

DO 8561 I = 1 ,NENRY(MES) = ENRY(MES) + UO* (1 .0 D 0 -G U (I ,I ) ) * (1 .0 D 0 -G D (I ,I ) )

8561 CONTINUE C

DO 8563 K = 1 ,N2 I=LINKI(K)J=LINKJ(K)VNINJ = (1 .0 D 0 -G U (I ,I ) )* (1 .0 -G U (J ,J ) ) -G U (J ,I )* G U (I ,J )

1 + ( 1 .0D0-GD(I, I ) ) * ( 1 . 0 -G D (J ,J ))-G D (J ,I)*G D (I , J )1 + ( 1 .ODO-GU(I, I ) ) * ( 1 .0D 0-G D (J,J))1 + ( 1 . ODO-GU(J, J ) ) * ( 1 . ODO-GD(1 , 1 ) )ENRY( MES) =ENRY(MES) + VO* VNINJ

8563 CONTINUE CC CORRELATION FUCTIONS C

SS1(MES)=0. ODO SS2(MES)=0. ODO SS3(MES)=0. ODO SS4(MES)=0. ODO SS5(MES)=0. ODO CC1(MES)=Q.ODO CC2(MES)=0. ODO CC3(MES)=0, ODO CC4(MES)=0.ODO CC5(MES)=0.0D0 DO 891 1=2 ,N DO 891 J = 1 ,I -1

TERMS = ( 1 . ODO-GU(I, I ) ) * ( 1 . ODO-GU(J,J)) -G U (J,I)*G U (I, J )1 + ( 1 . 0D0-GD(I, I ) ) * ( 1 . ODO-GD(J, J ) ) -G D (J ,I )* G D (I ,J )1 - ( l .O D 0 -G U (I ,I ) )* ( l .O D 0 -G D (J ,J ) )1 - ( 1 . ODO-GUCJ, J ) ) * ( 1 . ODO-GDC1 , 1 ) )

TERMC = ( 1 . ODO-GU(I, I ) ) * ( 1 . ODO-GU(J,J)) -GU(J, I)*G U(I, J )1 + ( 1 . 0D0-GD(I, 1 ) ) * ( 1 . ODO-GDCJ,J))-GD(J, I)*G D(I, J )1 + ( 1 .ODO-GU(I, I ) )* (1 .0 D 0 -G D (J ,J ) )1 + (1 .0 D 0 -G U (J ,J ) )* (1 .0 D 0 -G D (I ,I ) )

SSl(MES) = SS1 (MES) +TERMS*EK1 ( I , J )SS2(MES) = SS2( MES) +TERMS*EK2( I , J )SS3(MES) = SS3(MES)+TERMS*EK3(I, J)SS4(MES) = SS4(MES)+TERMS*EK4(I, J)

Page 170: Quantum Monte Carlo Simulations of Hubbard and Anderson

on

n

163

SS5(MES) = SS5( MES) +TERMS*EK5( I , J ) CCl(MES) = CC1 (MES) +TERMC*EK1 ( I , J ) CC2CMES) = CC2(MES)+TERMC*EK2(I, J ) CC3(MES) = CC3(MES)+TERMC*EK3(I, J ) CC4(MES) = CC4(MES)+TERMC*EK4(I,J ) CCS(MES) = CC5(MES)+TERMC*EK5(I,J)

891 CONTINUE

FIX-UP THE SIGN PROBLEM

TLN(MES) = TLN(MES) * SIGNTLNU(MES) = TLNU(MES) * SIGNTLND(MES) = TLND(MES) * SIGNSS(MES) SS(MES) * SIGNUDN(MES) = UDN(MES) a SIGNSPIN(MES) = SPIN(MES) a SIGNSUS(MES) = SUS(MES) a SIGNSUST(MES) = SUST(MES) * SIGNSUSQ(MES) = SUSQ(MES) a SIGNSUSQT(MES)= SUSQT(MES) a SIGNSUSC(MES) = SUSC(MES) * SIGNSUSCT(MES)= SUSCT(MES) * SIGNSUSCQ(MES)= SUSCQ(MES) * SIGNSUSCQT(MES)= SUSCQT(MES)* SIGNPPC(MES) = PPC(MES) * SIGNPPCQ(MES) = PPCQ(MES) a SIGNPPS(MES) = PPS(MES) * SIGNPPSQ(MES) = PPSQ(MES) * SIGNENRY(MES) = ENRY(MES) * SIGNSSl(MES) = SSI(MES) ★ SIGNSS2(MES) = SS2(MES) * SIGNSS3(MES) = SS3(MES) * SIGNSS4(MES) = SS4(MES) A SIGNSS5(MES) = SSS(MES) * SIGNCCO(MES) = CCO(MES) * SIGNCCl(MES) = CCl(MES) A SIGNCC2(MES) = CC2(MES) * SIGNCC3(MES) = CC3(MES) A SIGNCC4(MES) = CC4(MES) * SIGNCCS(MES) = CCS(MES) A SIGNRETURNEND

Page 171: Quantum Monte Carlo Simulations of Hubbard and Anderson

164

c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc cC SUSLL CALCULATES THE SUSCEPTIBILTIESCC ..............................................................................................................................

CSUBROUTINE SUSLL(EQQ, SUST, SUSQT, SUSCT, SUSCQT, PPS, PPSQ, PTS, PTSQ) IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N*IPMAX)DIMENSION GUTO(LTT»N,N),GDTO(LTT,N,N),EQQ(N,N)DIMENSION GUTL(LTT,N,N),GDTL(LTT,N,N)DIMENSION GUL(LTT,N,N),GDL(LTT,N,N)DIMENSION IJX(N,N)

CCOMMON /CLTIME/LTIME COMMON /CDELTAT/DELTAT COMMON /GB/GUTO,GDT0,GUTL, GDTL,GUL, GDL COMMON /CIJX/IJX

CSUST = 0 . ODO SUSQT = O.ODO SUSCT = O.ODO SUSCQT= O.ODO PPS = O.ODO PPSQ = 0 . ODO PTS = 0 . ODO PTSQ = 0 . ODO

CC TOTAL TIME SLICES = LTIME * IPMAXC

DO 10 L=1,LTIME*IPMAX DO 10 1 = 1 ,N DO 10 J=1,N

PPS = PPS + GUTO(L, I , J ) * GDTO(L,I, J )PPSQ = PPSQ + GUTO(L,I, J ) * GDTO(L,I,J) a EQQ(I,J)TERM1 = ( 1 . ODQ-GUL(L, I , I ) ) * ( 1 .0D0-G UL(1,J,J))

1 + GUTLCL,J,I) * GUTO(L,I,J)TERM2 = (1 .0 D 0-G D L (L ,I ,I )) a ( 1 . ODO-GDL(1 ,J,J)D

1 + GDTL(L.J.I) a GDTO(L,I,J)TERM3 = ( 1 . ODO-GUL(L, 1 , 1 ) ) a ( 1 ,0D0-G DL(1.J,J))TERM4 = ( 1 . 0D0-GDL(L, 1 , 1 ) ) a ( l .ODO-GUL(l,J,J))SUST = SUST+ TERM1+TERM2- TERM3 - TERM4SUSQT = SUSQT+(TERM1+TERM2-TERM3-TERM4)AEQQ(I,J)SUSCT = SUSCT+ TERM1+TERM2+TERM3+TERM4SUSCQT= SUSCQT+(TERM1+TERM2+TERM3+TERM4)AEQQ( I , J)PTIJ = O.ODO

CDO 20 K=1,N IX=IJX(I,K)JX=IJX(J,K)

a n

n ca

Page 172: Quantum Monte Carlo Simulations of Hubbard and Anderson

165

20 PTIJ = PTIJ+ GUT0(L,I, J)*GUT0(L, IX, JX)-GUT0(L,I,JX)*GUT0(L, IX,J )C

PTS = PTS + PTIJ/NPTSQ = PTSQ+ PTIJ/N *EQQ(I,J)

10 CONTINUEC

PPS = PPS * DELTAT PPSQ = PPSQ * DELTAT PTS = PTS * DELTAT PTSQ = PTSQ * DELTAT SUST = SUST * DELTAT SUSQT= SUSQT* DELTAT SUSCT- SUSCT* DELTAT SUSCQT=SUSCQT*DELTAT RETURN END

CC ================================— =======================C//LKED.APLMOD DD DSN=PHHANG.FPS.C0M(HBN4P1),DISP=SHR»SPACE=

Page 173: Quantum Monte Carlo Simulations of Hubbard and Anderson

166

//ADN4P1 JOB ( 1 1 0 3 , 6 6 9 4 5 ,1 5 ,4 ) , 'YZ’ ,MSGCLASS=S,REGION=4096K / / * NOTIFY=PHHANG/*JOBPARM SHIFT=D /*AFTER NONE/ /* S 1 EXEC FPSCL, FTNPARH='LIST, LIN, SUBCHK' , VOPT=0/ / S I EXEC FPSCL,FTNPARM='LIST,LIN,XOFF(ALL)’ ,VOPT=3//FORT.SYSIN DD *C ......................................................................................................................................CC SYMMETRIC PERIODIC ANDERSON MODEL (U,V) IN 2-DIMENSIONS.c F-ELECTRON ELEVEL: EF = - U/2cP

CHEMICAL POTENCIAL: UM = 0

c SYSTEM SIZE: N = ND * NDcp

TOTAL ORBITALS: N2 = N * 2L*c OTHER PARAMETERS:c IPMAX - > PARTITION NUMBER (HIRSCH'S ALGORITHM)c (FOR BSS ALGORITHM, USE IPMAX=1)c LTIME - > INPUT TIME SLICES (FOR EACH PARTITION;c (TOTAL TIME SLICES IN BSS ALGORITHM)cp

IPMAX * LTIME - > MAXIMUM TIME SLICES ALLOWEDLic NP = N2 * IPMAX - > GREEN FUCTION MATRIX SIZEc FOR BSS ALGORITHM NP=N2c MATRICES USED:c EXPEK(I.J), EKIN -> EXP(K), EXP(-K) USED TO CALCULATE B'Sc K: HOPPING MATRIXc EV U(L,I), EVD - > EXP{VU(L)} , EXP{VD(L)jc V : POTENTIAL DUE TO ISING SPINS.c EVUIN(L,I), EVDIN - > EXP(-VU(L)} , EXP{-VD(L))c ( I : FROM 1 TO N )c E K I(I , J) - > ITH NEAREST NEIGHBORSc E ( I , J ) = l . 0 IF < I ,J >c EQQ(IjJ) - > 1, -1 FOR TWO SUBLATTICEc EQQ(I,J)=1 . 0 IF I , J ARE INc THE SAME SUBLATTICEcp

SIGMA(L,I) AND - > SPIN VARIABLES:Li

c GU(NP,NP), GD(NP,NP) - > SUBSET OF GREEN'S FUNCTIONSc (USED IN THE UPDATING PROCEDURES)c TIME DEPENDENT GREEN ' S FUNCTIONS:c G U T 0(L ,I ,J ) , GDTO - > < CI(L) * CJ+(1) >c GUTL , GDTL - > < CJ+(L) * C I(1) >cp

GUL , GDL - > < CI(L) * CJ+(L) >Li

c MEASURED QUANTITIES:c SIG(MES) - > SIGNc TLN, TLNU, TLND - > TOTAL# , TOTAL F # UP, TOTAL F # DOWN.c UDN - > < NI(UP) * NI(DN) > FOR F ELECTRONS.c ENRY - > TOTAL ENERY

Page 174: Quantum Monte Carlo Simulations of Hubbard and Anderson

167

cc SAO. . . SA5 -> (F+D) - (F+D) SPIN CORRELATIONSc SFFO. . . SFF5 - > F-F SPIN CORRELATIONSc SFDO.. .SFD5 - > F-D SPIN CORRELATIONSc CAO. . . CA5 - > (F+D) - (F+D) CHARGE CORRELATIONSc CFFO. . .CFF5 - > F-F CHARGE CORRELATIONScn

CFDO. . .CFD5 - > F-D CHARGE CORRELATIONSuc SQFO, SQFQ - > F-SPIN STRUCTURE- FACTOR: K=0, K=PIc SQAO, SQAQ - > F+D SPIN STRUCTURE FACTOR: K=0, K=PIc SXFO, SXFQ -> F-SPIN SUSCEPTIBILITIES: K=0, K=PIc SXXO, SXXQ -> F-SPIN SUSCEPTIBILITIES: K=0, K=PIcr»

SXAO, SXAQ - > ALL SPIN SUSCEPTIBILITIES: K=0, K=PI\»r

c CQFO, CQFQ - > F-CHARGE STRUCTURE FACTOR: K=0, K=PIc CQAO, CQAQ - > F+D CHARGE TRUCTURE FACTOR: K=0, K=PIc CXFO, CXFQ - > F-CHARGE USCEPTIBILITIES: K=0, K=PIc CXXO, CXXQ -> F-CHARGE SUSCEPTIBILITIES: K=0, K=PIcn ■■ .

CXAO, CXAQ -> ALL CHARGE SUSCEPTIBILITIES: K=0, K=PI

cIMPLICIT REAL*8(A-H, O - Z )

PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)

nPARAMETER (LB=5000, ND=4, :N=ND**2, N2=N*2, NP=N2*IPMAX)

DIMENSION EK0(N2,N2),EK1(N,N),EK2(N,N), EK3(N,N)DIMENSION EK4(N,N), EK5(N,N),EQQ(N,N)D I M E N S I O N S I G M A ( L T T , N )

C

D I M E N S I O N E X P E K ( N 2 , N 2 ) , E K I N ( N 2 , N 2 )

D I M E N S I O N E V U ( L T T . N ) , E V D ( L T T . N )

D I M E N S I O N E V U I N ( L T T . N ) , E V D I N ( L T T . N )C

D I M E N S I O N G U ( N P , N P ) , S U ( N P , N P ) , X U ( N 2 , N 2 ) , E U ( N 2 , N 2 ) , Y U ( N 2 , N 2 )

D I M E N S I O N G D ( N P . N P ) , S D ( N P . N P ) , X D ( N 2 , N 2 ) , E D ( N 2 , N 2 ) , Y D ( N 2 , N 2 ) D I M E N S I O N G U 1 C N P . N P ) , G D 1 ( N P , N P )

C

D I M E N S I O N S I G ( L B ) , T L N ( L B ) , T L N U ( L B ) , T L N D ( L B ) , U D N ( L B )

D I M E N S I O N S P I N ( L B ) , E N R Y ( L B )C

D I M E N S I O N S A O ( L B ) , S A 1 ( L B ) , S A 2 ( L B ) , S A 3 ( L B ) , S A 4 ( L B ) , S A 5 ( L B )

D I M E N S I O N S F F O ( L B ) , S F F 1 ( L B ) , S F F 2 ( L B ) , S F F 3 ( L B ) , S F F 4 ( L B ) , S F F 5 ( L B )

D I M E N S I O N S F D O ( L B ) , S F D 1 ( L B ) , S F D 2 ( L B ) , S F D 3 ( L B ) , S F D 4 ( L B ) , S F D 5 ( L B )C

D I M E N S I O N C A O ( L B ) , C A 1 ( L B ) , C A 2 ( L B ) , C A 3 ( L B ) , C A 4 ( L B ) , C A 5 ( L B )

D I M E N S I O N C F F O ( L B ) , C F F 1 ( L B ) , C F F 2 ( L B ) , C F F 3 ( L B ) , C F F 4 ( L B ) , C F F 5 ( L B )

D I M E N S I O N C F D O ( L B ) , C F D 1 ( L B ) , C F D 2 ( L B ) , C F D 3 ( L B ) , C F D 4 ( L B ) , C F D 5 ( L B )C

D I M E N S I O N S Q F O ( L B ) , S Q F Q ( L B )

D I M E N S I O N S Q A O ( L B ) , S Q A Q ( L B )

D I M E N S I O N S X F O ( L B ) , S X F Q ( L B )

Page 175: Quantum Monte Carlo Simulations of Hubbard and Anderson

n n

168

D I M E N S I O N S X X O ( L B ) , S X X Q ( L B )

D I M E N S I O N S X A O ( L B ) , S X A Q ( L B )

CD I M E N S I O N C Q F O ( L B ) , C Q F Q ( L B )

D I M E N S I O N C Q A O ( L B ) , C Q A Q ( L B )

D I M E N S I O N C X F O ( L B ) , C X F Q ( L B )

D I M E N S I O N C X X O ( L B ) , C X X Q ( L B )

D I M E N S I O N C X A O ( L B ) , C X A Q ( L B )

DIMENSION GUT0(LTT,N2,N2), GDT0(LTT,N2,N2)DIMENSION GUTL(LTT,N2,N2), GDTL(LTT,N2,N2)DIMENSION GUL(LTT,N2,N2), GDL(LTT,N2,N2)

CCOMMON /CDELTAT/DELTATCOMMON /CLTIME/LTIMECOMMON /CDL/DLUCOMMON /CUI/UO,VO,EFCOMMON /CEI/UMCOMMON /CEXPEK/EXPEKCOMMON /CEKIN/EKINCOMMON /CSPINS/SIGMACOMMON /CHEV/EVU.EVDCOMMON /CHEVIN/EVUIN,EVDINCOMMON /GB/GUTO,GDT0,GUTL, GDTL,GUL, GDLCOMMON /CIJX/IJX

CCOMMON / C E K S / E K O , E K 1 , E K 2 , E K 3 , E K 4 , E K 5 , EQ Q

COMMON / C N S / S I G , T L N , T L N U , T L N D , U D N , S P I N , E N R Y COMMON / C S A / S A O , S A 1 , S A 2 , S A 3 , S A 4 , S A 5

COMMON / C S F F / S F F O , S F F 1 , S F F 2 , S F F 3 , S F F 4 , S F F 5

COMMON / C S F D / S F D O , S F D 1 , S F D 2 , S F D 3 , S F D 4 , S F D 5

COMMON / C C A / C A O , C A 1 , C A 2 , C A 3 , C A 4 , C A 5

COMMON / C C F F / C F F O , C F F 1 , C F F 2 , C F F 3 , C F F 4 , C F F 5

COMMON / C C F D / C F D O , C F D 1 , C F D 2 , C F D 3 , C F D 4 , C F D 5 COMMON / C S Q / S Q F O , S Q F Q , S Q A O , SQ A Q

COMMON / C S X / S X F O , S X F Q , S X A O , S X A Q , S X X O , SX X Q

COMMON / C C Q / C Q F O , C Q F Q , C Q A 0 , CQAQ

COMMON / C C X / C X F O , C X F Q , C X A O , C X A Q , C X X O , CXXQC

OPEN(UNIT=l)C ..........................................................................................................................................C READ INPUTS:C T : HOPPING CONSTANT, USUALLY T=1C UO : INPUT PARAMETER UC VO : VC EF : F-ORBITAL LEVE.C UM : CHEMICAL POTENTIAL.C BETA : 1 OVER TEMPERATUREC LG : AFTER UPDATING GREEN'S FUNCTION FOR LG TIME SLICESC RECALCULATE G'S FROM SCRACH.

Page 176: Quantum Monte Carlo Simulations of Hubbard and Anderson

169

ccc L T I M E :

c N M E M S:

c N S W E P :

c MMM :

c I R :

c IW :

ccc M ID

L» “

c

m i1112C

C - - -

C

C

C O U R S E : R O U N D - O F F E R R O R S .

U S U A L L Y : U S E L G = 4

T I M E S L I C E S . F O R B S S A L G O R I T H M , T H I S I S T H E T O T A L S L I C E S .

NUM BER O F MO NTE C A R L O M E A S U R E M E N T S

NUM BER O F MC S T E P S B E T W E E N M E A S U R E M E N T SMMM X N S W E P I S T H E W A R M -U P S W E E P S

I F N O T E Q U A L T O 0 , S I G M A R E A D FROM C H A N N E L 2

I F N O T E Q U A L T O 0 , S IG M A W R I T T E N T O C H A N N E L 3

S E T I R A ND IW T O 0 I F T H E C A L C U A L T I O N I S O N E S H O T .

: A F T E R E V E R Y M I D M E A S U R E M N E T S , C A L C U L A T E R E S U L T S .

R E A D ( 1 , 1 1 1 1 ) U O . V O

R E A D ( 1 , 1 1 1 1 ) B E T A

R E A D ( 1 , 1 1 1 2 ) L T I M E , L G

R E A D f 1 , 1 1 1 2 ) N M E M S ,M M M ,N S W E P R E A D ( 1 , 1 1 1 2 ) I R . I W R E A D C 1 , 1 1 1 2 ) I S E E D

R E A D ( 1 , 1 1 1 2 ) M I D

C L O S E ( U N I T = l )

F O R M A T ( F l l . 6 )

F O R M A T ( I 6 )

CC

c

cccc

I N I T I A L I Z E T H E P R O G R A M :D L U = L A M D A ( U )

N U P D A T E = 0

N W ARMUP=M MM*NSW EPU M = O .O D O

E F = - 0 . 5 * U O

D E L T A T = B E T A / ( L T I M E * I P M A X )

W R I T E C 6 , * ) ' S I T E S = ’ , N , ’ P M A X = ' , I P M A X

W R I T E ( 6 , * ) ' U = ' , U O , ' V = ' , V O

W R I T E ( 6 , * ) ' U M = ' , U M , 1 E F = * , E F

W R I T E ( 6 , * ) ' B E T A = ' , B E T A , ' L T I M E = ' , L T I M E , ’ L G = ' , L G

W R I T E ( 6 , * ) ’ M O N TE C A R L O M E S U R E M E N T S : ' .N M EM S

W R I T E ( 6 , * ) ' M O N TE C A R L O S T E P S ( M C S ) . N S W E P

W R I T E ( 6 , * ) ' WARMUP S T E P S : ' .NW AR M UP

W R I T E ( 6 , * ) ' I R , I W \ I R , I W

D L U : L A M D A ( U )

D L U = D T A N H ( D E L T A T * U O * 0 . 2 5 D 0 )

D L U = D L O G ( ( 1 . 0 D 0 + D S Q R T ( D L U ) ) * * 2 / ( 1 . O D O - D L U ) ) D U U = D S I N H ( - 2 . 0 D 0 * D L U )

D U D = D C O S H ( - 2 . O D O * D L U ) - 1 . ODO

S P E C I F Y T H E I N I T I A L I S I N G S P I N C O N F I G U R A T I O N S :

Page 177: Quantum Monte Carlo Simulations of Hubbard and Anderson

170

DO 50 I=1,LTIME*IPMAXC

DO 511 K=1,N LX=MOD(K,2)IF(LX.EQ.O) THEN

SIGMA(IjK)=-1 . ODO ELSE

SIGMA(I,K)= l.ODO END IF

511 CONTINUE 50 CONTINUECC ..............................................................................................................................................................C IF IR IS NOT 0 , ISING SPINS ARE READ FROM CHANNEL 2.

IF (IR.NE.O) THEN OPEN (UNIT=2)WRITE(6,*) 'SIGMAS READ FROM 2'READ(2,2000) ( (SIGMA(K1,K2),K2=1,N) ,K1=1,LTIME*IPMAX) CL0SE(UNIT=2)

END IFCC = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

C GEOMETRY: EK1_5 DEFINE THE SYSTEM WE ARE STUDYINGC

CALL HEK( EKO, EK1 , EK2, EK 3 , EK4, EK5, EQQ)CC CALCULATE EXP(K) AND EXP(-K)C

CALL EXPEKT(EKO)CC CALCUATE THE INITIAL GREEN'S FUNCTIONS FOR MC UPDATING C

CALL GNPUD(GU,GD,1)CC INITIAL DETERMINANTS OF THE GREEN'S FUNCTIONS C

CALL DETM(GU,DETGU)CALL DETM(GD,DETGD)WRITE(6,*)'DETGU=', DETGU„' DETGD=' , DETGD SIGN=DETGU/DABS(DETGU)SIGN=DETGD/DABS(DETGD)*SIGN WRITE(6,*) ' SIGN=' , SIGN

CC =======— ==*=======================================!===C MONTE CARLO STEPS START:C

MES=0DO 66 MT=1,MMM+NMEMS

CC TAKE MEASUREMENT AFTER (MMM X NSWEP) WARM-UP SWEEPS OF MC STEPS. C ** RESULTS ** CALCULATES THE AVERAGES OF THE QUANTITIES.

Page 178: Quantum Monte Carlo Simulations of Hubbard and Anderson

171

cI F ( M T . G T . M M M ) TH EN

C A L L G T O T A L ( G U , G D )

M E S = M E S + 1

CALL RESULTS(MES,SIGN,GU,GD)E N D I F

C

DO 6 4 M S = 1 , N S W E P

C

C MC S T E P S : N S W E P S W E E P S B E T W E E N E A C H M E A R S U R E M E N T .C = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

C

C S W E E P T H R O U G H T H E T I M E S P A C E : L T I M E S L I C E

C

DO 1 0 0 L = l , L T I M EC

C R E C A L C U L A T E G R E E N ' S F U N C T I O N A F T E R L G S L I C E S

C T O R E S T O R E P R E C I S I O N .

L L = M O D ( L , L G )I F ( L L . E Q . O ) T H E N

C A L L G N P U D ( G U , G D , L )

E N D I FC

D O 1 0 0 0 I P P = 1 , I P M A XC

C S W E E P W I T H I N E A C H T I M E P A T I T I O N S . F O R B S S , I P M A X = 1C

L I P P = ( I P P - 1 ) * L T I M E + LC

C U P D A T E I S I N G S P I N A T S I T E : S IG M A DO 1 1 0 1 = 1 , N

C

I I P P = ( I P P - 1 ) * N 2 + I

D N U = D U U * S I G M A ( L I P P , I ) + D U D

D N D = - D U U * S I G M A ( L I P P , I ) + D U DR U = 1 . O D O + ( 1 . O D O - G U ( I I P P . I I P P ) ) * D N U

R D = 1 . 0 D 0 + ( 1 . O D O - G D ( I I P P , I I P P ) ) * D N D

R U D = R U * R D

P R O = D A B S ( R U D )C

C F L I P P R O B A B I L I T Y : P R O

C RANDOM N U M B E R : X

X = R A N ( I S E E D )C

I F ( P R O . G T . X ) T H E NC

C P R O P O S E D S P I N F L I P S I G M A - > - S I G M A A C C E P T E D .C

N U P D A T E = N U P D A T E + 1

I F ( R U D . L T . O . O D O ) S I G N = - S I G N

S I G M A ( L I P P , I ) = - S I G M A ( L I P P , I )

Page 179: Quantum Monte Carlo Simulations of Hubbard and Anderson

172

RU=DNU/RURD=DND/RD

CC UPDATE THE GREEN'S FUNCTIONC

D O 5 5 J 1 = 1 , N P

D J 1 I = O . O D O

IF (J l.E Q .IIP P ) DJ1I=1. 0D0 TRU1=-(DJ1I-GU( J l , IIPP ) )*RU TRD1=-( DJ1I-GD( J l , IIPP ) )*RD DO 55 J2=l,NPSU(J1,J2)=GU(J1,J2)+TRU1*GU(IIPP,J2)

55 S D (J l , J2)=G D (Jl, J2)+TRD1*GD(IIPP,J2)DO 56 Kl=l,NPDO 56 K2=l,NP GU(K1,K2)=SU(K1,K2)

56 GD(K1,K2)=SD(K1,K2)CC GREEN'S FUNCTION UPDATED

END IF 110 CONTINUEC UPDATE ALL SIGMA'S FOR THE CURRENT TIME SLICE.C1000 CONTINUE CC UPDATE GREEN'S FUNCTION TO NEXT TIME SLICES:C

DO 120 IP1=1,IPMAXDO 120 IP2=1,IPMAX

DO 121 J l= l ,N 2 DO 121 J2=l,N2 J1G=(IP1-1)*N2+J1 J2G=(IP2-1)*N2+J2 YU(J1,J2)=GU( JIG, J2G )

121 Y D (J l , J2)=GD( JIG, J2G )CALL BUBDL(EU,ED,IP1,L)CALL FMMM(EU,YU,XU,N2,N2,N2)CALL FMMM(ED,YD,XD,N2,N2,N2)CALL INBUBDL(EU,ED,IP2,L)CALL FMMM(XU,EU,YU,N2,N2,N2)CALL FMMM(XD,ED,YD,N2,N2,N2)

DO 122 J1=1,N2DO 122 J2= l,N 2J1G=(IPI-1)*N2+J1J2G=(IP2-1)*N2+J2GU( JIG, J2G) =YU(Jl, J2)

122 GD( JIG, J2G) =YD(J1,J2)120 CONTINUECC FINISH ONE SWEEP THROUGH THE WHOLE TIME-SPACE LATTICE C

Page 180: Quantum Monte Carlo Simulations of Hubbard and Anderson

1 0 0 C O N T I N U E

CC = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

C WHEN MS I S L E S S T H E N T H E MC S T E P S B E T W E E N M E A S U R E M N E T S ( N S W E P )

C U P D A T E G R E E N ' S F U N C T I O N A F T E R E A C H S W E E P

C

I F ( ( M T . L E . MMM) . O R . ( M S . L T . N S W E P ) ) T H E N

C A L L G N P U D ( G U , G D , 1 )E N D I F

CC = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

C * N S W E P * MO NTE C A R L O S W E E P S B E T W E E N M E A S U R E M E N T S D O N E .

6 4 C O N T I N l f eCC = = = = = = = = = = = = = = = = = = = = = = = = = = : = = = = = = = = = = = = = = = = = = = = = = = = : = = = = = =

C

C A F T E R E A C H M I D M E A S U R E M E N T S , R E P O R T T H E R E S U L T S .

C

M E S M O D = M O D ( M E S ,M I D )

I F ( M E S M O D . E Q . 0 . A N D . M E S . N E . 0 ) T H E NC

W R I T E ( 6 , * ) 'M E A S U R E M N E T M E S ' . M E S

C A L L D I V ( S I G , A S I G N , X S I G N , M E S , 1 . 0 D 0 )C A L L D I V ( T L N , A T L N , X T L N , M E S , A S I G N )

C A L L D I V ( T L N U , A T L N U , X T L N U , M E S , A S I G N )

C A L L D I V ( T L N D , A T L N D , X T L N D , M E S , A S I G N )

C A L L D I V ( U D N , A U D N , X U D N , M E S , A S I G N )

A U D N = A U D N /N

X U D N = X U D N /N C A L L D I V ( S P I N , A S P I N . X S P I N , M E S , A S I G N )C A L L D I V ( S A O , A S A O , X S A O , M E S , A S I G N )

A S A O = A S A O / N

X S A 0 = X S A 0 / N

C A L L D I V ( S A 1 , A S A 1 , X S A 1 , M E S , A S I G N )

A S A 1 = A S A 1 / ( N * 4 )

X S A 1 = X S A 1 / ( N * 4 )

C A L L D I V ( S A 2 , A S A 2 , X S A 2 , M E S , A S I G N )

A S A 2 = A S A 2 / ( N * 4 )

X S A 2 = X S A 2 / ( N * 4 )

C A L L D I V ( S A 3 , A S A 3 , X S A 3 , M E S , A S I G N )

A S A 3 = A S A 3 / N 2

X S A 3 = X S A 3 / N 2 C A L L D I V ( S A 4 , A S A 4 , X S A 4 , M E S , A S I G N )

A S A 4 = A S A 4 / ( N * 4 )

X S A 4 = X S A 4 / ( N * 4 )

C A L L D I V ( S A 5 , A S A 5 , X S A 5 , M E S , A S I G N )

A S A 5 = A S A 5 / N

X S A 5 = X S A 5 / N

C A L L D I V ( S F F O , A S F F O , X S F F O , M E S , A S I G N )

A S F F O = A S F F Q / N

X S F F O = X S F F O / N

Page 181: Quantum Monte Carlo Simulations of Hubbard and Anderson

CALL D IV (SFF1 ,A SFF1,X SFF1,M ES,A SIG N ) ASFF1=A SFF1/(N *4)XSFF1=XSFF1 / ( N*4)

CALL D IV (S F F 2 , A SFF2,X SF F2, MES, ASIGN) A SFF2=A SFF2/(N *4) X SFF2=X SFF2/(N *4)

CALL D IV (S F F 3 .A S F F 3 ,X S F F 3 , MES, ASIGN) ASFF3=ASFF3/N2 XSFF3=XSFF3/N2

CALL D IV ( S F F 4 , A SFF4, X SFF4, MES, ASIGN) A SFF4=A SFF4/(N *4) X SFF4=X SFF4/(N *4)

CALL DIVC SFF5 , A SFF5, X SFF5, MES, ASIGN) ASFF5=ASFF5/N XSFF5=XSFF5/N

CALL D IV ( SFDO, ASFDO, XSFDO, MES, ASIGN) ASFDO=ASFDO/N XSFDO=XSFDO/N

CALL DIVCSFD1.ASFD1.XSFD1,MES,ASIGN) ASFD1=ASFD1/(N*4) X SFD l=X SFD l/eN *4)

CALL D IV eSFD 2, ASFD2, XSFD2, MES, ASIGN) ASFD2=ASFD2/eN*4) XSFD2=XSFD2/eN*4)

CALL D IV eSFD 3, ASFD3,XSFD3, MES, ASIGN) ASFD3=ASFD3/N2 XSFD3=XSFD3/N2

CALL DIVe SFD4, ASFD4, DSFD4, MES, ASIGN) ASFD4=ASFD4/eN*4) XSFD4=XSFD4/eN*4)

CALL DIVe SFD 5, ASFD5, XSFD5, MES, ASIGN) ASFD5=ASFD5/N XSFD5=XSFD5/N

CALL DIVeCAO, ACAO,XCAO, MES, ASIGN) ACAO=ACAO/N XCAO=XCAO/N

CALL DIVCCA1 , ACA1, XCA1 , MES, ASIGN) ACA1=ACA1/CN*4)XCAl=XCAl/eN*4)

CALL DIVeCA2,ACA2,XCA2,MES,ASIGN) ACA2=ACA2/eN*4)XCA2=XCA2/eN*4)

CALL DIVecA3,ACA3,XCA3,MES,ASIGN) ACA3=ACA3/N2 XCA3=XCA3/N2

CALL DIV e CA4, ACA4, XCA4,MES, ASIGN) ACA4=ACA4/eN*4)XCA4=XCA4/(N*4)

CALL DIVCCA5,ACA5,XCA5,MES,ASIGN) ACA5=ACA5/N XCA5=XCA5/N

Page 182: Quantum Monte Carlo Simulations of Hubbard and Anderson

CALL D IV (C F F O , ACFFO, XCFFO, MES, A S IG N ) ACFFO=ACFFO/N XCFFO=XCFFO/N

CALL D I V ( C F F 1 ,A C F F I ,X C F F 1 ,M E S ,A S I G N ) ACFF1=ACFF1 / ( N * 4 ) X C F F 1 = X C F F 1 / (N * 4 )

CALL D I V C C F F 2 .A C F F 2 .X C F F 2 , M E S .A S IG N ) A C F F 2 = A C F F 2 / (N * 4 ) X C F F 2 = X C F F 2 / (N * 4 )

CALL D I V ( C F F 3 ,A C F F 3 ,X C F F 3 ,M E S , A S IG N ) A C F F 3=A C F F 3/N 2 X C F F 3= X C F F 3 /N 2

CALL D IV ( C F F 4 , A C F F 4 , X C F F 4 , MES, A S IG N ) A C F F 4 = A C F F 4 / (N * 4 ) X C F F 4 = X C F F 4 / (N * 4 )

CALL D I V ( C F F 5 , A C F F 5 , X C F F 5 , MES, A S IG N ) A C FF5=A C FF5/N X C F F 5=X C F F5/N

CALL D IV (C FD O ,A C FD O ,X C FD O , MES, A SIG N ) ACFDO=ACFDO/N XCFDO=XCFDO/N

CALL D I V C C F D l .A C F D l .X C F D l , M E S ,A S IG N ) ACFD1=ACFD1 / ( N * 4 )XCFD1=XCFD1 / ( N * 4 )

CALL D IV C C F D 2, A C F D 2, X C F D 2, MES, A SIG N ) A C F D 2= A C F D 2/C N *4) X C F D 2= X C F D 2/C N *4)

CALL D IV C C F D 3 ,A C F D 3 .X C F D 3 , M E S ,A S IG N ) A CFD3=AC FD 3/N 2 XCFD3=XC FD 3/N 2

CALL D IV C C F D 4, A C F D 4, D C F D 4, MES, A S IG N ) A C F D 4= A C F D 4/C N *4) X C F D 4= X C F D 4/C N *4)

CALL D IVC CFD S, A C F D 5, X C F D 5, MES, A S IG N ) ACFD5=ACFD5/N XCFDS =XCFD5/ N

CALL DIV C SQFO, ASQFO, XSQFO, MES, A S IG N ) ASQFO=ASQFO/N XSQFO=XSQFO/N

CALL DIVC SQFQ, ASQFQ, XSQFQ, MES, A SIG N ) ASQFQ=ASQFQ/N XSQFQ=XSQFQ/N

CALL DIVC SQ A O ,A SQ A O ,X SQ A O ,M ES,A SIG N ) ASQAO=ASQAO/N2 X SQ A 0=X SQ A 0/N 2

CALL DIVCSQAQ, ASQAQ, XSQAQ,MES, A SIG N ) ASQAQ=ASQAQ/N2 XSQAQ=XSQAQ/N2

CALL D IVC SXFO, ASXFO, XSXFO, MES, A S IG N ) ASXFO=ASXFO/N

Page 183: Quantum Monte Carlo Simulations of Hubbard and Anderson

176

XSXFO=XSXFO/N CALL DIVCSXFQ, ASXFQ, XSXFQ , MES, A SIG N )

ASXFQ=ASXFQ/N XSXFQ=XSXFQ/ N

CALL D IV (S X A O , ASXAO,XSXAO, MES, A SIG N ) A SXA 0=ASX A0/N2 X SXA 0=XSX A0/N2

CALL DIVCSXAQ, ASXAQ, XSXAQ, MES, A SIG N ) ASXAQ=ASXAQ/N2 XSXAQ=XSXAQ/N2

CALL DIV C SXXO, ASXXO, XSXXO, MES, A S IG N ) ASXXO=ASXXQ/N XSXXO=XSXXO/N

CALL DIVC SXXQ, ASXXQ, XSXXQ, MES, A SIG N ) ASXXQ=ASXXQ/N XSXXQ=XSXXQ/N

CALL DIVCCQFO, ACQFO, XCQFO, MES, A SIG N ) ACQFO=CACQFO- CATLNU+ATLND)**2 ) / N XCQFO=XCQFO/N

CALL DIVCCQFQ, ACQFQ, XCQFQ, MES, A SIG N ) ACQFQ=ACQFQ/N XCQFQ=XCQFQ/N

CALL DIVC CQAO, ACQAO, XCQAO, ME S , A S IG N ) ACQAO=CACQAO - A T L N * * 2 ) / N 2 XCQAO=XCQAO/N2

CALL DIVCCQAQ, ACQAQ, XCQAQ, MES, A SIG N ) ACQAQ=ACQAQ/N2 XCQAQ=XCQAQ/N2

CALL DIVCCXFO, ACXFO, XCXFO, M E S.A SIG N ) ACXF0=CACXF0-BETA*CATLNU+ATLND)**2 ) / N XCXFO=XCXFO/N

CALL DIVCCXFQ,ACXFQ,XCXFQ, M E S,A SIG N ) ACXFQ=ACXFQ/N XCXFQ=XCXFQ/N

CALL DIV C CXAO, ACXAO, XCXAO, MES, A SIG N ) ACXAO=CACXAO- BETA* A T L N **2 ) / N 2 XCXAO=XCXAO/ N2

CALL DIVCCXAQ, ACXAQ, XCXAQ, M E S.A SIG N ) ACXAQ=ACXAQ/N2 XCXAQ=XCXAQ/N2

CALL DIVCCXXO, ACXXO, XCXXO, M E S,A SIG N ) ACXXO=CACXXO - CATLNU+ATLND)*ATLN ) / N XCXXO=XCXXO/N

CALL DIVCCXXQ, ACXXQ, XCXXQ, M E S .A S IG N ) ACXXQ=ACXXQ/N XCXXQ=XCXXQ/N

CALL DIVCENRY, AENRY, XENRY, MES, A SIG N ) W R IT E C 6 ,* ) * ...........................................................................................

K R I T E C 6 ,* ) 1 SIGN ' , A S IG N , ' XASIGNW R IT E C 6 ,* ) ' TOTAL# ’ , ATLN , 1 XTLN

Page 184: Quantum Monte Carlo Simulations of Hubbard and Anderson

WRITE( 6 * ) ' # U P - F ' , ATLNU, ' XTLNUWRITE( 6 * ) ' #DM -F 1 , ATLND, ’ XTLNDWRITE( 6 * ) ’ UP*DM-F ' , AUDN , ’ XUDNWRITE( 6 * ) ' S P IN i , A S P I N , ' X S P INW R IT E (6 * ) ' ENERGY ' , AENRY, ' XENRYWRITE( 6 * ) ' S Z - S Z F F O ' , A S F F O , ' XSFFOWRITE( 6 * ) ’ S Z -S Z F F l ' , A S F F 1 , ' X S FF 1WRITEC6 * ) 'S Z - S Z F F 2 ' , A S F F 2 , ' X SFF2W R IT E (6 * ) 'S Z - S Z F F 3 1 , A S F F 3 , ’ ■ X SFF 3W R IT E (6 * ) 'S Z - S Z F F 4 ' , A S F F 4 , ' X S F F 4WRITE( 6 * ) ' S Z - S Z F F 5 ' , A S F F S , ' X SFF5W R IT E (6 * ) ' S Z - S Z FDO' , ASFDO, ' XSFDOW R IT E (6 * ) ’ S Z -S Z F D 1 ' , A S F D 1 , ’ XSFD1WRITE( 6 * ) ’ S Z -S Z F D 2 1 , A S F D 2 , ’ XSFD2WRITE( 6 * ) ' S Z - S Z F D 3 ' , A S F D 3 , ' XSFD3WRITE( 6 * ) ' S Z - S Z F D 4 ’ , A S F D 4 , ' X SFD 4WRITE( 6 * ) ' S Z - S Z F D S ’ , A S F D 5 , ’ XSFD5WRITE( 6 * ) ' S Z - S Z AAO ’ , ASAO , ' XSAOW R IT E (6 * ) ' S Z - S Z A A 1 ’ , ASA1 , ' XSA1WRITEC6 * ) ' S Z - S Z A A 2 ' , ASA2 , ' XSA2WRITEC6 * ) 'S Z - S Z A A 3 ' , A SA3 , ' XSA3WRITE( 6 * ) 'S Z - S Z AA4* , A SA4 , ’ XSA4WRITE( 6 * ) ' S Z - S Z A A 5 ' , ASA5 , ' XSA5WRITEC6 * ) ' N -N FFO' , ACFFO, ' XCFFOWRITE( 6 * ) ' N -N F F l ' , A C F F 1 , ’ XCFF1WRITE( 6 * ) 1 N-N F F 2 ' , A C F F 2 , ' + / - * , XCFF2WRITEC6 * ) ’ N -N F F 3 ' , A C F F 3 , ' XCFF3WRITE( 6 * ) ’ N -N F F 4 ' , A G F F 4 , ’ XCFF4W R IT E (6 * ) ' N -N F F 5 ' , A C F F 5 , ' XCFF5WRITEC6 * ) ' N -N FDO' , ACFDO, ’ XCFDOWRITEC6 * ) ' N -N F D 1 ' , A C F D 1, ' XCFD1WRITEC6 * ) ' N -N F D 2 ' , A C F D 2, ' XCFD2WRITE( 6 * ) ' N -N F D 3 ' , A C F D 3, ' XCFD3W R IT E (6 * ) ' N -N F D 4 ' , A C F D 4, ' XCFD4WRITEC6 * ) ' N -N F D 5 ' , A C F D 5, ‘ XCFD5WRITEC6 * ) ' N -N AAO' , ACAO , ’ XCAOW R IT E (6 * ) ' N -N AA1' , ACA1 , ' XCA1WRITEC6 * ) ' N -N A A2' , ACA2 , ' XCA2WRITEC6 * ) ' N -N A A 3' , ACA3 , ' XCA3WRITE( 6 * ) ' N -N A A4' , ACA4 , ’ + / - ' » XCA4WRITE( 6 * ) ' N -N A A 5 ' , ACA5 , XSA5WRITE( 6 * ) ' S Q F (K = 0 ) ' , ASQFO, ’ XSQFOW R IT E (6 * ) ' S Q F ( K = P I ) ' , ASQFQ, XSQFQWRITE( 6 * ) ’ S Q A (K = 0 ) ' , ASQAO, ’ XSQAOWRITE( 6 * ) ' S Q A ( K = P I ) * , ASQAQ, ’ XSQAQWRITE( 6 * ) ' X F S ( K = 0 ) ' , A SXFO, ' XSXFOW R IT E (6 * ) ' X F S ( K = P I ) ' , ASXFQ, ' XSXFQW R IT E (6 * ) ’ X A S (K = 0 ) ' , ASXAO, ’ XSXAOW R IT E (6 * ) ’ X A S ( K = P I ) ' , ASXAQ, ’ XSXAQWRITE( 6 * ) ’ T * X F ( K = 0 ) ' , ASXXO, ' XSXXOW R IT E (6 * ) ' T * X F ( P I ) ’ , ASXXQ, ' + / - ’ » XSXXQ

Page 185: Quantum Monte Carlo Simulations of Hubbard and Anderson

178

W R I T E ( 6 ,* ) W R I T E ( 6 , * ) W R IT E C 6 ,* ) W R I T E ( 6 , * ) W R I T E ( 6 , * } W R I T E ( 6 ,* ) W R I T E ( 6 , * ) W R IT E C 6 ,* ) W R I T E ( 6 , * ) W R I T E ( 6 , * ) W R IT E C 6 ,* )

’ C Q F ( K = 0 ) '

' C Q F ( K = P I ) '

' C Q A ( K = 0 ) '

' C Q A ( K = P I ) '

' X F C ( K = 0 ) ’

' X F C ( K = P I ) '

* X A C ( K = 0 ) '

’ X A C ( K = P I ) '

’ T * X C ( K = 0 ) ' ' T * X C ( P I ) ’

ACQFO, ACQFQ, ACQAO, ACQAQ, ACXFO, ACXFQ, ACXAO, ACXAQ, ACXXO, ACXXQ,

+ / -+ / -+ / "+ / -+ / -+ / “+ / -+ / -+ / "+ / -

XCQFOXCQFQXCQAOXCQAQXCXFOXCXFQXCXAOXCXAQXCXXOXCXXQ

CCCC

Cc

2000CC

c66

CCcccccccccccccccc

PRINT OUT THE TOTAL NUMBER OF UPDATES ACCEPTED. USED TO CALCULATE THE ACCEPTANCE RATIO.

W R I T E ( 6 , * ) 'N U PD A T E ', NUPDATE

I F ( I W .N E . O ) THENSAVE THE IS IN G S P IN CONFIGURATIONS, WRITE TO CHANNEL 3 .

0 P E N (U N I T = 3 )W R I T E ( 6 , * ) ’ SIGMAS WRITTEN TO 3 ’W R I T E ( 3 , 2 0 0 0 ) ( ( S I G M A ( K 1 ,K 2 ) , K 2 = I , N ) , K 1 = 1 , L T I M E * I P M A X ) CLOSE( U N IT = 3 )

END IFF 0 R M A T C 1 0 F 8 .2 )

INTERMEDIATE RESULTS AFTER MID MEASUREMENTS * DONE *END IF

CONTINUEEND

MONTE CARLO MAIN PROGRAM ENDS

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINES CC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc

GNPUD CALCULATES THE GREEN'S FUNCTION AT TIME SL IC E L MAXIMUM ALLOWED TIME SL IC E S L A =40 INPUT TIME SL IC E S : LTIME MUST BE \ < LA

GREEN'S FUCTION S I Z E : NP X NP MATRICESFOR BSS ALGORITHM, USE IPMAX=1

CCCCCC

Page 186: Quantum Monte Carlo Simulations of Hubbard and Anderson

179

SUBROUTINE GNPUD(GUNP, GDNP, L )IM P L IC IT R E A L * 8 ( A - H , 0 - Z )PARAMETER(LA=40, IPM AX=1)PARAMETER(ND=4, N = 2 * N D * * 2 , NP=N*IPMAX)DIMENSION G U N P (N P .N P ) , G D N P (N P .N P )DIMENSION G U I N P ( N P , N P ) , G D I N P (N P .N P )DIMENSION G U ( N ,N ) , E U ( N , N ) , S U ( N ,N )DIMENSION G D ( N ,N ) , E D ( N , N ) , S D ( N . N )COMMON /C LTIM E/LTIM E

CC I N I T I A L I Z E THE WORK AREA.

DO 5 5 5 1 = 1 , NP DO 5 5 5 J = 1 , N P G U I N P ( I , J ) = 0 . 0D0

5 5 5 G D I N P ( I , J ) = 0 . 0D0CC ...........................................................................................................................

DO 1 0 0 I P P = 1 , IPMAX C CALCULATE B ( L )

CALL B U B D L ( E U ,E D ,I P P ,L )CC CALCULATE ALL B ' S ; AND B ( L - l ) . . B ( l ) . B ( L T I M E ) . . . B ( L + 1 ) . B ( L )

DO 5 I = L + 1 ,L T I M E + L - 1 I S = I I P S = I P P

I F ( IP P .E Q .IP M A X .A ND . I .G T .L T IM E ) THEN I S = I S -L T I M E I P S = 1

END I FC

CALL B U B D L ( S U ,S D , I P S , I S )CALL F M M M (S U ,E U ,G U ,N ,N ,N )CALL F M M M (S D ,E D ,G D ,N ,N ,N )

CDO 7 J 1 = 1 , N DO 7 J 2 = 1 , N E U ( J 1 , J 2 ) = G U ( J 1 , J 2 )

7 E D ( J 1 , J 2 ) = G D ( J 1 , J 2 )C

5 CONTINUEC

I F ( I P P . L T . I P M A X ) THEN DO 8 1 = 1 , N DO 8 J = 1 , N

I I = I P P * N + I J J = ( I P P - 1 ) * N + J G U I N P ( I I , J J ) = - G U ( I , J )G D I N P ( I I , J J ) = - G D ( I , J )

8 CONTINUE

Page 187: Quantum Monte Carlo Simulations of Hubbard and Anderson

180

cELSE

C T H IS I S THE CASE FOR BSS ALGORITHM, IPP=IPM AX =1DO 9 1 = 1 , N DO 9 J = 1 , N

J J = ( I P M A X - 1 ) * N + J G U I N P ( I , J J ) = G U ( I , J )G D I N P ( I , J J ) = G D ( I , J )

9 CONTINUEEND IF

C1 0 0 CONTINUE CC FULL MATRIX BEFORE THE INVERSION: *M* OR * 0 *C DET(M) OR D E T (O ) IN THE PARTION FUNCTIN.C

DO 1 1 0 1 = 1 ,N PG U I N P ( I , I ) = G U I N P ( I , I ) + l . ODO G D IN P C I , I ) = G D I N P ( I , I ) + l . ODO

1 1 0 CONTINUE CC CALCULATE THE IN VER SE, AND F IN D G = ( I + B . . . B ) - 1 C THE GREEN'S FUNCTION

CALL MATRINV(GUINP,GUNP)CALL MATRINV(GDINP.GDNP)

RETURNEND

CCcc c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c cc cc GTOTAL CALCULATES THE TIME-DEPANDENT GREEN'S FUCNTIONS CC CALLED BEFORE TAKING MEASUREMENT. CC CC TOTAL TIME SL IC E LTIME*IPMAX : CC CC G U T O ( L , I , J ) = < C I ( L ) C J + ( 1 ) > CC G U T L ( L , I , J ) = < C J + ( L ) C I ( 1 ) > CC G U L ( L , I , J ) = < C I ( L ) C J + ( L ) > CC Cc ................................................................................................... - ....................................................................... Cc

SUBROUTINE GTOTAL(GUNP,GDNP)IM P L IC IT R E A L * 8 ( A - H , 0 - Z )PARAMETER ( L A = 4 0 , IPM AX=1, LTT=LA*IPMAX) PARAMETER ( L B = 5 0 0 0 , N D = 4 , N = 2 * N D * * 2 , NP=N*IPMAX) DIMENSION G U N P ( N P .N P ) , G D N P (N P .N P )DIMENSION G U T O ( L T T .N .N ) ,G D T 0 ( L T T ,N ,N )DIMENSION G U T L ( L T T ,N ,N ) ,G D T L ( L T T ,N ,N )DIMENSION G U L ( L T T , N , N ) , G D L (L T T ,N ,N )

Page 188: Quantum Monte Carlo Simulations of Hubbard and Anderson

COMMON /CLTIME/LTIMECOMMON /GB/GUTO,GDTO,GUTL,GDTL,GUL,GDL

CC CALCULATE GU AND GD FIRSTC

CALL GNPUD(GUNP,GDNP,1)CC CALCUALTE ALL G'S IN TWO STEPS:C FISRT G'S FOR TIME SLICE \< HALF OF THE TOTAL SLICESC SECOND G'S FOR TIME SLICE > HALF OF THE TOTAL SLICESC PURPOSE: REDUCE THE ROUND-OFF ERROR C

DO 10 IP=1,IPMAXCALL GBTO(GUNP,GDNP,IP)

10 CALL GBTL(GUNP,GDNP,IP)RETURNEND

CCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc cC GTBO CALCULATES THE TIME-DEPANDENT GREEN’S FUCNTIONS CC CALLED BY GTOTOAL CC FOR TIME SLICE L \< HALF OF TOTAL TIME SLICES CC CC GUTO(L,I, J ) = < CI(L)CJ+(1) > CC GUTL(L,I,J) = < CJ+(L)CI(1) > CC GUL(L, I , J ) = < CI(L)CJ+(L) > CC CC INPUT : GREEN'S FUNCTIONS USED IN THE UPDATING PROCEDURES CC IP : PARTITION NUMBER; FOR BSS, IP=IPMAX=1 CC CC ............................................................................................................- ............................ cc

SUBROUTINE GBTO(GUNP,GDNP,IP)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX) PARAMETER (LB=SOOO, ND=4, N=2*ND**2, NP=N*IPMAX)

CDIMENSION GUNP(NP.NP) ,GDNP(NP,NP)DIMENSION GUTO( LTT, N, N) , GOTO( LTT, N, N)DIMENSION GUTL( LTT, N, N) , GDTL( LTT, N, N)DIMENSION GUL(LTT,N,N), GDL(LTT,N,N)

CDIMENSION BU(N,N),BD(N,N)DIMENSION BUI(N,N),BDI(N,N)DIMENSION EU1(N,N),EU2(N,N)DIMENSION ED1(N,N),ED2(N,N)DIMENSION SU1(N,N),SU2(N,N)DIMENSION SD1(N,N),SD2(N,N)

Page 189: Quantum Monte Carlo Simulations of Hubbard and Anderson

182

DIMENSION TU1(N,N),TU2(N,N)DIMENSION TD1(N,N),TD2(N,N)

CCOMMON /CLTIME/LTIMECOMMON /GB/GUTO, GDTO,GUTL, GDTL, GUL, GDL

CC INITIALIZE THE LOOP IP C

IF (IP .E Q .l) THEN C THIS IS ALSO THE CASE FOR BSS ALGORITHM: IP=IPAMX=1 C

DO 125 M4=1 ,N DO 125 M5=1,N

GUT0(1 ,M4,M5)= GUNP(M4,M5)GDT0(1,M4,M5)= GDNP(M4,M5)GUTL(1 ,M4,M5)=-GUNP(M4,M5)GDTL(1 ,M4,M5)=-GDNP(M4,M5)GUL(1 ,M4,M5) = GUNP(M4,M5)GDL(1,M4,M5J ■ GDNP(M4,M5)EU1(M4,M5) = GUNP(M4,M5)ED1(M4,M5) ■ GDNP(M4,M5)SU1(M4,M5) =-GUNP(M4,M5)SD1(M4,M5) =-GDNP(M4,M5)TU1(M4,M5) = GUNP(M4,M5)

125 TD1(M4,M5) = GDNP(M4,M5)C

DO 1255 M4=1,NGUTL(1 ,M4,M4)=-GUNP(M4,M4)+1. ODO GDTL(1 ,M4,M4)=-GDNP(M4,M4)+1. ODO SU1(M4,M4) =-GUNP(M4,M4)+1.0D0

1255 SD1(M4,M4) =-GDNP(M4,M4)+1. ODOC

ELSELIP=(IP-1)*LTIME+1 DO 126 M4=1,NDO 126 M5=1,N

IPM4=(IP-1)*N+M4 IPM5=(IP-1)*N+M5 GUTO(LIP,M4,M5)= GUNP(IPM4.M5)GDTO(LIP,M4,M5)= GDNP(IPM4.M5) GUTL(LIP,M4,M5)=-GUNP(M4,IPM5)GDTL(LIP,M4,M5)=-GDNP(M4, IPM5) GUL(LIP,M4,M5) = GUNP(IPM4,IPM5) GDL(LIP,M4,M5) = GDNP(IPM4, IPM5) EU1(M4,M5)= GUNP(IPM4,M5)ED1(M4,M5)= GDNP(IPM4,M5) SU1(M4,M5)=-GUNP(M4,IPM5) SD1(M4,M5)=-GDNP(M4>IPM5)TU1(M4,M5)= GUNP(IPM4,IPM5)

126 TD1(M4,M5)= GDNP(IPM4,IPM5)END IF

Page 190: Quantum Monte Carlo Simulations of Hubbard and Anderson

nn

oo

nCC H A L F O F T H E T O T A L T I M E S L I C E S ( L 2 )

L 2 = L T I M E / 2 + l

CDO 2 3 4 L K = 2 , L 2

L K 1 = L K - 1

* C A L L B U B D I N ( B U , B D , B U I , B D I , I P , L K 1 )C A L L B U B D L ( B U , B D , I P , L K 1 )

C A L L I N B U B D L C B U I , B D I , I P , L K 1 )

CC * F O R G U T O , G D T O

C

C A L L F M M M ( B U , E U 1 , E U 2 , N , N , N )

C A L L F M M M ( B D , E D 1 , E D 2 , N , N , N )

C

C * F O R G U T L , G D T L

CC A L L F M M M ( S U 1 , B U I , S U 2 , N , N , N )

C A L L F M M M ( S D 1 , B D I , S D 2 , N , N , N )

CC * F O R G U L , G D L

C

C A L L F M M M ( B U , T U 1 , T U 2 , N , N , N )

C A L L F M M M ( B D , T D 1 , T D 2 , N , N , N )C A L L F M M M ( T U 2 , B U I , T U 1 , N , N , N )

C A L L F M M M ( T D 2 , B D I , T D I , N , N , N )C

I P L K = ( I P - 1 ) * L T I M E + L KC

DO 1 2 7 M 6 = 1 , N

DO 1 2 7 M 7 = 1 , N

G U T 0 ( I P L K , M 6 , M 7 ) = E U 2 ( M 6 , M 7 )

G D T 0 ( I P L K , M 6 , M 7 ) = E D 2 ( M 6 , M 7 )

E U 1 ( M 6 , M 7 ) = E U 2 ( M 6 , M 7 )

E D 1 ( M 6 , M 7 ) = E D 2 ( M 6 , M 7 )

G U T L ( I P L K , M 6 , M 7 ) = S U 2 ( M 6 , M 7 )

G D T L ( I P L K , M 6 , M 7 ) = S D 2 ( M 6 , M 7 )

S U 1 ( M 6 , M 7 ) = S U 2 ( M 6 , M 7 )

S D 1 ( M 6 , M 7 ) = S D 2 ( M 6 , M 7 )

G U L ( I P L K , M 6 , M 7 ) = T U 1 ( M 6 , M 7 )

G D L ( I P L K , M 6 , M 7 ) = T D 1 ( M 6 , M 7 ) 1 2 7 C O N T I N U E

C

2 3 4 C O N T I N U E

R E T U R N

E N D

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C

c

Page 191: Quantum Monte Carlo Simulations of Hubbard and Anderson

on

nn

oo

nn

on

184

GTBL CALCULATES THE TIME-DEPANDENT GREEN'S FUCNTIONS C CALLED BY GTOTOAL; CFOR TIME SLICE L > HALF OF TOTAL TIME SLICES C

CGUT0(L,I, J ) = < CI(L)CJ+(1) > CGUTL(L,I, J ) = < CJ+(L)CI(1) > CGUL(L,I, J ) = < CI(L)CJ+(L) > C

CC

SUBROUTINE GBTL(GUNP,GDNP,IP)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=2*ND**2, NP=N*IPMAX)

CDIMENSION GUNP(NP.NP) ,GDNP(NP,NP)DIMENSION GU(N,N) ,GD(N,N)DIMENSION RUTO( LTT, N, N) , GDTO( LTT,N, N)DIMENSION GUTL(LTT,N,N),GDTL(LTT,N,N)DIMENSION GUL(LTT,N,N), GDL(LTT,N,N)

CDIMENSION BU(N,N),BD(N,N)DIMENSION BUI(N,N),BDI(N,N)DIMENSION EUI(N,N),EU2(N»N)DIMENSION EDl(N.N),ED2(N,N)DIMENSION SU1(N,N),SU2(N,N)DIMENSION SD1(N,N),SD2(N,N)DIMENSION TU1(N,N),TU2(N,N)DIMENSION TD1(N,N),TD2(N,N)

CCOMMON /CLTIME/LTIMECOMMON /G B/GUTO, GDTO, GUTL, GDTL,GUL, GDL

CIF(IP.EQ.IPMAX) THEN

C THIS IS ALSO THE CASE FOR BSS ALGORITHM; IP=IPMAX=1 C

LIP=(IPMAX-1)*LTIME DO 125 M4=1,N DO 125 M5=1,N

EU1(M4,M5)=-GUNP(M4,M5)ED1(M4,M5)=-GDNP(M4,M5)SU1(M4,M5)= GUNP(M4,M5)SD1(M4,M5)= GDNP(M4,M5)TU1(M4,M5)= GUNP(M4,M5)

125 TD1(M4,M5)= GDNP(M4,M5)C

DO 1255 M4=1,NEU1(M4,M4)=1.0D0+EU1(M4,M4)

1255 ED1(M4,M4)=1.0D0+ED1(M4,M4)C

ELSE

Page 192: Quantum Monte Carlo Simulations of Hubbard and Anderson

185

DO 1 2 6 M 4 = l , N DO 1 2 6 M 5 = 1 ,N

IPM 4=IP*N +M 4 IPM 5=IP*N +M 5E U 1 ( M 4 ,M 5 ) = G U N P (IP M 4 ,M 5 ) E D 1 ( M 4 ,M 5 ) = G D N P (IP M 4 ,M 5 )S U 1 ( M 4, M5) = - GUNP( M 4 , IP M 5 ) S D 1 ( M 4 ,M 5 ) = - G D N P ( M 4 ,I P M 5 ) T U 1 ( M 4 ,M 5 )= G U N P (IP M 4 , IP M 5 )

1 2 6 T D 1 ( H 4 , M 5 ) = G D N P ( I P M 4 ,I P M 5 )END IF

CC HALF OF THE TOTAL TIME S L IC E S ( L 2 )

L 2 = L T IM E /2 L 2 1 = L 2 + 2

CDO 3 3 4 L P = L T I M E ,L 2 1 , - 1

* CALL B U B D I N ( B U , B D , B U I , B D I , I P , L P )CALL BUBDL( B U , B D , I P , L P )CALL I N B U B D L (B U I ,B D I , I P . L P )

CC * GUTO,GDTO **'C

CALL F M M M (B U I ,E U 1 ,E U 2 ,N ,N ,N )CALL F M M M (B D I ,E D 1 ,E D 2 ,N ,N ,N )

CC * GUTL,GDTL * *C

CALL FMMMfSUl, B U , S U 2 , N , N , N )CALL F M M M (S D 1 ,B D ,S D 2 ,N ,N ,N )

CC * GUL, GDL * *C

CALL F M M M (B U I ,T U 1 ,T U 2 ,N ,N ,N )CALL F M M M (B D I ,T D 1 ,T D 2 ,N ,N ,N )CALL F M M M (T U 2 ,B U ,T U 1 ,N ,N ,N )CALL F M M M (T D 2 ,B D ,T D 1 ,N ,N ,N )

CDO 2 2 6 M 1 = 1 ,N DO 2 2 6 M 2 = 1 ,N

I P L P = ( I P - 1 )*L T IM E +L P G U L ( I P L P ,M 1 ,M 2 ) = T U 1 ( M 1 ,M 2 ) G D L ( I P L P ,M 1 ,M 2 ) = T D 1 ( M 1 ,M 2 ) G U T 0 ( I P L P ,M 1 ,M 2 ) = E U 2 ( M 1 ,M 2 ) G D T 0 ( I P L P ,M 1 JM 2 )= E D 2 (M 1 ,M 2 ) E U 1 ( M 1 ,M 2 )= E U 2 ( M 1 ,M 2 )E D 1 ( M 1 ,M 2 )= E D 2 ( M 1 ,M 2 )G U T L f I P L P ,M 1 ,M 2 ) = S U 2 ( M 1 ,M 2 ) G D T L ( I P L P ,M 1 ,M 2 )= S D 2 (M 1 ,M 2 ) S U 1 ( M 1 ,M 2 ) = S U 2 ( M 1 ,M 2 ) S D 1 ( M 1 ,M 2 ) = S D 2 ( M 1 ,M 2 )

Page 193: Quantum Monte Carlo Simulations of Hubbard and Anderson

186

226 CONTINUEC334 CONTINUE

RETURN END

CCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc CC SUBROUTINE HEVL CALCULATE EXP{V(L)J CC WHERE V IS THE POTENTIALS DUE TO ISING SPINS CC ON F-ORBITALS. CC L: TIME SLICE CC IP: PARTITION NUMBER ; FOR BSS IP=IPMAX=1 CC CC RESULTS: COMMON /CHEV/EVU(L), EVD(L) CC CC ......................................................................................................................................C

SUBROUTINE HEVL(IP.L)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N2*IPMAX)

CDIMENSION SIGMA(LTT.N)DIMENSION EVU(LTT,N),EVD(LTT,N)

CC : COMMON INPUT DATA :C

COMMON /CLTIME/LTIME COMMON /CDL/DLU COMMON /CUI/UO,VO,EF COMMON /CEI/UM COMMON / CDELTAT/DELTAT COMMON /CSPINS/SIGMA

CC : OUTPUT DATA /COMMON OUT/ :C

COMMON /CHEV/EVU.EVDC

LL=(IP“ 1)*LTIME+LCC FOR SPIN SIGMA C

DO 20 1=1,NEVU(LL,I)= DLU*SIGMA(LL,I)+DELTAT*(UM-0.5DO*UO-EF)

20 EVD(LL,I)=-DLU*SIGMA(LL,I)+DELTAT*(UM-0. 5DO*UO-EF)DO 40 1= 1 ,N

EVU(LL,I)=DEXP(EVU(LL,I))40 EVD(LL,I)=DEXP(EVD(LL,I))

RETURN

Page 194: Quantum Monte Carlo Simulations of Hubbard and Anderson

187

ENDCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCGCCCGCGCCCCCCCCCCCCCCCCCCCCCCc cC *INHEVL* CALCULATES EXP[-V(L)} CC WHERE V IS THE POTENTIALS DUE TO ISING SPINS- CC CC L: TIME SLICE CC IP: PARTITION NUMBER ; FOR BSS IP=IPMAX=1 CC CC RESULTS: COMMON /CHEVIN/EVU(L), EVD(L) CC CC ...................................................................................................................................... C

SUBROUTINE INHEVL(IP,L)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N2*IPMAX)

CDIMENSION SIGMA(LTT.N)DIMENSION EVU(LTTjN),EVD(LTT,N)

C :C : INPUT DATA :C :

COMMON /CLTIME/LTIME COMMON /CDL/DLU COMMON /CUI/UO,VO,EF COMMON /CEI/UM COMMON /CDELTAT/DELTAT COMMON /CSPINS/SIGMA

C :C : OUTPUT DATA /COMMON OUT/ :C :

COMMON /CHEVIN/EVU.EVDC

LL=(IP-I)*LTIME+LCC FOR SPIN SIGMA C

DO 20 1=1 ,NEVU( LL, I )= DLU*SIGMA(LL, I ) +DELTAT*( UM-0 . 5DO*UO-EF)

20 EVDfLL,I)=-DLU*SIGMA(LL, I)+DELTAT*(UM-0. 5DO*UO-EF)C

DO 40 1= 1 ,NEVU(LL,I)=DEXP(-EVU(LL,I))

40 EVD(LL,I)=DEXP(-EVD(LL,I))RETURNEND

C

Page 195: Quantum Monte Carlo Simulations of Hubbard and Anderson

188

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c cC *BUBDL* CALCULATES (BU,BD) AT TIME SLICE :(IP-1)*LTIME+L C WHERE IP : PARTITION NUMBER, FOR BSS IP=IPMAX=IC L : TIME SLICECC ............................................-...........

SUBROUTINE BUBDL(BU,BD,IP,L)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N2*IPMAX) DIMENSION BU(N2,N2),BD(N2,N2)DIMENSION EEK(N2,N2)DIMENSION EVU(LTT,N),EVD(LTT,N)

CCOMMON /CLTIME/LTIME COMMON /CEXPEK/EEK COMMON /CHEV/EVU.EVD

CC FIRST CALCULATE EXP{V(L)}C

CALL HEVL(IP.L)CC THEN CALCULATE BL{I,J}C

LL=(IP-1)*LTIME+L DO 10 J=1,N DO 10 1=1,N2

BU(I,J)=EEK(I,J)*EVU(LL,J)10 BD(I,J)=EEK(I,J)*EVD(LL,J)

DO 20 J=N+1,N2 DO 20 1=1,N2

BU(I,J)=EEK(I, J)20 BD(I,J)=EEK(I,J)

RETURN END

C C CC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC cc INBUBDL CALCULATES (BU-1,BD-1) AT TIME SLICE: (IP-1)*LTIME+L C C WHERE IP : PARTITION NUMBER, FOR BSS IP=IPMAX=1 CC L : TIME SLICE CC CC .......................................................... C

SUBROUTINE INBUBDL(BU,BD,IP,L)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)

n o

n n

a o

Page 196: Quantum Monte Carlo Simulations of Hubbard and Anderson

189

PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N2*IPMAX) DIMENSION BU(N2,N2),BD(N2,N2)DIMENSION EEK(N2,N2)DIMENSION EVU(LTT,N),EVD(LTT,N)

CCOMMON /CLTIME/LTIME COMMON /CEKIN/EEK COMMON /CHEVIN/EVU.EVD

CC FIRST CALCULATE EXP{-V(L)}C

CALL INHEVL(IP.L)CC THEN CALCULATE BL(-1){I,J)C

LL=(IP-1)*LTIME+L DO 10 1=1,NDO 10 J=1,N2

BU(I,J)=EER(I,J)*EVU(LL,I)10 BD(I ,J) =EEK( I, J)*EVD(LL, I )

DO 20 I=N+1,N2DO 20 J=1,N2

BU(I,J)=EEK(I,J)20 BD(I,J)=EEK(I,J)

RETURNEND

CCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc cC EXPERT CALCULATES THE MATRIES EXP(K) AND EXP(-K) CC CC INPUT: HOPPING MATRIX K, CC SPECIFIES THE GEOMETRY OF THE SYSTEM. CC CC RESULTS: EXPEK, AND ERIN CC Cc ..................................................... C

SUBROUTINE EXPERT(ERO)PARAMETER(ND=4,N=2*ND**2)DIMENSION E0(N,N),E1(N,N),E2(N,N)DIMENSION EXPER(N,N),ERIN(N,N),ER1(N,N),ER0(N,N)

CCOMMON /CDELTAT/DELTAT COMMON /CEXPER/EXPEK COMMON /CERIN/EKIN

CDO 10 1=1,N DO 10 J=1,N

Page 197: Quantum Monte Carlo Simulations of Hubbard and Anderson

190

E 0 ( I , J)=Q. ODO IF (I .E Q .J ) E 0 ( I , J J = 1 . ODO

10 EK1(I,J)=-DELTAT*EK0(I,J)C

DO 20 1=1 ,NDO 20 J=1,N

EXPEKfl, J)=E O (I, J)+EK 1(I, J )20 EKIN(I,J) =EO(I, J ) -E K 1 (I , J )C

FACT= l.ODO FACI=-1.ODOCALL FMMM(EK1,E0,E1,N,N,N)

CDO 30 M=2,100

FACT= FACT*M FACI=-FACI*M HH=1. ODO/FACT IF(HH.LE.1 . OD-99) GOTO 70 CALL FMMM(EK1,E1,E2,N,N,N)

CDO 40 1=1 ,N DO 40 J=1,N

EXPEK(I, J)=EXPEK(I, J ) + l . 0D0/FACT*E2(I, J )40 EKIN(I, J ) =EKIN(I,J)+l.OD0/FACI*E2(I,J)30 CALL FMMM(E2,E0,E1,N,N,N)C70 CONTINUEC WRITE(6,*)'EXPEK'C WRITE(6,*) ( (EXPEK(I, J ) , J = 1 ,N ) , I=1,N)

RETURNEND

CCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC cC THIS ** HER ** SPECIFIES THE GEOMETRY OF THE SYSTEM.C TO PERFORM CALCULATIONS FOR A DIFFERENT, WE NEED FIRST C CHANGE THIS PART.CC EK1 THROUGH EK5 ARE THE FIRST THROUGH FIFTH NEAREST NEIGHBORS.C EQQ SPECIFIES THE TWO SUB-LATTICES CC ...........................................................................................................................................

SUBROUTINE HEKfEKO,EK1,EK2,EK3,EK4,EK5,EQQ)IMPLICIT REAL*8(A-H,0-Z)PARAMETER(ND=4, N=ND**2, N2=N*2)DIMENSION EK0(N2,N2),EK1(N,N),EK2(N,N)DIMENSION EK3(N,N),EK4(N,N),EK5(N,N),EQQ(N,N)DIMENSION IJX(N.N)COMMON /CIJX/IJX

nn

on

nn

nn

n

Page 198: Quantum Monte Carlo Simulations of Hubbard and Anderson

no

on

COMMON /CUI/UO.VO.EFCC ( I 1 ,J 1 ) : COORDINATE OF THE FIRST LATTICE SITE C N1 : LABEL NUMBER OF THE FIRST LATTICE SITE C ( 1 2 , J2 ) : COORDINATE OF THE SECOND LATTICE SITE C N2 : LABEL NUMBER OF THE SECOND LATTICE SITE

DO 1 I I =1,ND DO I J l = 1 ,ND DO 1 12 =1,ND DO 1 J2 =1,ND

NI=(I1-1)*ND+J1 NJ=(I2-1)*ND+J2 EK1(NI,NJ)=0.ODO EK2(NI,NJ)=0. ODO EK3(NI,NJ)=0. ODO EK4(NI,NJ)=0. ODO EK5(NI,NJ)=0.ODO EQQCNI,NJ)=1.0D0

FIND THE DISTANCE BETWEEN THE TWO SITES USE THE PERIODIC BOUNDARY CONDITIONS

I=IABS(I1-I2)IF(I.E Q .(N D -1)) 1=1 J=IABS(J1-J2)IF(J.EQ .(N D-1)) J=1 L=I*I+J*J LL=MOD(( I+J) , 2)

CIF(L .EQ .l) EK1(NI,NJ)=1. ODO IF(L.EQ.2 ) EK2(NI,NJ)=1.ODO IF(L.EQ.4) EK3(NI,NJ)=1. ODO IF(L.EQ.S) EK4(NI,NJ)=1.0D0 IF(L.EQ.S) EK5(NI,NJ)=1. ODO IF(LL.EQ.l) EQQCNI,NJ)=-l.ODO 11= 12 - 11+1I F ( I I .L T . l ) 11= II+ND JJ=J2-J1+1I F (J J .L T .l ) JJ= JJ+ND NT=(II-1)*ND + JJ IJX(NI,NT)=N2

1 CONTINUEC

DO 33 1=1 ,N DO 33 J=1,N

33 EKO(I,J)=O.ODO DO 34 I=N+1,N2DO 34 J=N+1,N2

EK0(I,J)=EK1(I-N,J-N)IF (I .E Q .J ) EK0(I,J)=-UM

34 CONTINUE

Page 199: Quantum Monte Carlo Simulations of Hubbard and Anderson

192

DO 35 1=1 ,N DO 35 J=N+1,N2

35 EKO(I,J)=VO*EK1(I,J-N)DO 36 I=N+1,N2DO 36 J=1,N

36 EK0(I, J)=VO*EKl(I-N,J)RETURNEND

CCc c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c cC EXAM IS USED TO CHECK THE PRECISION OF GREEN'S FUNCTIONS C GUI, GDI: GREEN'S FUNCTIONS AT TIME L AFTER UPDATING STEPS.CC NEW GREEN'S FUNCTION GU, GD ARE CALCULATED FOR THE SCRACHC PRECISION IS CHECKED.CC ............... - .....................- ..........................- ..................................... ......... ............................

SUBROUTINE EXAM(GU1,GD1,L)IMPLICIT REAL*8(A-H,0-Z)PARAMETER(LA=40,ND=4,N=2*ND**2, IPMAX=1, NP=N*IPMAX) DIMENSION GUl(NP.NP),GD1(NP,NP)DIMENSION GU(NP.NP), GD(NP.NP)DIMENSION EU(NP,NP), ED(NP.NP)

CC INPUT GREEN'S FUNCTIONS AT TIME LC

WRITE(6,*) ' L=',L WRITE(6,*) 'GU AFTER UPDATE'WRITE(6,* ) ( (G U 1(II, J J ) , J J= 1 ,N P ) ,1 1 = 1 ,NP)WRITE(6,*) 'GD AFTER UPDATE1 WRITEC6,*) ( (G D 1 (II ,J J ) ,J J = 1 ,N P ) ,I I= 1 ,N P )

CC CALCULATED GREEN’S FUNCTIONS AT TIME LC

CALL GNPUD(GU,GD,L)WRITEC6,*) 'GU FROM GNPUD1WRITE(6,*) ( ( G U ( I I ,J J ) ,JJ= 1 ,N P ) ,1 1 = 1 ,NP)WRITE(6,*) 'GD FROM GNPUD'WRITEC6,* ) ( (GDCII, J J ) ,J J= 1 ,N P ) ,1 1 = 1 ,NP)

CC CHECK ERRORS C

DO 787 11=1,NP DO 787 JJ=1,NP

E U (II , JJ )= G U 1 (II ,J J )-G U (II ,J J )787 E D (II ,JJ )= G D 1(II ,J J ) -G D (I I ,J J )

WRITE(6,*) 'DIFF GU 'WRITEC6,*) ( ( E U ( I I ,J J ) , JJ=1 ,N P ), II=1,NP)

nn

an

nn

oo

Page 200: Quantum Monte Carlo Simulations of Hubbard and Anderson

193

WRITEC6 ,* ) 'DIFF GD 'WRITE(6,*) ( (E D (I I , J J ) , JJ= 1 ,N P ), II=1,NP)

CC CALCULATE DETERMINANTS:C

CALL DETMCGU,DETGU)CALL DETMCGD,DETGD)WRITE( 6 , * ) 'DETGU=', DETGU,1 DETGD=‘ , DETGDRETURNEND

CCCc c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c cc cc *DIV* CALCULATES THE AVERAGE AND STANDARD DIVIATION CC A : INPUT ARRAY CC D : ACTUAL INPUT NUMBERS; DIMENSION OF A CC B : RETURNS THE AVERAGE OF A CC C : STANDARD DIVIATION OF A. CC SIGN: INPUT AVERAGE SIGN OF THE DERMINANT(M). CC CC .................... - ..........................- ......................... - .............. C

SUBROUTINE DIV(A,B,C,M,SIGN)IMPLICIT REAL*8 (A-H,0-Z)DIMENSION A (10000)

CB=0. ODO DO 10 1= 1 ,M

10 B=B+A(I)B=B/FLOAT(M)B=B/SIGN

CC=0.ODO DO 20 1 = 1 ,M

20 C=C+(A(I)-B)**2C=C/FLOAT(M-l)C=DSQRT(C/FLOAT(M))C=C/SIGN

CRETURNEND

CCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc cc *DETM* CALCULATES THE DETERMINANT OF AN ORDINARY MATRIX B. C C CC USES THE CROUT REDUCTION METHOD CC NP IS ACTUAL DIMENSION OF MATRIX C

Page 201: Quantum Monte Carlo Simulations of Hubbard and Anderson

194

C C(NP,NP) ARE WORK SPACE. CC CC ...................................................................................................... - ................................... C

SUBROUTINE DETM(B.DET)IMPLICIT REAL*8(A-H,0-Z)PARAMETER(ND=4, N=ND**2, IPMAX=1, N2=N*2, NP=N2*IPMAX ) DIMENSION B(NP,NP),C(NP,NP)

CDO 10 1= 1 ,NP DO 10 J=1,NP

10 C ( I , J ) = 0 . ODO C

DO 50 1=1,NPDO 50 J=1,NP

Q=B(I,J)DO 20 K=1,NP

20 Q=Q-C(I,K)*C(K,J)C

I F (I .L T .J ) THEN C (I ,J )= Q /C (I ,I )

ELSEG(I,J)=Q

ENDIFC50 CONTINUEC

DET=l.ODO DO 60 1=1 ,NP

60 DET=DET*C(I,I)RETURNEND

Cc c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c cc cC INVERSE A MATRIX A - -> TO AINV CC TO MAKE THE INVERSION SUBROUTINE MORE PORTABLE. CC CC ............................................................................................................................................... C

SUBROUTINE MATRINV(A.AINV)IMPLICIT REAL*8(A-H,0-Z)PARAMETER(ND=4, N=ND**2, N2=N*2, IPMAX=1, NP=N2*IPMAX) DIMENSION A(NP,NP), AINV(NP.NP)DIMENSION WV(NP+1)CALL PFINV(NP, A, WV, AINV, IERR)RETURNEND

CCC

Page 202: Quantum Monte Carlo Simulations of Hubbard and Anderson

oo

oo

on

no

195

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGCGCCCCCCCGCCCCCCCCCCCCC

SUBROUTINE RESULTS(MES,SIGN,GU,GD)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=5000, ND=4, N=ND**2, N2=N*2, NP=N2*IPMAX)

CDIMENSION EE0(N,N)DIMENSION GU(NP,NP), GD(NP,NP)DIMENSION EK0(N2,N2),EK1(N,N),EK2(N,N),EK3(N,N)DIMENSION EK4(N,N), EK5(N,N),EQQ(N,N)

CDIMENSION SIG(LB),TLN(LB),TLNU(LB),TLND(LB),UDN(LB)DIMENSION SPIN(LB), ENRY(LB)

CDIMENSION SAO(LB),SA1(LB),SA2(LB),SA3(LB),SA4(LB),SA5(LB) DIMENSION SFFO(LB),SFF1(LB),SFF2(LB),SFF3(LB),SFF4(LB),SFF5(LB) DIMENSION SFDO( LB) , SFD1(LB) , SFD2( LB) , SFD3( LB) , SFD4(LB) , SFD5( LB)

CDIMENSION CAO(LB),CAl(LB),CA2(LB),CA3(LB),CA4(LB),CA5(LB) DIMENSION CFFO(LB),CFF1(LB),CFF2(LB),CFF3(LB),CFF4(LB),CFF5(LB) DIMENSION CFDO( LB) , CFD1( LB) , CFD2( LB) , CFD3(LB) , CFD4( LB) , CFD5( LB)

CDIMENSION SQFO(LB), SQFQ(LB)DIMENSION SQAO(LB), SQAQ(LB)DIMENSION SXFO(LB), SXFQ(LB)DIMENSION SXXO(LB), SXXQ(LB)DIMENSION SXAO(LB), SXAQ(LB)

CDIMENSION CQFO(LB), CQFQ(LB)DIMENSION CQAO(LB), CQAQ(LB)DIMENSION CXFO(LB), CXFQ(LB)DIMENSION CXXO(LB), CXXQ(LB)DIMENSION CXAO(LB), CXAQ(LB)

CDIMENSION GUT0(LTT,N2,N2), GDT0(LTT,N2,N2)DIMENSION GUTL(LTT,N2,N2), GDTL(LTT,N2,N2)DIMENSION GUL(LTT,N2,N2), GDL(LTT,N2,N2)

CCOMMON /CDELTAT/DELTAT COMMON /CLTIME/LTIME COMMON /CUI/UO,VO,EF COMMON /CEI/UMCOMMON /GB/GUTO, GDTO, GUTL, GDTL, GUL,GDL COMMON /CIJX/IJX

^RESULTS* PERFORMS MONTE CARLO MEASUREMENTS. MEASUREMENT NUMBER : MESSIGN OF DETMINANTS FOR THIS MEASUREMENT: SIGN ALL MEASUREMENT COMMONED OUT.

CCCcccc

Page 203: Quantum Monte Carlo Simulations of Hubbard and Anderson

196

COMMON /CEKS/EKO,EK1,EK2,EK3, EK4, EK5, EQQ COMMON / CNS/SIG, TLN, TLNU, TLND, UDN, SPIN, ENRY COMMON /CSA/SAO, SA1 , SA2, SA3, SA4, SA5 COMMON /CSFF/SFFO, SFF1, SFF2, SFF3, SFF4, SFF5 COMMON /CSFD/SFDO, SFD1, SFD2, SFD3, SFD4, SFD5 COMMON /CCA/CAO,CA1,CA2,CA3,CA4,CA5 COMMON /CCFF/CFFO, CFF1, CFF2, CFF3, CFF4, CFF5 COMMON /CCFD/CFDO, CFD1, CFD2, CFD3, CFD4, CFD5 • COMMON / CSQ/SQFO, SQFQ, SQAO, SQAQ COMMON /CSX/SXFO, SXFQ, SXAO, SXAQ, SXXO, SXXQ COMMON /CCQ/CQFO, CQFQ, CQAO, CQAQ COMMON /CCX/CXFO, CXFQ,CXAO,CXAQ,CXX0,CXXQ

CDO 10 1= 1 ,N DO 10 J=1,N

10 EEO(I,J)=O.ODO DO 11 1= 1 ,N

11 E E 0(I ,I )= 1 .0D 0C

SIG(MES) =SIGN SPIN(MES) = 0 .ODO TLN(MES) =0.0D0 TLNU(MES) = 0 .ODO TLND(MES) = 0 .ODO UDN(MES) = 0 .ODO ENRY(MES) =0.0D0 SAO(MES) = 0 .ODO SAl(MES) = 0 .ODO SA2CMES) =O.ODO SA3(MES) = 0 .ODO SA4(MES) = 0 .ODO SA5(MES) = 0 .ODO SFFO(MES) = 0 .ODO SFFl(MES) = 0 .ODO SFF2(MES) =0.0D0 SFF3(MES) = 0 .ODO SFF4CMES) = 0 .ODO SFF5(MES) =O.ODO SFDO(MES) =0.0D0 SFDl(MES) = 0 .ODO SFD2(MES) = 0 .ODO SFD3(MES) =O.ODO SFD4CMES) = 0 ,ODO SFD5CMES) = 0 .ODO CAO(MES) = 0 .ODO CAl(MES) = 0 .ODO CA2(MES) =0.0D0 CA3(MES) = 0 .ODO CA4(MES) = 0 .ODO CAS(MES) = 0 .ODO

Page 204: Quantum Monte Carlo Simulations of Hubbard and Anderson

197

CFFO(MES) = 0 .ODOCFFl(MES) =0. ODOCFF2(MES) = 0 .ODOCFF3(MES) = 0 .ODOCFF4(MES) = 0 .ODOCFF5(MES) = 0 .ODOCFDO(MES) =O.ODOCFDl(MES) = 0 .ODOCFD2( MES) =0. ODOCFD3(MES) = 0 .ODOCFD4(MES) =0.0D0CFD5(MES) =O.ODOCFD5(MES) = 0 .ODOSQFO(MES) = 0 .ODOSQFQ(MES) =0.0D0SQAO(MES) = 0 .ODOSQAQ(MES) = 0 .ODOSXFO(MES) = 0 .ODOSXFQ(MES) =0.0D0SXAO(MES) = 0 .ODOSXAQ(MES) = 0 .ODOSXXO(MES) = 0 .ODOSXXQ(MES) =O.ODOCQFO(MES) = 0 .ODOCQFQ(MES) =0.0D0CQAO(MES) = 0 .ODOCQAQ(MES) = 0 .ODOCXFO(MES) = 0 .ODOCXFQ(MES) = 0 .ODOCXAO(MES) = 0 .ODOCXAQ(MES) =O.ODOCXXO(MES) = 0 .ODOCXXQ(MES) = 0 .ODO

cC SUM OVER THE SITES C

DO 651 1=1 ,N2SPIN(MES) = SPIN(MES)+ G D (I ,I ) -G U (I ,I )

651 TLN(MES) = TLN(MES) + 2 .0 D 0 -G U (I ,I ) -G D (I ,I )DO 652 1=1 ,NTLNU(MES) = TLNU(MES)+ l.ODO-GU(I.I)TLND(MES) = TLND(MES)+ 1 . 0D0-GD(I, I )

652 UDN(MES) = UDN(MES) + ( l .O D 0 -G U (I ,I ) )* ( l .O D O -G D (I ,I ))ENRY(MES) = UO*UDN(MES) +EF*( TLNU(MES)+TLND(MES))

CG CORRELATION FUCTIONS AND STRUCTURE FACTORS C

DO 891 1=1 ,N DO 891 J=1,N

DIJ=0. ODOIF (I .E Q .J ) DIJ=1.0D0

Page 205: Quantum Monte Carlo Simulations of Hubbard and Anderson

198

IN=I+NJN=J+N

TIJS = ( l .O D 0-G U (I ,I ))* ( l .O D O -G U (J ,J ))+ (D IJ-G U (J ,I ))*G U (I ,J )+ (1 .0 D 0 -G D (I ,I ) )* (1 .0 D 0 -G D (J ,J ))+ (D IJ -G D (J ,I ) )* G D (I ,J ) - ( 1 . ODO-GU(I, I ) ) * ( 1 . ODO-GDCJ,J))“( 1 . ODO-GUCJ,J)) * ( 1 .ODO-GD(I, I ) )

TINJS = (1 .0D 0-G U (IN ,IN ))*(1 .0D 0-G U (J,J))-G U (J,IN )*G U (IN ,J)+ ( 1 .0D0-G D(IN ,IN))*(1 .0D0-G D(J,J))-G D(J,IN)*G D (IN ,J) -Cl.ODO-GU(IN, IN )) * ( 1 . ODO-GDCJ, J ) )- ( 1 . ODO-GUCJ,J)) * ( 1 . ODO-GDCIN, IN ))

TIJNS = C1.0D0-GUCI,I))*C1-0D0-GUCJN,JN))-GUCJN,I)*GUCI,JN)+ C1 . ODO-GDCI, I ) )*C1 •ODO-GDCJN, JN )) -GDCJN»I)*G D (I, JN) -Cl.ODO-GUCI, I ) )* C 1 •ODO-GDCJN, JN )) - C i . o d o - g u c j n , j n ) ) * C 1 . o d o - g d c i , i ) )

TINJNS= C1 •ODO-GUCIN, IN))*C1 . ODO-GUCJN, JN ))+CDIJ-GUCJN.IN) )*GUCIN,JN) + CDIJ-GDCJN.IN) )*GDCIN,JN) + C1 •ODO-GDCIN, IN))*C1 •ODO-GDCJN, JN )) -C1.0D0-GUCIN,IN))*C1.0D0-GDCJN,JN))-C1 . ODO-GUCJN,JN))*C1.ODO-GDCIN,IN))

TIJC = C1.0D0-GUCI,I))*C1.0D0-GUCJ,J))+CDIJ-GUCJ,I))*GUCI,J)+ C1 •ODO-GDCI, I ))* C 1■ODO-GDCJ,J))+CDIJ-GDCJ, I ))* G D (I , J) +C1 -ODO-GUCI, I ) ) * c 1 •ODO-GDCJ, J ) )+C1.ODO-GUCJ,J))*C1.ODO-GDCI,I))

TINJC = Cl-ODO-GUCIN,IN))*C1.0DO-GUCJ,J))-GUCJ,IN)*GUCIN,J)+ CI•ODO-GDCIN,IN))*c1 •ODO-GDCJ.J))-GDCJ, IN)*GDCIN, J)+C1 . ODO-GUCIN, I N ) )* c 1 •ODO-GDCJ, J ) )+C1 . ODO-GUCJ,J ) ) * ( 1 • ODO-GDCIN, IN ))

TUNC = C1 • ODO-GUC I , I ) )*C 1 .ODO-GUC JN,JN))-GUCJN, I)*GUC I , JN)+ C1 . ODO-GDCI,I))*C1-ODO-GDCJN,JN))-GDCJN,I)*GDCI,JN)+C1 .ODO-GUCI, I ) ) * ( 1 . ODO-GDCJN, JN ))+C1 . ODO-GUCJN, JN))*C1 . ODO-GDC1 ,1 ) )

TINJNC= C1 • ODO-GUCIN, IN))*C1 . ODO-GUCJN, JN))+CDIJ-GUCJN.IN) )*GU(IN,JN) + CDIJ-GDfJN, IN) )*GDCIN,JN) + C1 . ODO-GDCIN, IN) )* C I•ODO-GDCJN, JN) )+C1 . ODO-GUCIN, I N ) )* c 1 . ODO-GDCJN, JN))+C1 . ODO-GUCJN, J N ))* c 1 . ODO-GDCIN, IN ))

SAOCMES) = CTIJS+TINJS+TIJNS+TINJNS) •k EEOC I , J ) + SAOCMES)SA1CMES) = CTIJS+TINJS+TIJNS+TINJNS) k EK1CI.J) + SA1CMES)SA2CMES) * C TIJS+TINJS+TIJNS+TINJNS) * EK2CI, J) + SA2CMES)SA3CMES) = ( TIJS+TINJS+TIJNS+TINJNS) * EK3CI.J) + SA3CMES)SA4CMES) = CTIJS+TINJS+TIJNS+TINJNS) k EK4CI.J) + SA4CMES)SA5CMES) = C TIJS+TINJS+TIJNS+TINJNS) k EK5CI.J) + SA5CMES)SFFOCMES)= TIJS k EEOCI.J) + SFFOCMES)SFF1CMES)= TIJS k EK1(I, J ) + SFF1CMES)SFF2CMES)= TIJS k EK2CI,J) + SFF2CMES)SFF3CMES)= TIJS k EK3CI.J) + SFF3CMES)SFF4CMES)- TIJS k EK4CI.J) + SFF4CMES)SFF5CMES)* TIJS k EK5CI.J) + SFF5CMES)SFDOCMES)= TUNS k EEOCI.J) + SFDO(MES)SFD1CMES)= TUNS k EK1CI,J) + SFDl(MES)SFD2CMES)= TUNS k EK2CI.J) + SFD2CMES)

Page 206: Quantum Monte Carlo Simulations of Hubbard and Anderson

o n

n »

non

no

n

199

SFD3(MES)= TUNS * EK3( I J + SFD3CMES)SFD4(MES)= TUNS * EK4(I J + SFD4CMES)SFD5(MES)= TUNS * EK5(I J + SFD5CMES)CAO(MES) = ( TIJC+TINJC+TIJNC+TINJNC) * EEO(I J + CAOCMES)CAl(MES) = ( TIJC+TINJC+TIJNC+TINJNC) * EK1(I J + CAl(HES)CA2CMES) = c TIJC+TINJC+TIJNC+TINJNC) * EK2( I J + CA2CMES)CA3(MES) = ( TIJC+TINJC+TIJNC+TINJNC) * EK3(I J + CA3CMES)CA4(MES) = ( TIJC+TINJC+TIJNC+TINJNC) * EK4(I J + CA4CMES)CA5(MES) = c TIJC+TINJC+TIJNC+TINJNC) * EK5( I J + CAS(MES)CFFO(MES)= TIJC * EEO( I J + CFFO(MES)CFF1(MES)= TIJC * EK1(I J + CFFl(MES)CFF2(MES)= TIJC * EK2(I J + CFF2(MES)CFF3(MES)= TIJC * EK3(I J + CFF3CMES)CFF4(MES)= TIJC * EK4( I J + CFF4CMES)CFF5(MES)= TIJC * EK5(I J + CFFS(MES)CFDO(MES)= TUNC * EEO( I J + CFDO(MES)CFD1(MES)= TIJNC * EK1CI J + CFDl(MES)CFD2(MES)= TUNC * EK2CI J + CFD2CMES)CFD3(MES)= TUNC •te EK3CI J + CFD3CMES)CFD4(MES)= TUNC ★ EK4CI J + CFD4CMES)CFD5(MES)= TUNC * EK5CI J + CFD5CMES)

SQFO(MES)SQFQ(MES)SQAO(MES)SQAQ(MES)CQFO(MES)CQFQ(MES)CQAO(MES)CQAQ(HES)

SXXO(MES) SXXQ(MES) CXXO(MES) CXXQ(MES)

891 CONTINUE

SQFO(MES)+ TIJS SQFQ(MES)+ TIJS * SQAO(MES)+ TIJS + SQAQ(MES)+(TIJS + CQFO(HES)+ TIJC CQFQ(MES)+ TIJC * CQAO(MES)+ TIJC + CQAQ(MES)+(TIJC +

EQQ(I.J)TINJS + TIJNS + TINJS + TIJNS +

EQQ(I.J)TINJC + TUNC + TINJC + TUNC +

TINJNSTINJNS)*EQQ(I, J)

TINJNCTINJNC)*EQQ(I,J)

SXXO(MES)+ TIJS+ TUNS SXXQ(MES)+(TIJS+ TUNS) * EQQ(I,J) CXXO(MES)+ TIJC+ TUNC CXXQ(MES)+(TIJC+ TUNC) * EQQ(I.J)

CALCUALTE SUCEPTIBILITIES

CALL SUSLL(EQQ.MES)

TOTAL ENERGY

DO 856 1=1,N2 DO 856 J=1,N2

56 ENRY(MES) = ENRY(MES) - (GU(I,J)+GD(I,J) ) * EKO(I.J)

FIX-UP THE SIGN PROBLEM

RETURNEND

Page 207: Quantum Monte Carlo Simulations of Hubbard and Anderson

oo

oo

on

no

o

2 00

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccSUSLL CALCULATES THE SUSCEPTIBILTIES

SUBROUTINE SUSLL(EQQ,MES)IMPLICIT REAL*8(A-H,0-Z)PARAMETER (LA=40, IPMAX=1, LTT=LA*IPMAX)PARAMETER (LB=SOOO, ND=4, N=ND**2, N2=N*2, NP=N2*IPMAX) DIMENSION GUTO(LTT,N2,N2),GDTO(LTT,N2,N2), EQQ(N,N)DIMENSION GUTL(LTT, N2, N2) , GDTL( LTT, N2»N2)DIMENSION GUL(LTT,N2,N2) ,GDL(LTT,N2,N2)

CDIMENSION SXFO(LB), SXFQ(LB)DIMENSION SXXO(LB), SXXQ(LB)DIMENSION SXAO(LB), SXAQ(LB)DIMENSION CXFO(LB), CXFQ(LB)DIMENSION CXXO(LB), CXXQ(LB)DIMENSION CXAO(LB), CXAQ(LB)

CCOMMON /CLTIME/LTIME COMMON /CDELTAT/DELTAT COMMON /GB/GUTO, GOTO, GUTL, GDTL, GUL,GDL COMMON /CSX/SXFO, SXFQ, SXAO, SXAQ, SXXO, SXXQ COMMON /CCX/CXFO,CXFQ, CXAO, CXAQ, CXXO, CXXQ

CSXFO(MES) = 0 .ODO SXFQ(MES) = 0 .ODO SXAO(MES) = 0 ,ODO SXAQ(MES) =O.ODO CXFO(MES) = 0 .ODO CXFQ(MES) = 0 .ODO CXAO(MES) = 0 .ODO CXAQ(MES) = 0 .ODO

CC TOTAL TIME SLICES = LTIME * IPMAX C

DO 10 L=1,LTIME*IPMAXDO 10 I~1,NDO 10 J=1,NIN=I+NJN=J+NTIJ1 = ( 1 . ODO-GUL(L, I , I ) ) * ( l .O D 0-G U L (l ,J ,J ))

1 + GUTL(L,J,I) * GUTO(L,I,J)1 + (1 .0 D 0-G D L (L ,I ,I )) * ( 1 .0D 0-G D L(1,J ,J))1 + GDTL(L,J,I) * GDTO(L,I, J )TIJ2 = ( 1 . ODO-GUL(L, I , I ) ) * ( 1.0D0“G D L (1,J ,J))

nn

nn

Page 208: Quantum Monte Carlo Simulations of Hubbard and Anderson

1 + ( 1 . ODO-GDL(Tj , I , I ) ) * ( 1 . ODO-GUL( 1 , J , J ) )TINJ1 = (1.0D0-GUL(L,IN,IN)) * ( 1 .0D 0-G U L(1,J ,J))

1 + GUTL(L,J,IN) * GUTQ(L,IN,J)1 + (1.0D0-GDL(L,IN,IN)) * ( 1 .0D 0-G D L (I ,J ,J ))1 + GDTL(L.J.IN) * GDTO(L,IN,J)TINJ2 = ( 1 . ODO-GUL(L, IN, IN )) * ( 1 . ODO-GDL(1 ,J , J ) )

1 + (l.OD0-GDL(L,IN,IN)) * ( 1 . ODO-GUL(I, J , J ) )TIJN1 = ( 1 . ODO-GUL(L, 1 , 1 ) ) * ( l.ODO-GUL(l.JN.JN))

1 + GUTL(L,JN,I) * GUTO(L,I,JN)I + ( 1 . ODO-GDL(L,I, 1 ) ) * ( 1 .ODO-GDL(I,JN,JN))1 + GDTL(L,JN,I) * GDTO(L,I, JN)

TIJN2 = ( 1 . ODO-GUL(L,I, 1 ) ) * ( L.ODO-GDL(l,JN,JN))1 + (1 .0D 0-G D L (L ,I ,I ) ) * c 1 . ODO-GUL(1 ,JN ,JN ))

TINJN1 = ( 1 . ODO-GUL(L,IN,IN)) * ( 1.0D0-GUL(1,JN,JN)) 1 + GUTL(L,JN,IN) * GUTO(L,IN,JN)1 + ( 1 . ODO-GDL(L,IN,IN)) * ( l.OD0-GDL(l,JN,JN))1 + GDTL(L.JN.IN) * GDTO(L,IN,JN)TINJN2 = (1.0DO-GUL(L,IN,IN)) * ( l,ODO-GDL(l,JN,JN))

1 + ( 1 . ODO-GDL(L,IN,IN)) * ( l.OD0-GUL(l,JN,JN))C

SXFO(MES) = SXFO(MES) + TIJ1-TIJ2SXFQ(MES) = SXFQ(MES) + (T IJ1-T IJ2 )*EQQ(I,J)SXAO(MES) = SXAO(MES) + TIJ1-TIJ2 + TINJ1-TINJ2

1 + TIJN1-TIJN2 + TINJN1-TINJN2SXAQ(MES) = SXAQ(MES) + (TIJ1-T IJ2 + TINJ1-TINJ2

1 + TIJN1-TIJN2 + TINJN1-TINJN2) * EQQ(I,J)CXFO(MES) = CXFO(MES) + TIJI+TIJ2CXFQ(MES) = CXFQ(MES) + (TIJ1+TIJ2 )*EQQ(I1J )CXAO(MES) = CXAO(MES) + TIJ1+TIJ2 + TINJ1+TINJ2

1 + TIJN1+TIJN2 + TINJN1+TINJN2CXAQ(MES) = SXAQ(MES) + (TIJ1+TIJ2 + TINJ1+TINJ2

1 + TIJN1+TIJN2 + TINJN1+TINJN2) * EQQ(I.J)CONTINUE

SXFO(MES) -DELTAT* SXFO(MES)SXFQ(MES) =DELTAT* SXFQ(MES)SXAO(MES) =DELTAT* SXAO(MES)SXAQ(MES) =DELTAT* SXAQ(MES)CXFO(MES) =DELTAT* CXFO(MES)CXFQ(MES) =DELTAT* CXFQ(MES)CXAO(MES) =DELTAT* CXAO(MES)CXAQ(MES) =DELTAT* CXAQ(MES)RETURNEND

CC ========================================================C//LKED.APLMOD DD DSN-PHHANG.FPS.C0M(ADN4P1),DISP=SHR,SPACE=

Page 209: Quantum Monte Carlo Simulations of Hubbard and Anderson

VITA.

Yi Zhang was bom on December 23, 1963 in Hangzhou, China.

He received a degree of Bachelor of Science in Physics from the

University of Science and Technology of China in July 1984. In

August 1984, he came to the United State for post-graduate studies

through the CUSFEA program. He joined the group of Professor

Callaway in 1985, and received a Master of Science in Physics from

Louisiana State University, Baton Rouge, Louisiana in August 1988.

202

Page 210: Quantum Monte Carlo Simulations of Hubbard and Anderson

Candidate:

Major Field:

Title of Dissertation:

DOCTORAL EXAMINATION AND DISSERTATION REPORT

Yi Zhang

Physics

Quantum Monte Carlo S im ulations o f Hubbard and Anderson Models

Approved:

r Prolessor and Chairman

Dean of the Graduate^Khool

EXAMINING COMMITTEE;

jKL~ J c.

Date of Examination:

17 January 1990