o-xylene 1,3-butadiene - · pdf filekey words: alkenylation, otp, o-xylene, 1,3-butadiene, na...

7
669 HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 669-675 o-xylene 1,3-Butadiene * ** *S-Oil( ) ** (2002 7 30 , 2002 9 17 ) Alkenylation of o-xylene with 1,3-Butadiene Over Base Catalysts Jong Seok Lee, Soo Chool Lee, Min Ho Kil, Il Seok Choi*, Jae Sung Lee** and Jae Chang Kim Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Korea *S-Oil Corporation, R & D Center, Ulsan 689-890, Korea **Department of Chemical Engineering, Pohang University of Science and Technology(POSTECH), Pohang 790-784, Korea (Received 30 July 2002; accepted 17 September 2002) NaK alloy, Na metal Na metal o-xylene 1,3-butadiene alkenylation OTP(ortho-tolyl pentene) . NaK alloy metal ultrasound emulsion . Na metal (induction) . Na metal 80 % . slurry 85 % . 1,3-butadiene OTP 1,3-butadiene oligomer . Abstract - The alkenylation of o-xylene with 1,3-butadiene to make OTP(ortho-tolyl Pentene) was carried out over liquid phase NaK alloy, Na metal and the metallic sodium dispersed on the specific support such as NaX and Al 2 O 3 . Liquid phase NaK alloy showed the improved conversion and selectivity when they were pretreated by ultrasound to increase the dispersion. For the case of metallic sodium, the induction period for the formation of homogeneous metal sodium solution with high dis- persion was needed before the reaction. In the case of metallic sodium dispersed on support, more than 80 % conversion could be obtained without induction period regardless of supports used. But 85% of the metallic sodium was resolved into the reac- tion mixture after reaction for 7 hours. The amount of byproducts, oligomers, produced from OTP and 1,3-butadiene increased with the amount of 1,3-butadiene introduced and the selectivity to OTP was in inversely proportional to the conversion. Key words: Alkenylation, OTP, o-xylene, 1,3-Butadiene, Na Metal 1. Polyethylene napthalate(PEN) Polyethylene terephthalate(PET) PET . PEN 1996 2.3 million lb 2000 12 million lb, 2005 34 million lb . PEN NDC(naphthalenedicarboxylate) PEN 80% NDC PET PTA(purified terephthalic acid) 10 PET . PET PEN PET [1]. NDC 2,6-DIPN(diisopropyl naphthalene) , 2,6- MIBN (methyl-6-isobutyl naphthalene) , Henkel , 2,6- DMN . 2,6-DIPN Henkel . 2,6-DMN . To whom correspondence should be addressed. E-mail: [email protected]

Upload: dangdiep

Post on 06-Feb-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

HWAHAK KONGHAK Vol. 40, No. 6, December, 2002, pp. 669-675

��� ��� �� o-xylene 1,3-Butadiene� � �� ��

�������������*��� **����†

����� ���� �����*S-Oil()

**������ �����(2002� 7 30� ��, 2002� 9 17� ��)

Alkenylation of o-xylene with 1,3-Butadiene Over Base Catalysts

Jong Seok Lee, Soo Chool Lee, Min Ho Kil, Il Seok Choi*, Jae Sung Lee** and Jae Chang Kim†

Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Korea*S-Oil Corporation, R & D Center, Ulsan 689-890, Korea

**Department of Chemical Engineering, Pohang University of Science and Technology(POSTECH), Pohang 790-784, Korea(Received 30 July 2002; accepted 17 September 2002)

� �

�� NaK alloy, Na metal ��� ���� � Na metal� � � ���� o-xylene� 1,3-butadiene� alkenylation

� �� OTP(ortho-tolyl pentene)� �� ��� �����. ��� NaK alloy � � ! metal� "#$% &'()

* +,- ultrasound� .���� � �/ ! 0/ 12� 345 emulsion� 6��7- "#$% &'(89: ;

<=� >?$% @�(8 9 AB�. Na metal� ! "#$% &'()* +, ;.�' CD��EF GH2� "#

� IJKL MN ��(induction) (O� CD���. ���� � Na metal� ! ���� PQR� 80 % ��

� ;<=� �� (O R� S� 9 AB�. ��T slurry �� ��Q�-L � UV� 85 % ��� � �- W

X5 YZ ��� [��L \E� ]��. ��^� 1,3-butadiene� _�^� OTPO� ��� �� `��� IJKX

1,3-butadiene� a� &'�7 `��E� _� oligomer a� &'��EF ;<=� &'�7 >?$' �bc PQ

� de���.

Abstract − The alkenylation of o-xylene with 1,3-butadiene to make OTP(ortho-tolyl Pentene) was carried out over liquid

phase NaK alloy, Na metal and the metallic sodium dispersed on the specific support such as NaX and Al2O3. Liquid phase

NaK alloy showed the improved conversion and selectivity when they were pretreated by ultrasound to increase the dispersion.

For the case of metallic sodium, the induction period for the formation of homogeneous metal sodium solution with high dis-

persion was needed before the reaction. In the case of metallic sodium dispersed on support, more than 80 % conversion could

be obtained without induction period regardless of supports used. But 85% of the metallic sodium was resolved into the reac-

tion mixture after reaction for 7 hours. The amount of byproducts, oligomers, produced from OTP and 1,3-butadiene increased

with the amount of 1,3-butadiene introduced and the selectivity to OTP was in inversely proportional to the conversion.

Key words: Alkenylation, OTP, o-xylene, 1,3-Butadiene, Na Metal

1. � �

Polyethylene napthalate(PEN) ��� Polyethylene terephthalate(PET)

���� ������� �� � ��� ���� �� PET

��� ��� �� !"#� $%&&'( &) *+, $-. �

���.

PEN/ �0� 19961 23 2.3 million lb45 200014� 23 12

million lb, 200514� 23 34 million lb 61 78� �� !"

9�. :;< PEN ��/ =>�? NDC(naphthalenedicarboxylate)/

@7>� %A�$ PEN BCD&/ 80%( E��� NDC/ &F�

PET/ DG? PTA(purified terephthalic acid)4 HI J 10K&> HL

PET4 �I &F MNO� P$ Q�. � ?I PETR PEN ��(

S� HT UVI5 PET�� W XY ��� Z$.�� [\] �

^_�$ Q�[1].

NDC/ BC`� � 2,6-DIPN(diisopropyl naphthalene) a�`, 2,6-

MIBN (methyl-6-isobutyl naphthalene) a�`, Henkel b�`, 2,6-

DMN a�` �� Q�. :;< 2,6-DIPNY DGCc/ dBe� &

�$ Q�f Henkel b�`Y �T� g�. : U 2,6-DMN a�`�

"h� / &i�� &� jY �� k&#$ Q�.†To whom correspondence should be addressed.E-mail: [email protected]

669

670 ���������������� ����

"h�#_ Q� PEN@� U &� ����$ lm) Amocon/

@�Y o-xyleneo 1,3-butadiene� DG p alkenylation45 Z_)

ortho-tolyl pentene(OTP)� cyclization� qI dimethyltetralin(DMT)�

rs$, � DMT( dehydrogenation t�( qI5 1,5-dimethyl naph-

thalate(1,5-DMN)( ZY �, isomerization/ t�( uv 2,6-dimethylnaph-

thalene(2,6-DMN)� BCp�. :w$ x�y t� 2,6-DMN� a�

�z NDCA( Z� @���.

Amocon/ @� U { t�? alkenylationY zero-valent/ l|w }

~ �, �45 ��9 �� lm� Q�. n�9 l|w }~Y Na

�� K� n��u<, NaK alloy( �6 n���$ l|w �}~

/ a��4 Na metal� ���� �6 n���] ��. : U NaK

alloy �6& � }~� t�� n�p M��� jY �T� <��

�� lm� Q�[2].

�;p �6 �4] K2CO3, Al2O3 �4 K metal� ���5 ����

�6( n��u<[3] l|w }~o K metal� Al2O3, Al(OH)3, Ca(OH)2,

ZrO2 �/ ���4 ���z alkenylation��� �����f � �

� �$ #_ Q�[4-7].

� �d45� �" NaK alloy, Na metal :w$ ���4 ��9 Na

metal� �6 ���� o-xyleneo 1,3-butadiene/ alkenylation� q

p OTP/ V���� H� 2����. �� l|w }~/ -a �]

& ���4 �'� ��O� ����  I5 �" NaK alloy(

ultrasound ¡w�� -a�]4 ¢£ ���� ����$, ����

¤_�� �� lm) Na metal �6/ ¥¦� D? § �� �6

/ �� &i�� ¨�#©�.

2. � �

2-1. �� �� � �� �

� [\45� o-xylene(98.5%)Y Junsei Chemical Co./ Bª� n

���$ 1,3-butadiene(99.5%)Y Matheson Co./ Bª� n����.

Na metal(99%)Y Aldrich Chemical Co./ Bª� n����f glove

box «45 �]¬� ��I ­tI5 n����. �" NaK(Na 77.2%,

K 22.8%)� Callerly Chemical Co./ Bª� n����.

Na metal �� �6� ®¯ °`(dry method), wet method, wet-

evaporation� rs � Q�[8]. ®¯ °`Y ���( 350oC45 3

�3 b¡wp � glove box«45 Na metalo ���( ±w ²³´

µ4 ¶$ ·+ ¸¹�º�5 150oC45 x:»¼ ½ 1�3 ��

��5 ���4 ���º� °`��. � [\45� Al2O3R zeolite

X( �� ���� ��4 ��9 Na metal �6( BC���f �

�6( �" slurry ��4 �����.

Alkenylation b� �6/ ��9 Na ¾>o alkenylation U ��

�« ¿� U/ Na/ ¾>� lÀ��  I Atomic Absorption Spec-

troscopy(AAS, Simadzun, AA-680)( �����. Alkenylation U Á

�#� %a�(byproduct)o �6/ H¦�3/ "��� lÀ��  

I Elemental Analyzer(EA, Elementern, Vario EL)R Thermal Gravimetric

Analysis-Differential Scanning Calorimetry(TGA-DSC, Rheometricn,

STA 1,500)( ���� -Â���. ¿Ã �� Á��/ -ÂY Gas

Chromatography(]Ä, DS6200)( �����f, columnY HP-1 capillary

column(Hewlett Packard)� n����.

2-2. �� � ��

O-xyleneo 1,3-butadiene/ AlkenylationY Fig. 145 <�� semi-

batch ���( �����. �" NaK/ M� }~/ -a]( 8&�

º�  I ultrasound ¡w( ���Å sonication �' ultrasonic cleanerR

ultrasonic horn system� �����. Ultrasonic cleaner( ��p sonication

�'� BRANSON 3210(47 kHz)� n����. Glove box «45 3�

²³´µ ���4 o-xyleneo S�>/ NaK( �Æp � ÇÈ5R É

V�º$, cleaning bath «4  '�� � 2-3�3 Ê sonication �

��. �Ë 3� ²³´µ ���4 ·+( �Æ��$ cleaning bath/

Ì] "Í� y�  I Î�ÏS� ���� 10-15oC ±����.

Ultrasonic horn system� ��p sonication �'� BRANSON 450

sonifier( n����. o-xyleneo NaK( 3� ²³´µ4 ¶Y � ÐÌ

bath 3� ²³´µ ���/ Ì]( C­��5 metal horn� ¶$ D

�� �3Ê sonicationp�. Sonifier45� transducer4 /�� 8Ñ

9 ultrasound& metal horn� qI ��� ÒÓ bc9�. 6� jY

intensity/ ultrasound& ÔÁ�� Ëd4 �Õ� Î�� ��Ö p�.

Na metal�< Na metal �� �6( ��p M�, ���4 ���o

¾× BC9 �6( ¶$ ·+( Ø-� Ùm ��� «/ @�( Bu

p � heating mentle� ��I5 �� Ì]Ú� "Í���. ��Ì]4 ]

c�� 1,3-butadiene� @7��5 ��� ����. 1,3-butadiene/

±>Y ��±>C­�(MFC: BROOKS 5850E)( n��� �Æ���.

b�TY o-xylene� �Ü� ��$ ÝÞ]R b�TY �ßo à

� �a���.

Conversion(%)=[1− ]×100

Selectivity(%)= ×100

3. �� �

3-1. �� NaK alloy ��

Fig. 2R Fig. 345 �" NaK alloy �6( ��p Alkenylation/ b

�To ÝÞ]( <�«©�. Ultrasound/ ¡w áo( lÀ��  �

� !H [\� ÊSp �� C®45 sonication ¡w( p �6R

Àâã ¡w ä� ��9 �6/ b�To ÝÞ]/ E�( Fig. 2R

Fig. 34 �� <�«©�.

Glove box «45 o-xylene 98 go NaK 0.1 g� ���4 �Æ�$,

���( ·+ purge��5 ultrasonic cleaning bath45 2.5�3 Ê

sonication �å�. � Ë ¡ß4� æ$ çèp o-xyleneo NaK/

éV�� eE ê£ë/ ìí�� î��5 emulsion� ï�p�.

Sonicated NaK( �6 n��� M�4� 40 -�/ b�To Ý

Þ]& 12%, 82%�<, sonication� �� ðY M�4� 60 -�/ b

�To ÝÞ]& 6%, 20%�] gß� l � Q�. �p ñ M� ¿

ñ ÝÞ]� �34 ¢³ ò+���. �R à� sonication ¡w( p

(mole of unreacted o-xylene)

(mole of reactant o-xylene)

(mole of OTP)

(mole of reactant o-xylene)

Fig. 1. Schematic diagram of apparatus for alkenylation.

���� �40� �6� 2002� 12�

O-xylene� ���� �� 671

-

�� jY ���� �?�� �� l � Q©�.

Fig. 445� ultrasonic intensityE�4 ¢£ ���/ áo( ó?�

�  �� ÊSp ��C®45 ultrasonic intensityr� î� �z

alkenylation� )��� ZY Éo��. Ultrasonic intensity( C­��

 I ultrasonic cleaning bath& Àô “Ultrasonic horn system”(450

sonifier, Branson)� n����. Fig. 4� NaK 0.1 g� �� 5-3 18,

35, 50, 60 watts sonicationp � ��Ì] 125oC45 1�3Ê �

�p Éo��. Ultrasonic intensity& 8&¾4 ¢³ o-xylene/ b�T

] 3.6, 5.4, 9.3, 12.4% 8&�� �� <�õ�. Ultrasonic intensity

& 18 watts�] gY M�4� sonicationÊ NaK emulsion� D¦

�ö �^_�� ð� �� ó?� � Q©�.

Fig. 545� gY ultrasonic intensity45 sonication �3 E�4 ¢

£ ���/ áo( lÀ��  �� ultrasonic intensity 18 watts45

�� 5, 30-3 sonicationp ���o ultrasonic intensity 60 watts45

5-3 sonicationp ���/ Éo( <�«©�. �Ë ��Ì]� 125oC

�$ ���3Y 1�3, �6>Y 0.1 g��. Ultrasonic intensity& 18

watts45 30-3 sonicationp M�R ultrasonic intensity& 60 watts4

5 5-3 sonicationp M�/ b�T� 13.2, 12.4%�$, ÝÞ]& 60,

65%/ Éo( ���. �� ultrasonic intensity& gY M�4� W ÷

ø �3Ê sonication ¡w( ��Ör NaK/ emulsionï�� �^

_�f jY ���� Z� � Q� �� ��. [B ultrasound

/ source ultrasonic cleaning bath( n��� M�4� Fig. 2R Fig.

345¡ù 2.5�3 �] sonication¡w( ��Ör ÊSp ���� Z

� � Q©�.

Fig. 2. Effect of sonication on the activity of NaK alloy.(reaction temp.: 125oC, NaK: 0.1 g)

Fig. 3. Effect of sonication on the selectivity to 5-ortho-tolyl pentene.(reaction temp.: 125oC, NaK: 0.1 g)

Fig. 4. The effect of ultrasound intensity on the activity of NaK alloy.(reaction temp.: 125oC, reaction time: 60 min, NaK: 0.1 g, sonication time: 5 min)

Fig. 5. The effect of sonication time on the activity of NaK alloy.A: ultrasound intensity 65 watts, sonication time=5 min B: ultrasound intensity 18 watts, sonication time=30 minC: ultrasound intensity 18 watts, sonication time=5 min(reaction temp.: 125oC, reaction time: 60 min, NaK: 0.1 g)

HWAHAK KONGHAK Vol. 40, No. 6, December, 2002

672 ���������������� ����

r

Fig. 645� l|w }~/ ú¹4 ¢£ sonication/ áo( lÀ�

�  �� NaK, K, Na metal �/ l|w }~� ultrasonic intensity

60 watts, 10-3 sonication�� ��Ì] 150oC45 ���3 60-�

/ Éo( H����. Fig. 645 �û� o-xylene/ b�T� NaK/

M�4� 12.4% �]�< Na üY K metal/ M�4� 1% �r�

<�õ�. �� ��/ l|w }~/ sonication o�45 NaK/ M�

� emulsion/ ï�� D¦�ö �^_��r Na üY K metal/ M�

� emulsion� ï�#� ðý� Ëd� nG9�. SonicationY �"

/ NaK/ -a]( 8&�z emulsion� ï��º�Å� áo& Q�

< }~� ��� M� .�/ -a]( 8&�º�Å� áo��� þ

��.

3-2. Na metal ��

Na metal� o-xyleneo 1,3-butadiene/ Alkenylation45 �6 n�

p 2� Éo45 �%- gY ���� ��u< ���� ä� ��

lm� ÿ$[9] [B � ­/ [\45 �û� }~/ -a]( j

��  p sonication ¡w] � áo( �� þ��. �;p Éo� Na

metal� �� �� «4 � -a#� _��� �� ���$ Q�f

Na metal/ gY �� ¦�Y }~/ gY �6 ¦�4 �?����

� gY -a] Ëd� Á�#_ Na metal �6 [\� �� )��

��. Fig. 7Y Na metal� ���� b ���� ð$ ��p �o

140oC/ o-xylene ~45 x:»¼ ½ 3�3 Ê ���� Na metal�

� -a�� � ��p Éo��. � Ë butadiene 130 ml/min, o-xylene

106.2 g, �6 0.3 g� n����. �"/ NaK �64 HI5 Na metal

/ gY ��� Ëd4 �6>� 3K 8&�º$ ��Ì]( 140oC

8&�z [\���.

Fig. 745 �û� Na metal� ���� ð$ [\p �6� 2�3%

� ��� �Û���< 3�3 Ê x:»¼ ½ ��p � [\p

�6� 30- �«4 ��� �Û#©�. �Ë Z� � Q� �� b�

To ÝÞ]� � E�& ä©�f t� �� �Û �3� 1�3 30-

�] �³��. ��Y Na metal� ���� ð$ [\��� Ë� 2�

3 Ê ���� ð$ �6& Ø-� -a9 �� ��� �Û9 ��

�?�. �R à� Na metal �6] NaK Alloy�6R à� �6(

� -a���� jY ���� Z� � Qß� l � Q©�< �s

�6/ ��C®� c³ ���� ÒÓ H�� �� ä©�.

� [\o� ] $ ���? autoclave(autoclave engineers

group)( ���� Na metal� ���� ðY �o ��;( n���

3�3 Ê ��p � [\p ��45� ñ M� ¿ñ45 ����

ä©�. $ ���/ ��;( n��� autoclave ��� «45 Na

metal� ���� M�R " ���/ x:»¼ ½( n��� 3�3

Ê ���� M�( H�I�� ��;( n��� Na metal� ��

p M� Æ. µ�& 2-3 mm �] #� �� � Q©�f x:»¼

½( ��p M�� À� ÛY Æ.sr� -�¾� � Q©�. [

B ��;( n��� $���( n�p M�4� Na metal� �

6 ���� ä_ K metal� ¾× ¶_ ���� �� �$ #_ Q

�[10]. ÀÒÚ� �óp D?Y �è#� ðý�r Na metal/ ¦�Y

}~.�/ ¦� dB³���� }~/ -a]4 ÒÓ�? ��� Q

� /�p�.

3-3. ���� �� � Na metal ��

Fig. 845 Al2O3R NaX( ��� n��� 30 wt% Na metal�

���z [\p Éo( Na metal/ ÉoR H����. 1,3-butadiene

130 ml/min, �6 0.3 g� n����. Al2O3� BET ���� 3 m2/g

(Shinyo Pure Chemical Co.)R 156 m2/g(Aldirch Chemical Co.)? � ñ

&�( n����. Na metal �6� ���Û 2�3 ��%� ���

�Û#©$ 30 wt% Na/Al2O3Y 1�3 ��%�, NaX( ��� n

�p 30 wt%Na/NaX� 30- �«4 ��� �Û#©�. ��4 ��

9 Na metal/ M� �6 BC o�45 }~/ -a]& 8&#_

�� ��%� ���� ��$ Q�f ��/ �% ���� H��

�Y zeolite ��/ M�, �� áo�� �� �3� �S � Q

©�. ���4 Na metal� ���� n�p M�R Na metal� :

� n�p M� ���Û �3/ E�� Q©�< ��� �Û9 �

�/ ��~]R b�T45 E�� ä� �� ó?���. Al2O3/

M� ���� �£ Al2O3 ���( n����< ���� �àY

M�� <�«$ Q$ �� �Û �3 �p à�. Al2O3 ��/ M�

��� E�4 /p ��� ä� �� �À � [\[45 BC9

�6� Al2O3 �� «% �@��� �% ��4 Na metal� -a�

� �� �?�.

Fig. 6. Activities of various alkali metal at 150oC.A: NaK alloy, B: K metal, C: Na metal(sonication time: 10 min,reaction time: 60 min, alkali metal: 0.1 g) Fig. 7. The reactivity of sodium metal at 140oC.

(A) no stirring before the reaction, (B) stirring with magnetic bar fo3 hours before the reaction.

���� �40� �6� 2002� 12�

O-xylene� ���� �� 673

®¯ °`� rà �6 U 30 wt%Na/NaX �64 �I �� b, �

R �� U ��/ Na ¾>� H� -ÂI �ý�. 30 wt%Na/NaX(

���� � �34 ¢³ �6( �o�� D+-Â� Na/ �� -

Âp Éo( Table 145 <�«©�. ��� n�p NaX� 12%/

Na� �¾�$ Q$ 30 wt%Na/NaX �6� Na� 32.2%? �� ó?

���. �� 3�3 � �o�� <Ì �6( AAS -Âp Éo Na

� 19.9%, 7�3 � 15% �� 32.2%�� 7F� �_ Q�� ��

l � Q�. 3�3 �4� ��9 �6�/ 39%�]/ Nar Ä$ <�

�� �� U4 �À <÷$ 7�3 �4� 15%r ÄÀ Qö 9�. �

�Y ��9 Na metal� $��#� ð$ 7�3 �4� 85%&>� �

À <÷$ Qß� /�p�. �p 1,3-butadiene� ��� Ùw� ð

$ o-xylene «45r �6( 7�3 Ê ���� � �op �6/

Na �Y 14.6% ��9 Na metal U 13%& ÄÀQ� �� ó?��

�. �� butadieneo� "�ä� o-xylene4 "=>/ Na� �À <÷

$ Q� /�p�.

Fig. 9� �� U ��� « ��� S�> �²� �� D+-Â�

-Âp Éo��. 2�3 � �� « Na ¾>Y 382 ppm, 4�3 � 779

ppm, 7�3 � 869 ppm� 8&��. �� ��� )��4 ¢³ ��

�4 ��#_ Q� Na metal� �� U� �À <÷$ Qß� /�

�f 7�3 � �� U/ �À Q� Na �� 0.15 g �]��. Table 1o

Fig. 9/ Na �]& �£ �Y ��9 Na� �� ~4 �À <÷�] �

$ Æ. ¤_� <R �� U4 �,p�� �� /�p�.

�R à� ¡ß ��S �6( rs�  I ���4 ��9 Na metal

� ¡ß /]R� cw ���45 ¤_� <R ���� �� �?

�. �Ë ���� ��4� � ��� ��� þ��r �� 9 Na

metal� � -a�º� 6�� �� �� �3� ��� �� �$

Q�.

3-4. ���� ����� !

Fig. 10Y 1,3-butadiene/ ±>� 130 ml/min, 75 ml/min, 35 ml/minS

Ë/ ���� <�«$ Q�. 1,3-butadiene/ ±>� �_s� b�T

Y ò+��r ÝÞ]& XÀ�� �� � Q�. Butadiene/ @7

~] 8&4 ¢£ b�T/ 8&� o>/ o-xylene4 p�>/

butadiene� @7�� � [\ °¯ ��, ! butadiene/ �· bc p

�4 �?p �� "�9�. ÝÞ]( #��� �9 %��Y ��

�? butadiene 3/ ��? dimerizationo butadieneo Á��/ ÉV

Fig. 8. The effect of dispersion on the catalytic activity of various catalysts.

Table 1. The concentration of sodium in catalyst

Catalyst Concentration(Na)

Na form X zeolite 12.0%30 wt%Na/NaX 32.2%Filtering cake(after 3 h) 19.9%Filtering cake(after 7 h) 15.1%Filtering cake(after 7 h, without butadiene) 14.6%

Fig. 9. The concentration of sodium in mother liquid as a function ofreaction time.

Fig. 10. The effect of butadiene flow rate on the activity and selectivityof 30 wt% Na/NaX catalyst.� , � : conversion and selectivity at BTD flow rate : 35 ml/min$,% : conversion and selectivity at BTD flow rate : 75 ml/min�, � : conversion and selectivity at BTD flow rate : 130 ml/min

HWAHAK KONGHAK Vol. 40, No. 6, December, 2002

674 ���������������� ����

ea

,098

381

993).

tent

4 /p oligomer/ ï�4 �?�f, p� ���? butadiene/ @7

~]4 ¢³ b�To ÝÞ]& �H&��5 î��� �Y ÝÞ]/

�9 ò+ 0?� oligomer/ ï�4 �?¾� lm�$ Q�. OTP4

�p ÝÞ]( jö ±���  I5� &ip gY b�T� ±��

�5 Á��� -w�� �� ±w� �� 't9�.

Oligomer ï�4 �p butadiene/ ��� ()��  I5 butadiene

±>4 ¢£ %a�/ ï�� �ßo à� -ÂI �ý�. 1,3-butadiene

±>� 130 ml/mino 75 ml/minS Ë 30 wt%Na/NaX( �6( n��

� 7�3 Ê Ø-� ���z b�T� H*p "+45 �o�

(Advancen, No. 5C)( ���� �6( -w�$ 190oC, dry oven4

5 12�3 Ê ®C�å�. �R à� � ®C9 �6( -,��

Elemental Analyzer(EA)( q�� �� � �o9 �6 cake «/ -+

R �+/ ¾>� -Â���. -ÂÉo 75 ml/min 1,3-butadiene� Ù

. M� -+/ ¾>Y 8.9 wt%, �+/ ¾>Y 2.8 wt% <�õ�.

130 ml/min� 1,3-butadiene� Ù. M� -+ ¾>� 15.1 wt% 8

&��$ �+/ M� 3.4 wt% 8&���. ���o Á��? xylene

o OTP& �6/ -+ /� ¾>4 �'� ��� ��  I5 o-xylene

o OTP& 1:1 éV9 ��4 zeolite X( ¶$ 24�3 Ê stirring

�$ àY C®45 ®Cp � -Âp Éo -+/ ¾>Y 1.3%, �+

/ ¾>Y 2.7% <�õ�. �;p Éo� o-xylene üY OTP� -+

/� ¾>4 ��� �� þ�$, �9 /� D?Y %a�4 �?¾�

���$ Q�f 1,3-butadiene/ ±>� 8&��0 ��4 /�#�

-��+/ ¾>� jÀ�� �Y %a�/ ï�4 1,3-butadiene �

��� �'$ Q� 1��$ Q�.

H¦�� ±Ô�� �·/ ��� lÀ��  I 1,3-butadiene/ ±

>� 130 ml/minS ËR 75 ml/min/ C®45 ���� �, EA/ �

G ÜHR ÊSp °`� TGA-DSC/ �G( ÜH���. H�(  

I5 o-xyleneo OTP& éV9 ��4 zeolite X( ¶$ 24�3 stirring

p �, EA45 -Âp �o àY C®45 �Ü �G( ÜH���.

TGA-DSC/ [\ C®Y 120oC45 25- Ê ��4 �w��

239 ��< �£ ±��� ·+ - � �45 Bu���. : �

120oC%� 700oCÚ� @�( Ùw�5 15oC/min/ ÍÌ ~] -Â

���[11, 12]. Fig. 1145 �û� 130 ml/min� 1,3-butadiene� Ù

. ��/ �G45� 300oC%445 � > î�( ��$ 500oC

%445] 5Y > î�R ¾× âö ò+>] �?�. 1,3-butadiene

/ ±>� 75 ml/min ò+�� > î�R âö ò+& 130 ml/min

¡w �/ �G4 HI µö ò+�$ Q�f o-xyleneo OTP( ¶$

��p � ®Cp �G� âö î�R > î�& u/ ä©�. 1,3-

butadiene/ ±>� 8&� M� oligomer/ �� 6_<� %��� �

)#_ b�T� 8&��0 OTP4 �p ÝÞ]& ò+�� D?�

't#f [B �� "� NaK( ���� OTP( BC�� �\ t�

/ @�45 b�TY 10% «� C­� �74 ä� D?� Á�

9�. �p �8ö ï�9 oligomer� ��9 �64 /�#_ H¦�

�4 ÒÓ�? D?� 9�� �$] Q_[13], %a� Á�� 9B�

� jY b�T �45] OTP4 �p jY ÝÞ]( ±��º� @�

�Ý :O� ;0��.

4. � �

�"/ NaK alloy( sonication ¾� < ��~]R ÝÞ�� �"

#� �� ��. �� ultrasound4 /�� �"/ NaK alloy&

6� ÛY Æ. =�� emulsion� ï�I -a]( j�� Ëd��.

Ultrasonic intensity& 8&��0 ��~]& 8&�� M�� ���

f, ultrasonic intensity& gY M�4� ÷ø �3Ê sonication ��

Ör Ø-p ���� Z� � Q©�.

�}Ú� o-xyleneo 1,3-butadiene/ Alkenylation45 Na metal� �

6 n���� Ë ���� 6� gu< u/ ���� ä� ��

lm� Q�< Na metal] ���� b Ø-p �3Ê ���� �

-a�z ��r p�� �� �3(induction time) ä� jY ����

Z� � Q� ��.

®¯ °`� BC9 ���4 ��9 Na metalY }~/ -a]&

jÀ5 � -a9 �"/ NaK üY b ¡w9 Na metalo ±n�ö �

�%� ���3� ä� ��p ���� ���< �� 7�3 �4�

85% �"� ���45 ¤_� <ÿ�. � [\45 ��9 ®¯ �6

BC`Y � �� �%4 Na metal� -a�z ���� ���4 �

�� �� þ��$ � �6( ��p �"[\45 "=>/ Na metal

� �À <÷> �" ��4 ���� 2�& �~#_Ö p�.

b�T� 8&��0 OTP4 �p ÝÞ]� ò+�$ Q©�f 1,3-

butadiene/ %��� Á�9 oligomer& ÝÞ] �?/ D?? ��

't9�. %a�/ �óp -ÂY � � ä©�r D+ -Âo

-Â�( qI5 Á�9 %a�Y ����< Á�� �� � -.>

/ oligomer "�#f, �s� ÝÞ]/ �?o �6/ H¦��( ±

]�� D?� @A#©$ %a� Á� 9B( qp $ ÝÞ] ±�

°`� �~ 2�#_Ö p�.

� �

1. Gong, W. and John, A. C.: polymer, 40, 1011(1999).

2. Lillwitz, L. D. and Karachewski, A. M.: U. S. Pataent 5,�98,594(1993).

3. Kim, J. H.: MS Disseration, Kyungpook National Univ., Daegu, Kor

(2001).

4. Sillenga, D. L.: U. S. Patent 4,990,717(1991).

5. Fushimi, N., Inamasa, K. and Takagawa, M.: U. S. Patent 5,367

(1994).

6. Takagawa, M., Kato, K., Fushimi, N. and Kedo, K.: U. S. Patent 5,436,

(1993).

7. Fushimi, N., Inamasa, K. and Takagawa, M.: U. S. Patent 5,344,381(1

8. Fushimi, N., Kedo, K., Inamasa, K. and Takagawa, M.: U. S. Pa

5,334,794(1994).

Fig. 11. The result of TGA-DSC of Na/NaX after treatment at variousconditions.

���� �40� �6� 2002� 12�

O-xylene� ���� �� 675

9. Robert, J. D., Eric, J. D. and Shailendra, B.: Catalysis today, 62, 241(2000).

10. Lee, H. H.: MS Disseration, Kyungpook National Univ., Daegu, Korea

(1999).

11. Zhuang, Y. and Ng, F. T. T.: Applied Catalysis A : General, 190, 137(2000).

12. Querin, C. A. and Roa, E.: Applied Catlysis A: General, 155, 195

(1997).

13. Robert, J. T. and Jr. David, E. S.: Applied Catlysis A: General, 163,

199(1997).

HWAHAK KONGHAK Vol. 40, No. 6, December, 2002