nuclear data uncertainty propagation using a total …€¦ ·  · 2018-03-09nuclear data...

60
Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman* *NRG Petten, The Netherlands & Univ. Uppsala Workshop on Uncertainty Propagation in the Nuclear Fuel Cycle April 24-25 2013, Uppsala, Sweden

Upload: phungmien

Post on 15-Apr-2018

223 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Nuclear data uncertainty propagation using a Total Monte Carlo approach

Arjan Koningamp and Dimitri RochmanNRG Petten The Netherlands

ampUniv Uppsala

Workshop on Uncertainty Propagation in the Nuclear Fuel Cycle

April 24-25 2013 Uppsala Sweden

2

Europe by night

Petten

3

Petten site

httpwwwnrgeu

4

Complete infrastructure in Petten

fabrication recycling material

irradiation in HFR

post irradiation examination inhot cell laboratories

Actinide lab

(~10 in the world)

Large Test Reactor

(~10 in the world)

Hot Cells

(~20 in the world)

And we combine this with nuclear computational simulations

5

6

Contents

bull Introductionbull Full control over nuclear data + uncertainty propagation +

reactor calculations ndash 4 stages1 Create the best possible nuclear data library TENDL2 Validate TENDL against integral experiments and

benchmarks3 Perform Total Monte Carlo around the central values of

TENDL for uncertainty propagation in reactor analyses4 Generalize Total Monte Carlo methodology to full core

analysesbull Conclusions

Automating nuclear science

7

- Use (extremely) robust software- Store all human intelligence in input files and scripts- Rely on reproducibility and quality assurance

Road to success

Strategy

1 Create the best possible nuclear data library (TENDL) usingbull Experimental data (EXFOR database)bull The TALYS nuclear model codebull Resonance information (TARES code)bull Pick and choose from existing nuclear data libraries (ENDFB-VII

JEFF etc)2 Validate TENDL against open-source integral experiments and

benchmarksbull ICSBEP criticality benchmarksbull SINBAD shielding benchmarksbull IRPHE reactor benchmarksbull Activation and decay heat experiments

This establishes the central values ie a ldquonormalrdquo nuclear data library

8

Strategy

3 Randomize nuclear data around the central values of TENDL to perform Total Monte Carlobull Obtain exact uncertainties for criticality benchmarks etcbull Perform reactorburnup calculations on pin cell and assembly

level including uncertaintiesbull The lsquoPetten Methodrsquo Monte Carlo optimization of nuclear data

4 Generalize TMC methodology to full core calculationsbull Generate random nuclear data libraries for PANTHER CASMO-

SIMULATE RELAP etcbull Perform dynamical calculations transient and thermohydraulics

including uncertainties

If 1-4 are successful we have the best central nuclear data values andthe most flexible and exact uncertainty methodology

9

Safety and sustainability ndash nuclear data

Starting point basic nuclear data forreactor and fuel cycle analyses have uncertainties

Required insight in how uncertaintyof nuclear data is propagated tonuclear energy safety and sustainability issues

Observation the world is workinghard to yield answers to this within 10-20 years

Claim it can be done faster than thatusing TALYS

Measurements plusmnuncertainty

TALYS Download TALYS-14wwwtalyseu

Nuclear data

Reactor physicscode (MCNPetc)

Staticalreactor behavior

Transientcode

Dynamicalreactor behavior

11

TALYS Evaluated Nuclear Data Library TENDL-2012

bull Neutron proton deuteron triton helium-3 alpha and gamma data librariesbull 2430 targets (all isotopes with lifetime gt 1 sec)bull Complete reaction description in ENDF-6 format MF1-MF40 up to 200 MeVbull MCNP-libraries (ldquoACE-filesrdquo) PENDF files and multi-group covariance data

Default Global calculations by TALYS-148 and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (eg IRDFF light nuclides main channels of 235238U 239Pu)

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 2: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

2

Europe by night

Petten

3

Petten site

httpwwwnrgeu

4

Complete infrastructure in Petten

fabrication recycling material

irradiation in HFR

post irradiation examination inhot cell laboratories

Actinide lab

(~10 in the world)

Large Test Reactor

(~10 in the world)

Hot Cells

(~20 in the world)

And we combine this with nuclear computational simulations

5

6

Contents

bull Introductionbull Full control over nuclear data + uncertainty propagation +

reactor calculations ndash 4 stages1 Create the best possible nuclear data library TENDL2 Validate TENDL against integral experiments and

benchmarks3 Perform Total Monte Carlo around the central values of

TENDL for uncertainty propagation in reactor analyses4 Generalize Total Monte Carlo methodology to full core

analysesbull Conclusions

Automating nuclear science

7

- Use (extremely) robust software- Store all human intelligence in input files and scripts- Rely on reproducibility and quality assurance

Road to success

Strategy

1 Create the best possible nuclear data library (TENDL) usingbull Experimental data (EXFOR database)bull The TALYS nuclear model codebull Resonance information (TARES code)bull Pick and choose from existing nuclear data libraries (ENDFB-VII

JEFF etc)2 Validate TENDL against open-source integral experiments and

benchmarksbull ICSBEP criticality benchmarksbull SINBAD shielding benchmarksbull IRPHE reactor benchmarksbull Activation and decay heat experiments

This establishes the central values ie a ldquonormalrdquo nuclear data library

8

Strategy

3 Randomize nuclear data around the central values of TENDL to perform Total Monte Carlobull Obtain exact uncertainties for criticality benchmarks etcbull Perform reactorburnup calculations on pin cell and assembly

level including uncertaintiesbull The lsquoPetten Methodrsquo Monte Carlo optimization of nuclear data

4 Generalize TMC methodology to full core calculationsbull Generate random nuclear data libraries for PANTHER CASMO-

SIMULATE RELAP etcbull Perform dynamical calculations transient and thermohydraulics

including uncertainties

If 1-4 are successful we have the best central nuclear data values andthe most flexible and exact uncertainty methodology

9

Safety and sustainability ndash nuclear data

Starting point basic nuclear data forreactor and fuel cycle analyses have uncertainties

Required insight in how uncertaintyof nuclear data is propagated tonuclear energy safety and sustainability issues

Observation the world is workinghard to yield answers to this within 10-20 years

Claim it can be done faster than thatusing TALYS

Measurements plusmnuncertainty

TALYS Download TALYS-14wwwtalyseu

Nuclear data

Reactor physicscode (MCNPetc)

Staticalreactor behavior

Transientcode

Dynamicalreactor behavior

11

TALYS Evaluated Nuclear Data Library TENDL-2012

bull Neutron proton deuteron triton helium-3 alpha and gamma data librariesbull 2430 targets (all isotopes with lifetime gt 1 sec)bull Complete reaction description in ENDF-6 format MF1-MF40 up to 200 MeVbull MCNP-libraries (ldquoACE-filesrdquo) PENDF files and multi-group covariance data

Default Global calculations by TALYS-148 and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (eg IRDFF light nuclides main channels of 235238U 239Pu)

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 3: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

3

Petten site

httpwwwnrgeu

4

Complete infrastructure in Petten

fabrication recycling material

irradiation in HFR

post irradiation examination inhot cell laboratories

Actinide lab

(~10 in the world)

Large Test Reactor

(~10 in the world)

Hot Cells

(~20 in the world)

And we combine this with nuclear computational simulations

5

6

Contents

bull Introductionbull Full control over nuclear data + uncertainty propagation +

reactor calculations ndash 4 stages1 Create the best possible nuclear data library TENDL2 Validate TENDL against integral experiments and

benchmarks3 Perform Total Monte Carlo around the central values of

TENDL for uncertainty propagation in reactor analyses4 Generalize Total Monte Carlo methodology to full core

analysesbull Conclusions

Automating nuclear science

7

- Use (extremely) robust software- Store all human intelligence in input files and scripts- Rely on reproducibility and quality assurance

Road to success

Strategy

1 Create the best possible nuclear data library (TENDL) usingbull Experimental data (EXFOR database)bull The TALYS nuclear model codebull Resonance information (TARES code)bull Pick and choose from existing nuclear data libraries (ENDFB-VII

JEFF etc)2 Validate TENDL against open-source integral experiments and

benchmarksbull ICSBEP criticality benchmarksbull SINBAD shielding benchmarksbull IRPHE reactor benchmarksbull Activation and decay heat experiments

This establishes the central values ie a ldquonormalrdquo nuclear data library

8

Strategy

3 Randomize nuclear data around the central values of TENDL to perform Total Monte Carlobull Obtain exact uncertainties for criticality benchmarks etcbull Perform reactorburnup calculations on pin cell and assembly

level including uncertaintiesbull The lsquoPetten Methodrsquo Monte Carlo optimization of nuclear data

4 Generalize TMC methodology to full core calculationsbull Generate random nuclear data libraries for PANTHER CASMO-

SIMULATE RELAP etcbull Perform dynamical calculations transient and thermohydraulics

including uncertainties

If 1-4 are successful we have the best central nuclear data values andthe most flexible and exact uncertainty methodology

9

Safety and sustainability ndash nuclear data

Starting point basic nuclear data forreactor and fuel cycle analyses have uncertainties

Required insight in how uncertaintyof nuclear data is propagated tonuclear energy safety and sustainability issues

Observation the world is workinghard to yield answers to this within 10-20 years

Claim it can be done faster than thatusing TALYS

Measurements plusmnuncertainty

TALYS Download TALYS-14wwwtalyseu

Nuclear data

Reactor physicscode (MCNPetc)

Staticalreactor behavior

Transientcode

Dynamicalreactor behavior

11

TALYS Evaluated Nuclear Data Library TENDL-2012

bull Neutron proton deuteron triton helium-3 alpha and gamma data librariesbull 2430 targets (all isotopes with lifetime gt 1 sec)bull Complete reaction description in ENDF-6 format MF1-MF40 up to 200 MeVbull MCNP-libraries (ldquoACE-filesrdquo) PENDF files and multi-group covariance data

Default Global calculations by TALYS-148 and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (eg IRDFF light nuclides main channels of 235238U 239Pu)

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 4: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

4

Complete infrastructure in Petten

fabrication recycling material

irradiation in HFR

post irradiation examination inhot cell laboratories

Actinide lab

(~10 in the world)

Large Test Reactor

(~10 in the world)

Hot Cells

(~20 in the world)

And we combine this with nuclear computational simulations

5

6

Contents

bull Introductionbull Full control over nuclear data + uncertainty propagation +

reactor calculations ndash 4 stages1 Create the best possible nuclear data library TENDL2 Validate TENDL against integral experiments and

benchmarks3 Perform Total Monte Carlo around the central values of

TENDL for uncertainty propagation in reactor analyses4 Generalize Total Monte Carlo methodology to full core

analysesbull Conclusions

Automating nuclear science

7

- Use (extremely) robust software- Store all human intelligence in input files and scripts- Rely on reproducibility and quality assurance

Road to success

Strategy

1 Create the best possible nuclear data library (TENDL) usingbull Experimental data (EXFOR database)bull The TALYS nuclear model codebull Resonance information (TARES code)bull Pick and choose from existing nuclear data libraries (ENDFB-VII

JEFF etc)2 Validate TENDL against open-source integral experiments and

benchmarksbull ICSBEP criticality benchmarksbull SINBAD shielding benchmarksbull IRPHE reactor benchmarksbull Activation and decay heat experiments

This establishes the central values ie a ldquonormalrdquo nuclear data library

8

Strategy

3 Randomize nuclear data around the central values of TENDL to perform Total Monte Carlobull Obtain exact uncertainties for criticality benchmarks etcbull Perform reactorburnup calculations on pin cell and assembly

level including uncertaintiesbull The lsquoPetten Methodrsquo Monte Carlo optimization of nuclear data

4 Generalize TMC methodology to full core calculationsbull Generate random nuclear data libraries for PANTHER CASMO-

SIMULATE RELAP etcbull Perform dynamical calculations transient and thermohydraulics

including uncertainties

If 1-4 are successful we have the best central nuclear data values andthe most flexible and exact uncertainty methodology

9

Safety and sustainability ndash nuclear data

Starting point basic nuclear data forreactor and fuel cycle analyses have uncertainties

Required insight in how uncertaintyof nuclear data is propagated tonuclear energy safety and sustainability issues

Observation the world is workinghard to yield answers to this within 10-20 years

Claim it can be done faster than thatusing TALYS

Measurements plusmnuncertainty

TALYS Download TALYS-14wwwtalyseu

Nuclear data

Reactor physicscode (MCNPetc)

Staticalreactor behavior

Transientcode

Dynamicalreactor behavior

11

TALYS Evaluated Nuclear Data Library TENDL-2012

bull Neutron proton deuteron triton helium-3 alpha and gamma data librariesbull 2430 targets (all isotopes with lifetime gt 1 sec)bull Complete reaction description in ENDF-6 format MF1-MF40 up to 200 MeVbull MCNP-libraries (ldquoACE-filesrdquo) PENDF files and multi-group covariance data

Default Global calculations by TALYS-148 and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (eg IRDFF light nuclides main channels of 235238U 239Pu)

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 5: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

And we combine this with nuclear computational simulations

5

6

Contents

bull Introductionbull Full control over nuclear data + uncertainty propagation +

reactor calculations ndash 4 stages1 Create the best possible nuclear data library TENDL2 Validate TENDL against integral experiments and

benchmarks3 Perform Total Monte Carlo around the central values of

TENDL for uncertainty propagation in reactor analyses4 Generalize Total Monte Carlo methodology to full core

analysesbull Conclusions

Automating nuclear science

7

- Use (extremely) robust software- Store all human intelligence in input files and scripts- Rely on reproducibility and quality assurance

Road to success

Strategy

1 Create the best possible nuclear data library (TENDL) usingbull Experimental data (EXFOR database)bull The TALYS nuclear model codebull Resonance information (TARES code)bull Pick and choose from existing nuclear data libraries (ENDFB-VII

JEFF etc)2 Validate TENDL against open-source integral experiments and

benchmarksbull ICSBEP criticality benchmarksbull SINBAD shielding benchmarksbull IRPHE reactor benchmarksbull Activation and decay heat experiments

This establishes the central values ie a ldquonormalrdquo nuclear data library

8

Strategy

3 Randomize nuclear data around the central values of TENDL to perform Total Monte Carlobull Obtain exact uncertainties for criticality benchmarks etcbull Perform reactorburnup calculations on pin cell and assembly

level including uncertaintiesbull The lsquoPetten Methodrsquo Monte Carlo optimization of nuclear data

4 Generalize TMC methodology to full core calculationsbull Generate random nuclear data libraries for PANTHER CASMO-

SIMULATE RELAP etcbull Perform dynamical calculations transient and thermohydraulics

including uncertainties

If 1-4 are successful we have the best central nuclear data values andthe most flexible and exact uncertainty methodology

9

Safety and sustainability ndash nuclear data

Starting point basic nuclear data forreactor and fuel cycle analyses have uncertainties

Required insight in how uncertaintyof nuclear data is propagated tonuclear energy safety and sustainability issues

Observation the world is workinghard to yield answers to this within 10-20 years

Claim it can be done faster than thatusing TALYS

Measurements plusmnuncertainty

TALYS Download TALYS-14wwwtalyseu

Nuclear data

Reactor physicscode (MCNPetc)

Staticalreactor behavior

Transientcode

Dynamicalreactor behavior

11

TALYS Evaluated Nuclear Data Library TENDL-2012

bull Neutron proton deuteron triton helium-3 alpha and gamma data librariesbull 2430 targets (all isotopes with lifetime gt 1 sec)bull Complete reaction description in ENDF-6 format MF1-MF40 up to 200 MeVbull MCNP-libraries (ldquoACE-filesrdquo) PENDF files and multi-group covariance data

Default Global calculations by TALYS-148 and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (eg IRDFF light nuclides main channels of 235238U 239Pu)

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 6: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

6

Contents

bull Introductionbull Full control over nuclear data + uncertainty propagation +

reactor calculations ndash 4 stages1 Create the best possible nuclear data library TENDL2 Validate TENDL against integral experiments and

benchmarks3 Perform Total Monte Carlo around the central values of

TENDL for uncertainty propagation in reactor analyses4 Generalize Total Monte Carlo methodology to full core

analysesbull Conclusions

Automating nuclear science

7

- Use (extremely) robust software- Store all human intelligence in input files and scripts- Rely on reproducibility and quality assurance

Road to success

Strategy

1 Create the best possible nuclear data library (TENDL) usingbull Experimental data (EXFOR database)bull The TALYS nuclear model codebull Resonance information (TARES code)bull Pick and choose from existing nuclear data libraries (ENDFB-VII

JEFF etc)2 Validate TENDL against open-source integral experiments and

benchmarksbull ICSBEP criticality benchmarksbull SINBAD shielding benchmarksbull IRPHE reactor benchmarksbull Activation and decay heat experiments

This establishes the central values ie a ldquonormalrdquo nuclear data library

8

Strategy

3 Randomize nuclear data around the central values of TENDL to perform Total Monte Carlobull Obtain exact uncertainties for criticality benchmarks etcbull Perform reactorburnup calculations on pin cell and assembly

level including uncertaintiesbull The lsquoPetten Methodrsquo Monte Carlo optimization of nuclear data

4 Generalize TMC methodology to full core calculationsbull Generate random nuclear data libraries for PANTHER CASMO-

SIMULATE RELAP etcbull Perform dynamical calculations transient and thermohydraulics

including uncertainties

If 1-4 are successful we have the best central nuclear data values andthe most flexible and exact uncertainty methodology

9

Safety and sustainability ndash nuclear data

Starting point basic nuclear data forreactor and fuel cycle analyses have uncertainties

Required insight in how uncertaintyof nuclear data is propagated tonuclear energy safety and sustainability issues

Observation the world is workinghard to yield answers to this within 10-20 years

Claim it can be done faster than thatusing TALYS

Measurements plusmnuncertainty

TALYS Download TALYS-14wwwtalyseu

Nuclear data

Reactor physicscode (MCNPetc)

Staticalreactor behavior

Transientcode

Dynamicalreactor behavior

11

TALYS Evaluated Nuclear Data Library TENDL-2012

bull Neutron proton deuteron triton helium-3 alpha and gamma data librariesbull 2430 targets (all isotopes with lifetime gt 1 sec)bull Complete reaction description in ENDF-6 format MF1-MF40 up to 200 MeVbull MCNP-libraries (ldquoACE-filesrdquo) PENDF files and multi-group covariance data

Default Global calculations by TALYS-148 and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (eg IRDFF light nuclides main channels of 235238U 239Pu)

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 7: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Automating nuclear science

7

- Use (extremely) robust software- Store all human intelligence in input files and scripts- Rely on reproducibility and quality assurance

Road to success

Strategy

1 Create the best possible nuclear data library (TENDL) usingbull Experimental data (EXFOR database)bull The TALYS nuclear model codebull Resonance information (TARES code)bull Pick and choose from existing nuclear data libraries (ENDFB-VII

JEFF etc)2 Validate TENDL against open-source integral experiments and

benchmarksbull ICSBEP criticality benchmarksbull SINBAD shielding benchmarksbull IRPHE reactor benchmarksbull Activation and decay heat experiments

This establishes the central values ie a ldquonormalrdquo nuclear data library

8

Strategy

3 Randomize nuclear data around the central values of TENDL to perform Total Monte Carlobull Obtain exact uncertainties for criticality benchmarks etcbull Perform reactorburnup calculations on pin cell and assembly

level including uncertaintiesbull The lsquoPetten Methodrsquo Monte Carlo optimization of nuclear data

4 Generalize TMC methodology to full core calculationsbull Generate random nuclear data libraries for PANTHER CASMO-

SIMULATE RELAP etcbull Perform dynamical calculations transient and thermohydraulics

including uncertainties

If 1-4 are successful we have the best central nuclear data values andthe most flexible and exact uncertainty methodology

9

Safety and sustainability ndash nuclear data

Starting point basic nuclear data forreactor and fuel cycle analyses have uncertainties

Required insight in how uncertaintyof nuclear data is propagated tonuclear energy safety and sustainability issues

Observation the world is workinghard to yield answers to this within 10-20 years

Claim it can be done faster than thatusing TALYS

Measurements plusmnuncertainty

TALYS Download TALYS-14wwwtalyseu

Nuclear data

Reactor physicscode (MCNPetc)

Staticalreactor behavior

Transientcode

Dynamicalreactor behavior

11

TALYS Evaluated Nuclear Data Library TENDL-2012

bull Neutron proton deuteron triton helium-3 alpha and gamma data librariesbull 2430 targets (all isotopes with lifetime gt 1 sec)bull Complete reaction description in ENDF-6 format MF1-MF40 up to 200 MeVbull MCNP-libraries (ldquoACE-filesrdquo) PENDF files and multi-group covariance data

Default Global calculations by TALYS-148 and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (eg IRDFF light nuclides main channels of 235238U 239Pu)

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 8: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Strategy

1 Create the best possible nuclear data library (TENDL) usingbull Experimental data (EXFOR database)bull The TALYS nuclear model codebull Resonance information (TARES code)bull Pick and choose from existing nuclear data libraries (ENDFB-VII

JEFF etc)2 Validate TENDL against open-source integral experiments and

benchmarksbull ICSBEP criticality benchmarksbull SINBAD shielding benchmarksbull IRPHE reactor benchmarksbull Activation and decay heat experiments

This establishes the central values ie a ldquonormalrdquo nuclear data library

8

Strategy

3 Randomize nuclear data around the central values of TENDL to perform Total Monte Carlobull Obtain exact uncertainties for criticality benchmarks etcbull Perform reactorburnup calculations on pin cell and assembly

level including uncertaintiesbull The lsquoPetten Methodrsquo Monte Carlo optimization of nuclear data

4 Generalize TMC methodology to full core calculationsbull Generate random nuclear data libraries for PANTHER CASMO-

SIMULATE RELAP etcbull Perform dynamical calculations transient and thermohydraulics

including uncertainties

If 1-4 are successful we have the best central nuclear data values andthe most flexible and exact uncertainty methodology

9

Safety and sustainability ndash nuclear data

Starting point basic nuclear data forreactor and fuel cycle analyses have uncertainties

Required insight in how uncertaintyof nuclear data is propagated tonuclear energy safety and sustainability issues

Observation the world is workinghard to yield answers to this within 10-20 years

Claim it can be done faster than thatusing TALYS

Measurements plusmnuncertainty

TALYS Download TALYS-14wwwtalyseu

Nuclear data

Reactor physicscode (MCNPetc)

Staticalreactor behavior

Transientcode

Dynamicalreactor behavior

11

TALYS Evaluated Nuclear Data Library TENDL-2012

bull Neutron proton deuteron triton helium-3 alpha and gamma data librariesbull 2430 targets (all isotopes with lifetime gt 1 sec)bull Complete reaction description in ENDF-6 format MF1-MF40 up to 200 MeVbull MCNP-libraries (ldquoACE-filesrdquo) PENDF files and multi-group covariance data

Default Global calculations by TALYS-148 and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (eg IRDFF light nuclides main channels of 235238U 239Pu)

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 9: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Strategy

3 Randomize nuclear data around the central values of TENDL to perform Total Monte Carlobull Obtain exact uncertainties for criticality benchmarks etcbull Perform reactorburnup calculations on pin cell and assembly

level including uncertaintiesbull The lsquoPetten Methodrsquo Monte Carlo optimization of nuclear data

4 Generalize TMC methodology to full core calculationsbull Generate random nuclear data libraries for PANTHER CASMO-

SIMULATE RELAP etcbull Perform dynamical calculations transient and thermohydraulics

including uncertainties

If 1-4 are successful we have the best central nuclear data values andthe most flexible and exact uncertainty methodology

9

Safety and sustainability ndash nuclear data

Starting point basic nuclear data forreactor and fuel cycle analyses have uncertainties

Required insight in how uncertaintyof nuclear data is propagated tonuclear energy safety and sustainability issues

Observation the world is workinghard to yield answers to this within 10-20 years

Claim it can be done faster than thatusing TALYS

Measurements plusmnuncertainty

TALYS Download TALYS-14wwwtalyseu

Nuclear data

Reactor physicscode (MCNPetc)

Staticalreactor behavior

Transientcode

Dynamicalreactor behavior

11

TALYS Evaluated Nuclear Data Library TENDL-2012

bull Neutron proton deuteron triton helium-3 alpha and gamma data librariesbull 2430 targets (all isotopes with lifetime gt 1 sec)bull Complete reaction description in ENDF-6 format MF1-MF40 up to 200 MeVbull MCNP-libraries (ldquoACE-filesrdquo) PENDF files and multi-group covariance data

Default Global calculations by TALYS-148 and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (eg IRDFF light nuclides main channels of 235238U 239Pu)

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 10: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Safety and sustainability ndash nuclear data

Starting point basic nuclear data forreactor and fuel cycle analyses have uncertainties

Required insight in how uncertaintyof nuclear data is propagated tonuclear energy safety and sustainability issues

Observation the world is workinghard to yield answers to this within 10-20 years

Claim it can be done faster than thatusing TALYS

Measurements plusmnuncertainty

TALYS Download TALYS-14wwwtalyseu

Nuclear data

Reactor physicscode (MCNPetc)

Staticalreactor behavior

Transientcode

Dynamicalreactor behavior

11

TALYS Evaluated Nuclear Data Library TENDL-2012

bull Neutron proton deuteron triton helium-3 alpha and gamma data librariesbull 2430 targets (all isotopes with lifetime gt 1 sec)bull Complete reaction description in ENDF-6 format MF1-MF40 up to 200 MeVbull MCNP-libraries (ldquoACE-filesrdquo) PENDF files and multi-group covariance data

Default Global calculations by TALYS-148 and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (eg IRDFF light nuclides main channels of 235238U 239Pu)

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 11: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

11

TALYS Evaluated Nuclear Data Library TENDL-2012

bull Neutron proton deuteron triton helium-3 alpha and gamma data librariesbull 2430 targets (all isotopes with lifetime gt 1 sec)bull Complete reaction description in ENDF-6 format MF1-MF40 up to 200 MeVbull MCNP-libraries (ldquoACE-filesrdquo) PENDF files and multi-group covariance data

Default Global calculations by TALYS-148 and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (eg IRDFF light nuclides main channels of 235238U 239Pu)

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 12: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

12

TALYS

bull Nuclear model code by NRG Petten CEA-BRC UL Bruxellesbull (Almost) Complete nuclear reaction input and outputReleasebull wwwtalyseubull Latest official version TALYS-14 released december 23 2011Software issuesbull Most used nuclear reaction code in the worldbull Very flexible in use robust and readable consistent programmingbull 300 page manual 20 widely varying sample casesbull TALYS open source

bull 600-800 users worldwide who give valuable feedbackbull Nuclear data software around TALYS (ie the step to technology)

NRG proprietary

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 13: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

13

General 5Nuclear

models 46

High energy models and exps 149

Data libs and low energy exps 193

Fusion 31

Medical 90

Astrophysics 101

0

020406080

100120140160180

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

TALYS publications

publications

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 14: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Nuclear data libraries for nuclear technology

14

ldquoThe TALYSTENDL system has rapidly evolved to be a likely candidate to form the basis for a single global evaluated nuclear data library system hellip In the event that TALYSTENDL continues to emerge as an unchallenged global contender it is recommended that the IAEA provide moral and other support helliprdquo

Ken Kozier AECL IAEA meeting on long-term data needs 2011

E Sartori Nuclear data for radioactive waste management Ann Nuc En (2013)

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 15: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

15

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 16: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

16

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 17: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

High Fidelity Resonances (HFR)

17

URR derived resonance ladders

GOE for each (jl)

Wigner law for spacing

KD03 OMP foraverage parameters

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 18: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

HFR

D Rochman AJ Koning J Kopecky J-C Sublet P Ribonand M Moxon ``From average parameters to statisticalresolved resonances Ann Nuc En 51 60 (2013)

18

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 19: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

TENDL nuclear data library

19

AJ Koning and D Rochman Modern nuclear data evaluation with the TALYS code systemldquoNuclear Data Sheets 113 2841 (2012)

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 20: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Testing TENDL - Criticality safety ICSBEP

20

International Criticality Safety Benchmark Evaluation Project516 evaluations 4405 cases (2010 DVD)

Type of fissile materialLEU IEU HEU MIX PU 233U

Physical form of fissile materialCompound Metal SolutionMiscellaneous

Neutron spectrumThermal intermediate fast mixed

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 21: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Criticality safety leu-comp-therm

21

TCA Valduc

(S van der Marck ND-2013)

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 22: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Criticality safety Na

22

ZPR

6-6a

ZPR

6-7

ZPR

6-7

hig

h 24

0 Pu

ZPR

3-48

ZPR

3-56

Ni Δρsim500 pcm240Pu ~300 pcm

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 23: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Shielding benchmarks

23

OktavianLiF Al Si Ti Cr Mn Co Cu Zr Mo W

FNSBe C N O Fe Pb5 angles

LLNLLi Be C N O Mg Al Ti Fe Pb D2O H2Oconcrete polyethylene teflon

NISTH2O Cd

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 24: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Shielding example LLNL Mg 07 mfp

24

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 25: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

25

ldquoTotalrdquo Monte Carlo

bull Propagating covariance data is an approximation of true uncertaintypropagation (especially regarding ENDF-6 format limitations)

bull Covariance data requires extra processing and ldquosatellite softwarerdquo forapplication codes

bull Alternative Create an ENDF-6 file for each random sample and finish the entire physics-to-application loop (Koning and Rochman Ann NucEn 35 2024 (2008)

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 26: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Automating nuclear reactions Total Monte Carlo

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 27: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 28: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 29: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 30: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 31: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 32: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 33: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 34: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 35: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 36: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 37: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

37

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 38: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

38

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 39: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

39

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 40: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

40

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 41: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

41

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 42: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

42

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 43: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

43

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 44: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

44

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 45: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

45

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 46: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

46

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 47: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

47

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 48: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

48

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 49: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

49

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 50: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

50

TMC Application criticality benchmarks

Total of 60000 random ENDF-6 files

Sometimes deviation from Gaussian shape

D Rochman AJ Koning and SC van der Marck``Uncertainties for criticality-safety benchmarks and keff distributions Ann Nuc En 36 810-831 (2009)

Yields uncertainties on benchmarks

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 51: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Pu239 cross sections + uncertainties

51

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 52: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

52

Optimization of Pu-239

bull Select 120 ICSBEP benchmarksbull Create 630 random Pu-239 libraries all within or closely

around the uncertainty bandsbull Do a total of 120 x 630 =75600 MCNP criticality

calculationsbull Do another 120 x 4 calculations

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 53: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

53

Optimization of Pu-239

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 54: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

54

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 55: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

55

SFR void coefficient

bull KALIMER-600 Sodium Fast Reactor (Korea)bull Total Monte Carlo with MCNPbull Uncertainties due to Na D Rochman et al NIM A612 374

(2010)

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 56: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

TMC for fusion Optimized Cu6365 file vs Oktavian integral performance

D Rochman AJ Koning and SC van der Marck ``Exact nuclear data uncertainty propagation for fusion design Fusion Engineering and Design 85 669-682 (2010)

56

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 57: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

57Calculate uncertainties in inventory with Serpent

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 58: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

58

PWR burn-up calculations

D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 59: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Publications

Getrsquom all at ftpftpnrgeupubwwwtalysbib_koningpublicationshtmlExamplesbull DF da Cruz D Rochman and AJ Koning ``Uncertainty analysis on reactivity and discharged

inventory due to U235238 Pu239240241 and fission products nuclear data uncertainties -application to a pressurized water reactor fuel assembly to be published (2013)

bull D Rochman AJ Koning J Kopecky J-C Sublet P Ribon and M Moxon ``From averageparameters to statistical resolved resonances Ann Nuc En 51 60 (2013)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation with the TALYS code system Nucl Data Sheets 113 2841 (2012)

bull D Rochman and AJ Koning ``Random adjustment of the H in H2O neutron thermal scattering data Nucl Sci Eng 172 no 3 287-299 (2012)

bull D Rochman AJ Koning and D da Cruz ``Propagation of 235236238U and 239Pu nuclear data uncertainties for a typical PWR fuel element Nuclear Technology 179 no 3 323-338 (2012)

bull AJ Koning and D Rochman ``Modern nuclear data evaluation Straight from nuclear physics toapplications Journ Kor Phys Soc 59 no 23 773 (2011)

bull D Rochman and AJ Koning ``How to randomly evaluate nuclear data a new method applied toPu-239 Nucl Sci Eng 169(1) 68 (2011)

bull D Rochman AJ Koning SC van der Marck A Hogenbirk and CM Sciolla ``Nuclear data uncertainty propagation Perturbation vs Monte Carlo Ann Nuc En 38 942 (2011)

bull D Rochman AJ Koning DF da Cruz ``Uncertainties for the Kalimer Sodium Fast Reactor voidcoefficient keff Beff burn-up and radiotoxicity Jap Journ Sci Techn 48 (8) 1193 (2011)

59

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions
Page 60: Nuclear data uncertainty propagation using a Total …€¦ ·  · 2018-03-09Nuclear data uncertainty propagation using a Total Monte Carlo approach Arjan Koning* & and Dimitri Rochman*

Conclusions

bull By simultaneously developing and maintaining1 A complete modern nuclear data library TENDL2 An unprecedented integral validation scheme with integral

experiments and benchmarks3 A Total Monte Carlo method applied on well-established

Monte Carlo and deterministic reactor codes 4 An extension to full core analyses

complete probability distributions (uncertainties covariances) for many reactor and inventory quantities of interest can be obtainedbull Total Monte Carlo If we can calculate it once we can also

calculate it 1000 times randomly varying the inputbull Safety uncertainty risk and money are equivalent also in the

nuclear world Therefore exact uncertainty propagation will be beneficial

60

  • Nuclear data uncertainty propagation using a Total Monte Carlo approach
  • Europe by night
  • Petten site
  • Complete infrastructure in Petten
  • Slide Number 5
  • Contents
  • Automating nuclear science
  • Strategy
  • Strategy
  • Safety and sustainability ndash nuclear data
  • TALYS Evaluated Nuclear Data Library TENDL-2012
  • TALYS
  • Slide Number 13
  • Nuclear data libraries for nuclear technology
  • Slide Number 15
  • Slide Number 16
  • High Fidelity Resonances (HFR)
  • HFR
  • TENDL nuclear data library
  • Testing TENDL - Criticality safety ICSBEP
  • Criticality safety leu-comp-therm
  • Criticality safety Na
  • Shielding benchmarks
  • Shielding example LLNL Mg 07 mfp
  • ldquoTotalrdquo Monte Carlo
  • Automating nuclear reactions Total Monte Carlo
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • TMC Application criticality benchmarks
  • Pu239 cross sections + uncertainties
  • Optimization of Pu-239
  • Optimization of Pu-239
  • Slide Number 54
  • SFR void coefficient
  • TMC for fusion Optimized Cu6365 file vs Oktavian integral performance
  • Slide Number 57
  • Slide Number 58
  • Publications
  • Conclusions