nano material applications in fuel cell - homepage - cmu · pdf filenano material applications...

48
Nano Material Applications in Fuel Cell Dept. of Chemical Eng. Yonsei Univ. Prof. Y.G. Shul, H.S. Kim

Upload: lamduong

Post on 10-Feb-2018

221 views

Category:

Documents


4 download

TRANSCRIPT

  • Nano Material Applicationsin Fuel Cell

    Dept. of Chemical Eng. Yonsei Univ.Prof. Y.G. Shul, H.S. Kim

  • Nano Materials in Fuel Cell

    Hydrogen Release Catalyst Novel Anode Catalyst

    Organic-Inorganic Membrane

  • Fuel Cell Applications

    Heteropolyacid(HPA)-SiO2 nanoparticles for high temperature operation of a direct methanol fuel cell

    Preparation and characterization of new carbon for fuel cell application

    Pulse Electrodeposition for Preparing PEM Fuel Cell Electrode

    Investigation of alloy catalyst for accelerating hydrogen release from NaBH4

  • In this study

    SiO2

    Heteropoly acid

    Nano scale. .. ...... .

    .... .

    .. .. ...... .

    .... .

    .

    . .. ...... .

    .... .

    .. .. ...... .

    .... .

    .. .. ...... .

    .... .

    .. .. ...... .

    .... .

    .

    . .. ...... .

    .... .

    .. .. ...... .

    .... .

    .. .. ...... .

    .... .

    .. .. ...... .

    .... .

    .

    Preparation nanohybride particle (HPA/SiO2)By micro emulsion technique

    Characterization :TEM, Solid state NMR, TMP adsorption, N2 adsorption, FT-IR

  • Heteropolyacid-SiO2 nanoparticles

    TEM image of heteropolyacid-SiO2 nanoparticle(R=2, HPA 30%, 24hr)

    TEM image of heteropolyacid-SiO2 nanoparticle(R=2, X=30%, 12hr)

    100 nm 100nm

    R= [H2O]/[AOT]X=[Heteropolyacid]

  • 31P MAS NMR

    Chemical shift (, ppm)

    -20-18-16-14-12-10

    Heteropolyacid

    100nm

    500nm

    Bulk

    Dehydration

    Fig. 31P MAS NMR spectra of heteropolyacid and HPA/SiO2

    H3PW12O406H2O

    -15.6ppm

    -15.3ppm

    -15.1ppm

    -15.0ppm

    Referenced from- M.Misono et al., J.Phys.Chem.B., 104 (2000) 8108- F.Lefebvre et al., J.Chem.Soc.Chem.Commun, (1992) 756

    Dehydration of heteropolyacid

    Heteropolyacid < nanoparticle < Bulk powder

    Trapping of acidic proton to OH group

    Si

    OHH+

    Si

    OHH+

    Si

    OHH+

    34012 ][ OPW

  • 13C CP MAS NMR

    13C CP MAS NMR spectra (a) thiol- and (b) sulfonic-functionalized heteropolyacid-SiO2 nanoparticle.

    Chemical shift (, ppm)

    0102030405060

    (a)

    (b)

    27.9 ppm

    11.4 ppm18.2 ppm

    54.0 ppm

    Chemical shift (, ppm)

    0102030405060

    (a)

    (b)

    27.9 ppm

    11.4 ppm18.2 ppm

    54.0 ppm

  • Preparation of inorganic particles in microemulsion

    H2OHPA

    CyclohexaneTEOS

    Si(OR)4 + 4H2O Si(OH)4 + 4ROH

    Si-OH + HO-Si Si-O-Si + H2O

    Sol-gel process

    O

    O

    O

    O

    SO3-

    Na+

    Aerosol-OT

  • Surface area vs. nano HPA/SiO2

    Pore size (A)0 20 40 60 80

    DV/

    DR

    (cm

    3 /g)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    100nm HPA/SiO2500nm HPA/SiO2Bulk HPA/SiO2

    1 2 3

    Por

    e fra

    ctio

    n

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1 2 3 4

    BET

    Surfa

    ce a

    rea

    (m2 /g

    )

    0

    100

    200

    300

    400

    500

    600

    Surface area Pore size distribution

    HPA 100nm500nmBulk

    Pore ratio

    R > 3nm

    100nm500nmBulk

    R < 1nm

  • Application to DMFC

    Pressure gauge

    Methanol2M solution.

    Fuel pump

    Fuel heater

    Cell

    Needlevalve

    flowmeter

    2wayvalve

    O2

    Tank

    G.C

    6 wayvalve

    Pressure gauge

    Methanol2M solution.

    Fuel pump

    Fuel heater

    Cell

    Needlevalve

    flowmeter

    2wayvalve

    O2

    Tank

    G.C

    6 wayvalve

    Heteropolyacid

    Proton conductivity

    Silica particle

    Methanol blocker

  • Polysulfone/nanoparticle composite membrane

    45 50 55 60 65 70 75 80 85 90 95 100 105 1100

    20

    40

    60

    80

    100

    Z''(o

    hm)

    Z'(ohm) Cell temperature (oC)

    20 40 60 80 100 120 140

    Met

    hano

    l cro

    ssov

    er ra

    te

    (m

    ol /

    cm2 m

    in)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    Sulfonated polysulfone membraneComposite membrane

    Heteropolyacid-SiO2 nanoparticle

    Heteropolyacid-SiO2 nanoparticle

    1.4 10-3 S/cm 6.510-5 S/cm

    Complex impedance response(a) and methanol crossover rate(b) of the sulfonated polysulfone and sulfonated polysulfone / heteropolyacid SiO2 nanoparticle composite membrane.

    (a) (b)

  • Nafion/nanoparticle composite membrane

    Content of nanoparticles (%)

    0 5 10 15 20 25

    cond

    uctiv

    ity x

    102 (

    S/cm

    )

    0

    2

    4

    6

    8

    10

    Temperature (oC)

    0 20 40 60 80 100 120 140 160C

    ross

    over

    rate

    ( m

    ol/c

    m2 *

    min

    )0

    20

    40

    60

    80

    100

    Nafion membraneComposite membrane

    Proton conductivity(a) and methanol crossover rate(b) of the sulfonated polysulfone and sulfonated polysulfone / heteropolyacid SiO2 nanoparticle composite membrane.

    (a) (b)

    Reduction of methanol crossover

    A little decrease of proton conductivity

  • Nafion-HPA/SiO2 composite membrane

    Current density (mA/cm2)

    0 50 100 150 200 250 300

    Cel

    l vol

    tage

    (V)

    0.0

    0.2

    0.4

    0.6

    0.8

    80 oC160 oC200 oC

    Pow

    er d

    ensi

    ty (m

    W/c

    m2 )

    0

    10

    20

    30

    40

    50

    60

    Wavenumber (cm-1)

    1000150020002500300035004000

    Tran

    smitt

    ance

    (%)

    0

    20

    40

    60

    80

    100

    Heteropolyacid - SiO2 nanoparticleSulfonated heteropolyacid - SiO2 nanoparticle

    FT-IR spectra of sulfonated heteropolyacid-SiO2 nanoparticle

    (Nafion / sulfonated heteropolyacid-SiO2 nanoparticle composite membrane)

    H2O H3O+

    DMFC performance of composite membrane

    Improvement of DMFC performance by increasing the cell temperature

  • Research of carbon material application

    Caron structure

    FC application

    Performance remark Reference

    Pt/CNT PEMFC 0.7V, 0.7 mA/cm2

    (50oC)

    high electrocatalytic activity for oxygen reduction3.60.3nm

    J.of power sources

    139(2005) 73

    Pt/mesoporous carbon(SBA-15)

    DMFC 0.4V, 135 mA/cm2 (65oC)

    Great potentiality for DMFC supportJohnson Mattheyat

    0.4V, 135 mA/cm2 (80oC)

    J.Of power sources

    130 (2005)

    PtSn/MWNT

    DEFC 0.4V, 100 mA/cm2

    Improvement in liquid mass transfer for catalyst-3nm

    PtSn/XC-720.4V, 80 mA/cm2

    Carbon 42(2004)

    Carbon fiber

    Mg-H2O2Semi-fuel

    cell

    1.5V,300mA/cm2

    Similar reference with Pt-Ir on carbon paperMg: anode

    Microfiber carbon :cathodecathode side: 0.20M H2O2

    J.Of power sources 96 (2001) 240

    Carbon nanocoil

    DMFC 0.4V , 170mA/cm2

    (60oC)

    Great potentiality for DMFC support material Angew. Chem2003,115,

    4488

    Carbon nanohorn

    DMFC 0.4V , 130mA/cm2

    NEC

  • I-V curve for electrodes with commercial Pt/C and Pt/C+ Pt/ACF (900)

    Current density ( A/cm2 )

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

    Volta

    ge (

    V )

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    Commercial Pt/CCommertial Pt/C (70%)+ Pt/ACF(30%.400oC)Commertial Pt/C (70%)+ Pt/ACF(30%.900oC)

    Performance increasing

    Commercial Pt/C Pt/C+Pt/ACF (400) Pt/C+Pt/ACF (900)

    Current density ( mA/cm2 ) 710 807 960

    Cell Temp. : 80, Humidify condition : RH% 100 anode and cathode, Flow rate: Stoichiometry 1.5(Anode):2.0(Cathode)

  • Impedance for the electrodes manufactured with Pt/C, Pt/ACF(900) catalysts

    Z' / Ohm

    0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26

    -Z''

    / O h

    m

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    Pt/ACF ( 400oC )Pt/ACF ( 900oC )

    Z' / Ohm

    0.0 0.1 0.2 0.3 0.4 0.5-Z

    '' / O

    hm

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    Pt/ACF ( 400oC )Pt/ACF ( 900oC )

    Impedance spectra at 0.8VImpedance spectra at 0.7V

  • Specific surface area and average pore diameter of the CNF treated by KOH

    58.01303.54950-1h

    62.37341.87900-3h

    54.41375.52Modified method

    44.33460.10900-2h

    48.0645.53900-1h

    48.80509.95800-1h

    46.07444.18750-1h

    62.21107.60No activation

    5H

    Avg. Pore diameter( )

    Surf. area(m2 /g)

    Activation conditionCNF

    58.01303.54950-1h

    62.37341.87900-3h

    54.41375.52Modified method

    44.33460.10900-2h

    48.0645.53900-1h

    48.80509.95800-1h

    46.07444.18750-1h

    62.21107.60No activation

    5H

    Avg. Pore diameter( )

    Surf. area(m2 /g)

    Activation conditionCNF

  • SEM - CNFs named 5H

    pristine

    MDF(900-2h)

    800-1h

    900-2h

  • TEM - 60wt% Pt-Ru/CNF

    50 nm 50 nm 50 nm

    (a) (b) (c)A/(900-2h) B/(900-2h) B/MDF(900-2h)

  • Growth of nanofiber on ACF

    micropores

    Surface and Pores of Activated Carbon Fiber

    Reduction in He/H2

    Synthesis from C2H4/H2

    a

    b a, b

    c

    inactive

    H2 C2H4

    Impregnation of metal salt solution

  • Preparation of various carbon substrates

    CNF/ACF

    Fig. SEM images of carbon nano fibers grown on ACFFig. SEM images of carbon nano fibers grown on AC