nachhal&ge)landnutzung)–)wie)regional5skalige) martin ... · 10. foley,j. a. et al. global...

21
Nachhal&ge Landnutzung – Wie regional5skalige Forschungsprojekte Antworten auf globale Fragen geben können Martin-Luther Universität Halle-Wittenberg Ralf Seppelt, 6.12.2013 KBU Fachtagung

Upload: others

Post on 20-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Nachhal&ge)Landnutzung)–)Wie)regional5skalige)

Forschungsprojekte)Antworten)auf)globale)Fragen)

geben)können)

Martin-Luther Universität Halle-Wittenberg

Ralf%Seppelt,%6.12.2013%KBU%Fachtagung%

Page 2: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Sustainable)Land)Management)

Sustainablility,%with%respect%to%land%use:%%%Organize%land%use%in%a%way,%that%%•  human%needs%are%saFsfied%%•  given%the%environmental%

condiFons%and%%•  so%that%economy%does%not%

set%impulses%for%offJseKng%external%effects%

%Achive)produc&vity,)while)

maintaing)biodiversity...)

Seite 2

Foley%et%al%(2005,%Science)%

!

! 1!

Supplementary Materials – Figures

Figure S1. Extent of Global Agricultural Lands. This map illustrates the global extent of croplands (green) and pastures (brown), as estimated from satellite- and census-based data by Ramankutty et al.1. According to U.N. FAO statistics, croplands currently extend over 1.53 billion hectares (~12% of the Earth’s land surface, not counting Greenland and Antarctica), while pastures cover another 3.38 billion hectares (~26% of global land). Altogether, agriculture occupies ~38% of the Earth’s terrestrial surface, emerging as the largest use, by far, of land on the planet1,2.

!""#$#%&'()*+,#

!""#$#(*-./&0#

"#

WWW.NATURE.COM/NATURE | 1

%Land)use)

!  Agriculture%(14%)%!  Pasture,%meadows%(26%)%!  Infrastructure%(0,5%)%!  Forests%(35%)%!  ProtecFon%sites%(11%)%%%

Page 3: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Harves&ng)our)Earth)(HANPP))

Seite%3%

Agriculture)(196151999)%! 12%%increase%in%cropland%%! 10%%rise%in%permanent%pasture%%!  Increase%of%106%%of%overall%food%crop%yield%per%unit%area%% Green,%(2005,%Science)%

Haberl%et%al.%(2007,%PNAS)%

Human)NPP)Appropria&on)%! 15.6%Pg%C/yr%or%23.8%%of%potenFal%net%primary%producFvity%

! 53%%harvest,%%! 40%%landJuseJinduced%producFvity%changes,%%

! 7%%by%humanJinduced%fire%

! 97%%rise%in%the%area%of%land%under%irrigaFon,%%

! 638%,%203%,%and%854%%increase,%in%the%use%of%ferFlizers%

%%

Page 4: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

„Solu&ons)for)a)cul&vated)planet“)

!  Stop%expanding%agriculture%

!  Close%yield%gaps%

!  Increase%agricultural%

resource%efficiency%

!  Increase%food%delivery%by%

shi^ing%diets%and%reducing%

waste%%

Seite 4

require overcoming considerable economic and social challenges, includ-ing the distribution of agricultural inputs and seed varieties and improvingmarket infrastructure.

Increase agricultural resource efficiencyMoving forward, we must find more sustainable pathways for intensi-fication that increase crop production while greatly reducing unsustain-able uses of water, nutrients and agricultural chemicals.

Irrigation is currently responsible for water withdrawals of about2,800 km3 per year from groundwater, lakes and rivers. Irrigation is usedon about 24% of croplands and is responsible for delivering 34% ofagricultural production17. In fact, without irrigation, global cereal pro-duction would decrease by an estimated 20% (ref. 17), so more landwould be required to produce the same amount of food.

However, the benefits and impacts of irrigation are not evenly dis-tributed. Water needed for crop production varies greatly across theworld (Supplementary Fig. 5). We find that, when irrigated, 16 staplecrops use an average of 0.3 litres per kilocalorie (not including waterlosses). However, these water requirements are skewed: 80% of irrigatedcrops require less than 0.4 litres per kilocalorie, while the remaining 20%require 0.7 litres per kilocalorie or more.

Where water is scarce, good water and land management practicescan increase irrigation efficiency. For example, curtailing off-field evap-orative losses from water storage and transport and reducing on-fieldlosses through mulching and reduced tillage will increase the value ofirrigation water.

Chemical fertilizers, manure and leguminous crops have also been keyto agricultural intensification. However, they have also led to widespreadnutrient pollution and the degradation of lakes, rivers and coastal oceans.In addition, the release of nitrous oxide from fertilized fields contributesto climate change. Excess nutrients also incur energy costs associatedwith converting atmospheric nitrogen and mining phosphorus22,62.

Even though excess nutrients cause environmental problems in someparts of the world, insufficient nutrients are a major agronomic problemin others. Many yield gaps are mainly due to insufficient nutrient avail-ability (Supplementary Fig. 4b). This ‘Goldilocks’ problem of nutrients

(that is, there are many regions with too much or too little fertilizer butfew that are ‘just right’) is one of the key issues facing agriculture today63.

Building on recent analyses of crop production, fertilizer use andnutrient cycling15,22,64,65, we examine patterns of agricultural nitrogenand phosphorus balance across the world. Specifically, we show areasof excess nutrients resulting from imbalances between nutrient inputs(fertilizers, legumes and atmospheric deposition), harvest removal andenvironmental losses (Supplementary Fig. 6). We further analyse theefficiency of nutrient use by comparing applied nutrients to yield for 16major crops (Supplementary Fig. 6c, d).

Our analysis reveals ‘hotspots’ of low nutrient use efficiency (Sup-plementary Fig. 6c, d) and large volumes of excess nutrients (Sup-plementary Fig. 6e, f). Nutrient excesses are especially large inChina66, Northern India, the USA and Western Europe. We also findthat only 10% of the world’s croplands account for 32% of the globalnitrogen surplus and 40% of the phosphorus surplus. Targeted policyand management in these regions could improve the balance betweenyields and the environment. Such actions include reducing excessivefertilizer use, improving manure management, and capturing excessnutrients through recycling, wetland restoration and other practices.

Taken together, these results illustrate many opportunities to improvethe water and nutrient efficiency of agriculture without reducing foodproduction. Targeting particular ‘hotspots’ of low efficiency, measuredas the disproportionate use of water and nutrient inputs relative toproduction, could significantly reduce the environmental problems ofintensive agriculture. Furthermore, agroecological innovations in cropand soil management1,67 show great promise for improving the resourceefficiency of agriculture, maintaining the benefits of intensive agricul-ture while greatly reducing harm to the environment.

Increase food delivery by shifting diets and reducing wasteWhile improving crop yields and reducing agriculture’s environmentalimpacts will be instrumental in meeting future needs, it is also importantto remember that more food can be delivered by changing our agricul-tural and dietary preferences. Simply put, we can increase food avail-ability (in terms of calories, protein and critical nutrients) by shiftingcrop production away from livestock feed, bioenergy crops and othernon-food applications.

In Supplementary Fig. 7, we compare intrinsic food production (caloriesavailable if all crops were consumed by humans) and delivered food pro-duction (calories available based on today’s allocation of crops to food,animal feed, and other products, assuming standard conversion factors) for16 staple crops. By subtracting these two figures, we estimate the potentialto increase food supplies by closing the ‘diet gap’: shifting 16 major crops to100% human food could add over a billion tonnes to global food produc-tion (a 28% increase), or the equivalent of 3 3 1015 food kilocalories (a 49%increase) (Fig. 4).

Of course, the current allocation of crops has many economic andsocial benefits, and this mixed use is not likely to change completely. Buteven small changes in diet (for example, shifting grain-fed beef con-sumption to poultry, pork or pasture-fed beef) and bioenergy policy (forexample, not using food crops as biofuel feedstocks) could enhance foodavailability and reduce the environmental impacts of agriculture.

A large volume of food is never consumed but is instead discarded,degraded or consumed by pests along the supply chain. A recent FAOstudy68 suggests that about one-third of food is never consumed; others69

have suggested that as much as half of all food grown is lost; and someperishable commodities have post-harvest losses of up to 100% (ref. 70).Developing countries lose more than 40% of food post-harvest or duringprocessing because of storage and transport conditions. Industrializedcountries have lower producer losses, but at the retail or consumer levelmore than 40% of food may be wasted68.

In short, reducing food waste and rethinking dietary, bioenergy andother agricultural choices could substantially improve the delivery ofcalories and nutrition with no accompanying environmental harm.While wholesale conversions of the human diet and the elimination of

New calories from closing yield gaps for staple crops(×106 kcal per hectare)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 3 | Closing global yield gaps. Many agricultural lands do not attaintheir full yield potential. The figure shows the new calories that would be madeavailable to the world from closing the yield gaps for 16 major crops: barley,cassava, groundnut, maize, millet, potato, oil palm, rapeseed, rice, rye, sorghum,soybean, sugarbeet, sugarcane, sunflower and wheat. This analysis shows thatbringing the world’s yields to within 95% of their potential for these 16important food and feed crops could add 2.3 billion tonnes(5 3 1015 kilocalories) of new crop production, representing a 58% increase.These improvements in yield can be largely accomplished by improving thenutrient and water supplies to crops in low-yielding regions; furtherenhancement of global food production could be achieved through improvedcrop genetics. The methods used to calculate yield gaps and limiting factors aredescribed in the Supplementary Information.

RESEARCH ANALYSIS

3 4 0 | N A T U R E | V O L 4 7 8 | 2 0 O C T O B E R 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011

food waste are not realistic goals, even incremental steps could be extre-mely beneficial. Furthermore, targeted efforts—such as reducing wastein our most resource-intensive foods, especially meat and dairy—couldbe designed for optimal impact.

Searching for practical solutionsToday, humans are farming more of the planet than ever, with higherresource intensity and staggering environmental impacts, while divert-ing an increasing fraction of crops to animals, biofuels and other non-food uses. Meanwhile, almost a billion people are chronically hungry.This must not continue: the requirements of current and future genera-tions demand that we transform agriculture to meet the twin challengesof food security and environmental sustainability.

Our analysis demonstrates that four core strategies can—in principle—meet future food production needs and environmental challenges ifdeployed simultaneously. Adding them together, they increase global foodavailability by 100–180%, meeting projected demands while loweringgreenhouse gas emissions, biodiversity losses, water use and water pol-lution. However, all four strategies are needed to meet our global foodproduction and environmental goals; no single strategy is sufficient.

We have described general approaches to solving global agriculturalchallenges, but much work remains to translate them into action.Specific land use, agricultural and food system tactics must be developedand deployed. Fortunately, many such tactics already exist, includingprecision agriculture, drip irrigation, organic soil remedies, buffer stripsand wetland restoration, new crop varieties that reduce needs for waterand fertilizer, perennial grains and tree-cropping systems, and payingfarmers for environmental services. However, deploying these tacticseffectively around the world requires numerous economic and govern-ance challenges to be overcome. For example, reforming global tradepolicies, including eliminating price-distorting subsidies and tariffs, willbe vital to achieving our strategies.

In developing improved land use and agricultural practices, werecommend following these guidelines:(1) Solutions should focus on critical biophysical and economic ‘lever-age points’ in agricultural systems, where major improvements in foodproduction or environmental performance may be achieved with theleast effort and cost.(2) New practices must also increase the resilience of the food system.High-efficiency, industrialized agriculture has many benefits, but it isvulnerable to disasters71, including climatic disturbances, new diseasesand economic calamities.

(3) Agricultural activities have many costs and benefits, but methods ofevaluating the trade-offs are still poorly developed72. We need betterdata and decision support tools to improve management decisions73,productivity and environmental stewardship.(4) The search for agricultural solutions should remain technology-neutral. There are multiple paths to improving the production, foodsecurity and environmental performance of agriculture, and we shouldnot be locked into a single approach a priori, whether it be conventionalagriculture, genetic modification or organic farming.

The challenges facing agriculture today are unlike anything we haveexperienced before, and they require revolutionary approaches to solv-ing food production and sustainability problems. In short, new agricul-tural systems must deliver more human value, to those who need it most,with the least environmental harm.

Published online 12 October 2011.

1. International Assessment of Agricultural Knowledge (IAASTD). Agriculture at aCrossroads, Global Report Chs 1, 4 (Island Press, 2009); http://www.agassessment.org/reports/IAASTD/EN/Agriculture at a Crossroads_GlobalReport (English).pdf.

2. Reaping theBenefits: Scienceand theSustainable IntensificationofGlobalAgriculture1–10, 47–50 (The Royal Society, 2009); http://royalsociety.org/Reapingthebenefits/.

3. Pelletier, N. & Tyedmers, P. Forecasting potential global environmental costs oflivestock production 2000–2050. Proc. Natl Acad. Sci. USA 107, 18371–18374(2010).

4. Food and Agriculture Organization of the United Nations (FAO). The State of FoodInsecurity in the World: Economic crises—Impacts and Lessons Learned 8–12 (FAO,2009).

5. Thurow, R. & Kilman, S. Enough: Why the World’s Poorest Starve in an Age of PlentyChs 2, 4, 12 (Perseus Books, 2009).

6. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people.Science 327, 812–818 (2010).This article reviews a recent effort by the UK-based Foresight Project, whichassessed global conditions and trends in agriculture and food security, and setthe benchmark for the world’s discussions on this important topic.

7. Naylor, R. Expanding the boundaries of agricultural development. Food Security 3,233–251 (2011).

8. Kearney, J. Food consumption trends and drivers. Phil. Trans. R. Soc. B 365,2793–2807 (2010).

9. Cirera, X. & Masset, E. Income distribution trends and future food demand. Phil.Trans. R. Soc. B 365, 2821–2834 (2010).

10. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).This paper reviews the global extent of land use practices, especiallyagriculture, and how it has become a transformative force in the globalenvironment—through changes in climate, water resources, biogeochemicalcycles and biodiversity.

11. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being Vol. 2Scenarios: Findings of the Scenarios Working Group Ch. 9 (Island Press, 2005).

12. Power, A. G. Ecosystem services and agriculture: tradeoffs and synergies. Phil.Trans. R. Soc. B 365, 2959–2971 (2010).

13. Rockstrom, J. et al. A safe operating space for humanity. Nature 461, 472–475(2009).This article presents a new way of thinking about the condition of the globalenvironment and the idea of ‘‘planetary boundaries’’—points where moreenvironmental deterioriation may ‘‘tip’’ the global environment far out of thecurrent condition.

14. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1.Geographic distribution of global agricultural lands in the year 2000. Glob.Biogeochem. Cycles 22, GB1003 (2008).

15. Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographicdistribution of crop areas, yields, physiological types, and net primary productionin the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

16. Portmann, F. T., Siebert, S. & Doll, P. MIRCA 2000: global monthly irrigated andrainfed crop areas around the year 2000: a new high-resolution data set foragricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011(2010).

17. Siebert, S. & Doll, P. Quantifying blue and green virtual water contents in globalcrop production as well as potential production losses without irrigation. J. Hydrol.384, 198–217 (2010).This paper presents a state-of-the-art global assessment of how waterresources (both ‘blue’ and ‘green’ water) are deployed in agriculture, primarilythrough irrigation, and how this is related to food production.

18. Food and Agriculture Organization of the United Nations (FAOSTAT). http://faostat.fao.org/site/567/default.aspx#ancor (accessed, March 2011).

19. Ramankutty, N., Foley, J. A., Norman, J. & McSweeney, K. The global distribution ofcultivable lands: current patterns and sensitivity to possible climate change. Glob.Ecol. Biogeogr. 11, 377–392 (2002).

20. Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N.Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr.19, 589–606 (2010).

Potential diet gap calories(×106 kcal per hectare)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 4 | Closing the diet gap. We estimate the potential to increase foodsupplies by closing the ‘diet gap’: shifting 16 major crops to 100% human foodand away from the current mix of uses (see Fig. 1) could add over a billiontonnes to global food production (a 28% increase for those 16 crops), theequivalent of ,3 3 1015 kilocalories more food to the global diet (a 49%increase in food calories delivered).

ANALYSIS RESEARCH

2 0 O C T O B E R 2 0 1 1 | V O L 4 7 8 | N A T U R E | 3 4 1

Macmillan Publishers Limited. All rights reserved©2011

Foley%et%al%(2011,%Science)%

Page 5: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Global)food)security)and)biodiversity)

!  Global)food)security)is)not)directly)linked)to)global)food)produc&on)�  Food%producFon%from%smallholder%farms%is%the%backbone%of%global%food%security%�  Global%food%producFon%is%sufficient,%but%not%available%to%the%hungry%�  Food%usage%is%inefficient%–%one%third%is%wasted%and%one%third%fed%to%livestock%�  The%EU%‘10%%biofuel%direcFve’%causes%increased%food%prices%and%contributes%to%

rainforest%destrucFon%�  Land%grabbing%and%speculaFon%on%food%commodiFes%jeopardizes%food%security%

!  Increasing)yields)need)not)translate)into)biodiversity)loss))!  Agroecological)intensifica&on)sustains)ecosystem)services,)while)

minimizing)environmental)costs)and)maintaining)func&onal)

biodiversity)

�  WildlifeJfriendly%farming%sustains%cultural%ecosystem%services%�  ConvenFonal%intensificaFon%causes%o^en%overlooked%environmental%costs%�  The%role%of%agrobiodiversity%and%associated%ecosystem%services%%

Seite 5

Tscharntke%et%al.%(2012,%Biol.Cons.)%

Page 6: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Global)Land)Use)Change)

Seite 6

www.sciencemag.org SCIENCE VOL 334 7 OCTOBER 2011 35

NEWSFOCUS

Terrestrial species

Freshwater species

All vertebrate species

Marine species

20001970

120

100

80

60

40

Spec

ies

abun

dan

ce

1975 1980 1985 1990 1995

The Fall of the Wild

SOURCE: WORLD WIDE FUND FOR NATURE AND UNEP WORLD CONSERV. MONITORING CENTER

5000–8000

3000–5000

2000–3000

1000–2000

500–1000

250–500

100–250

< 100

Moderate use (>500 years)

Woodlands

Grasslands & steppe

Shrublands

Desert & tundra

>8000 years

YEARS OF

Intensive Use

Anthropogenic Transformation of the Terrestrial Biosphere

Wild NO HISTORY OF USE

Seminatural NO HISTORY OF USE

CREDIT: ERLE ELLIS, ADAPTED FROM E. ELLIS, PROCEEDINGS OF THE ROYAL SOCIETY A, 369:1010 (2011)

LAND

LIFE

Tonnes

of

annual

los

s (b

illion

s)

1000

1000 100 10

100

10

1.0

0.1

0.01

Deep Time, Deep Erosion: Who Erodes Land Faster?

Mean rate of erosion

from natural processes

Human-induced erosion

Years before present (C.E. 2000)

7.2 billion tons /year

SOURCE: BRUCE H. WILKINSON, GEOLOGY 33, 3 (MARCH 2005)

% Worldwide Fisheries Fully Exploited

100

1950 1960 1970 1980 1990 2000

80

60

40

20

0

SOURCE: WILL STEFFEN ET AL., PHILOSOPHICAL TRANSACTIONS

OF THE ROYAL SOCIETY A 369 (2011)

Domesticating the Planet

Consider that 90%

of total mammalian

biomass is made up

of humans and

domesticated

animals …

… up from

0.1% 10,000

years ago.

VACLAV SMIL, THE EARTH’S BIOSPHERE: EVOLUTION, DYNAMICS, AND CHANGE. MIT PRESS (2002)

Perhaps the most obvious mark we’ve made to the planet is in land-use

changes. For millennia, humans have

chopped down forests and moved rock and

soil for agriculture and pastureland—and

more recently, for construction.

Humans have boosted numbers of “useful” species such as cattle while

depleting others through hunting, overfi sh-

ing, habitat loss, or invasive competition.

Some scientists believe humans will cause the

planet’s sixth mass extinction: Average species

abundance of 3000 wild populations

declined 40% between 1970 and 2000.

on

Oct

ober

12,

201

1ww

w.sc

ienc

emag

.org

Down

load

ed fr

om

Foley%et%al%(2005)%

Page 7: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

12)Regional)Research)Projects)

Seite 7

Sustainable)Land)Management:)Scien&fic)coordina&on)and)synthesis)GLUES)(Global%Assessment%of%Land%Use%Dynamics,%Greenhouse%Gas%Emissions%and%Ecosystem%Services)%

www.sustainableJlandmanagement.net)

Page 8: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Consistant)global)scenarios)

Seite 8

Baseline)scenario:)Business)as)might)be)usual))

Current%legislaFon%(tariffs,%quotas,%RCP%8.5)%

Policy)Scenario)3:))Expansion%of%%

agricultural%land%

Policy)Scenario)4:))

%%%%Expansion%of%agricultural%land;%%not%into%protected%areas%

Policy)Scenario)1:))No%global%%

biofuel%quotas%

Policy)Scenario)2:))Dairy/meat%%consumpFon%

Global%quotas% No%quotas%

Higher% Lower%

Scenario)

Lower)pressure)

on)land)

Scenario)

Higher)pressure)

on)land)

No%expansion,%historical%yields%

Expansion,%increase%in%producFvity%

No%expansion,%historical%yields%

Expansion,%increase%in%producFvity%

Page 9: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Integrated)gobal)Agro5Environmental)Models)

Seite 9

DART%%

MulFJRegional%Global%General%Equilibrium%

Model%%

PROMET))

Global%Dynamic%%CropJ%Growth%Model%%

(hourly%,%1%km)%%

coupling)

PotenFal%%agroJeconomic%yield%

Climate%Scenarios%Soil%Topography%CropJSuitability%Sowing%Dates%MulFple%Cropping%IrrigaFon%

SocioJeconomic%Scenarios%

%GTAP%

Database%

18%crops:Maize,%Rice,%Wheat,%Oilpalm,%Potato,%Soy,%Sugarcane...%

Page 10: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Reconstruc&on)of)Yields)and)Land)Use)

)

Seite 10

Modeled (1981-2010) USDA Statistics (2007) Yield Maize

Percentage Wheat of Cropland

Page 11: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Closing)Yield)Gaps)in)USA:)Change)in)Crop)Prices)

Seite 11

J9,00%%

J8,00%%

J7,00%%

J6,00%%

J5,00%%

J4,00%%

J3,00%%

J2,00%%

J1,00%%

0,00%%

DEU%

GBR%

FRA%

SCA%

MED

%RE

U%

USA

%CA

N%

ANZ%

JPN%

RUS%

FSU%

BRA%

PAO%

LAM%

CHN%

IND%

MAI%

SEA%

MEA

%AF

R%RO

W%

PDR%

WHT%

MZE%

GRON%

PLM%

RSD%

SOY%

OSDN%

C_B%

OLVS%

ILVS%

AGR%

FRS%

Page 12: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Closing)Yield)Gaps)in)USA:)Change)in)Output)

Seite 12

J10,0%%

J5,0%%

0,0%%

5,0%%

10,0%%

15,0%%

20,0%%

25,0%%

DEU%

GBR%

FRA%

SCA%

MED

%RE

U%

USA

%CA

N%

ANZ%

JPN%

RUS%

FSU%

BRA%

PAO%

LAM%

CHN%

IND%

MAI%

SEA%

MEA

%AF

R%RO

W%

PDR%

WHT%

MZE%

GRON%

PLM%

RSD%

SOY%

OSDN%

C_B%

OLVS%

ILVS%

Page 13: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Current)representa&ons)of)land)systems)

13

Focus%on%broadJscale%representaFons%of%land%cover%with%limited%consideraFon%of%human%influence%or%land%use%intensity%(GLC%2000;%GlobCover):%“Anthromes”%

Recent)studies%

!  Used%indirect%or%a%few%direct%indicators%of%landJuse%intensity%(populaFon,%livestock%density)%

!  Applied%topJdown%approaches%to%define%land%system%classes,%e.g.%“expert%rules”%

(Ellis%&%Ramankuuy%2008,%Letourneau%et%al.%2012,%vanAsselen%&%Verburg%2012)

Page 14: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

14%

Represent%humanJenvironment%interacFons%%!  Using%unbiased,%bouomJup%approach%driven%by%most%upJtoJdata%data%!  AccounFng%for%mulFdimensional%aspects%of%landJuse%intensity%

Aim:)Mapping)archetypical)pa`erns)of)land)systems)

Land)system)archetypes:)unique%pauerns%of:%

!  landJuse%intensity%!  environmental%condiFons%!  socioeconomic%factors%that%appear%repeatedly%across%the%terrestrial%surface%of%the%earth%

Václavíc%et%al.%2013%GEC

Page 15: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Data:)global)indicators)of)land)systems%

15%

32%global%variables%at%5%arcJminute%resoluFon%(~9.3×9.3%km%at%the%equator)%

HANPP%

1))Land5use)inputs/outputs%

Factor Unit)Cropland area km2 per grid cell%Cropland area trend km2 per grid cell%Pasture area km2 per grid cell%Pasture area trend km2 per grid cell%N fertilizer kg ha-1%Irrigation Ha per grid cell%Soil erosion Mg ha-1 year-1%Yields (wheat, maize, rice) t ha-1%Yield gaps (wheat, maize, rice) 1000 t%Total production index index%HANPP % of NPP0%

Nitrogen%fer.lizer%

Václavíc%et%al.%2013%GEC

Page 16: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

16

Data:)global)indicators)of)land)systems%

Environmental)condi&ons%Factor Unit)Temperature °C × 10%Diurnal temperature range °C × 10%Precipitation mm%Precipitation seasonality coeff. of

variation%Solar radiation W m-2%Climate anomalies °C × 10%NDVI – mean, seasonality index%Soil organic carbon g C kg-1 of soil%Species richness # of species %

Factor Unit)Gross Domestic Product $ per capita%GDP in agriculture % of GDP%Capital Stock in agriculture $%Population density persons km-2%Population density trend persons km-2%Political stability index%Accessibility travel time%

Socioeconomic)condi&ons%

Mean%annual%temperature% Accessibility%to%ci.es%and%market%places%

Václavíc%et%al.%2013%GEC

Page 17: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

17

Results:)Land)system)archetypes)

SimilariFes%in%land%systems%across%the%globe%but%sFll%a%diverse%pauern%at%the%subJnaFonal%scale%

Václavíc%et%al.%2013%GEC

Page 18: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

18

Results:)Land)system)archetypes%

Page 19: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 1

-1.0

-0.5 0.0

0.5

1.0

1.5

LSA 2

-1 0 1 2 3 12

LSA 3

-1.0

-0.5 0.0

0.5

1.0

LSA 4

-1.0

-0.5 0.0

0.5

1.0

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 5

-1 0 1 2 3 19 20LSA 6

-1 0 1 2 3 4 10

LSA 7

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

LSA 8

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 9

0 1 2 3 4

LSA 10

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

LSA 11

-1.0

-0.5 0.0

0.5

1.0

1.5

LSA 12

-1.0

-0.5 0.0

0.5

1.0

1.5

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 1

-1.0

-0.5 0.0

0.5

1.0

1.5

LSA 2

-1 0 1 2 3 12

LSA 3

-1.0

-0.5 0.0

0.5

1.0

LSA 4

-1.0

-0.5 0.0

0.5

1.0

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 5

-1 0 1 2 3 19 20

LSA 6

-1 0 1 2 3 4 10

LSA 7

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

LSA 8

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 9

0 1 2 3 4

LSA 10

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

LSA 11

-1.0

-0.5 0.0

0.5

1.0

1.5

LSA 12

-1.0

-0.5 0.0

0.5

1.0

1.5

19

Land)pressures)and)environmental)threats)

LSAs%provide%opportuniFes%to%detect%major%land%pressures%and%environmental%threats%

Example:)Soil)erosion)

!  LSA:%%

!  ParFcularly%vulnerable%to%loss%of%soil%ferFlity%due%to:%!  High%agricultural%inputs%!  Low%GDP%!  Strong%dependence%on%

agricultural%producFon%

Degraded)forest/)

cropland)systems)

in)the)tropics))

Václavíc%et%al.%2013%GEC

Page 20: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Knowledge)to)cope)with)challenges)of)global)change)

20%

Knowledge%for%regionalized%strategies%to%cope%with%the%challenges%of%global%change%

Example:)Yield)improvements)

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 1

-1.0

-0.5 0.0

0.5

1.0

1.5

LSA 2

-1 0 1 2 3 12

LSA 3

-1.0

-0.5 0.0

0.5

1.0

LSA 4

-1.0

-0.5 0.0

0.5

1.0

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 5

-1 0 1 2 3 19 20

LSA 6

-1 0 1 2 3 4 10

LSA 7

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

LSA 8

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 9

0 1 2 3 4

LSA 10

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

LSA 11

-1.0

-0.5 0.0

0.5

1.0

1.5

LSA 12

-1.0

-0.5 0.0

0.5

1.0

1.5

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 1

-1.0

-0.5 0.0

0.5

1.0

1.5

LSA 2

-1 0 1 2 3 12

LSA 3

-1.0

-0.5 0.0

0.5

1.0

LSA 4

-1.0

-0.5 0.0

0.5

1.0

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 5

-1 0 1 2 3 19 20

LSA 6

-1 0 1 2 3 4 10

LSA 7

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

LSA 8

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

AccessibilityPolit. stability

Pop. dens. trendPop. density

Cap. stock in agr.GDP in agr.

GDP

Spec. richnessSoil organic CNDVI-season.

NDVI-meanClim. anomalies

Solar radiationPrecip. seasonal.

PrecipitationDiurnal temp. range

Temperature

HANPPTot. prod. index

Gap riceGap maizeGap wheat

Yield riceYield maizeYield wheatSoil erosion

IrrigationN f ertilizer

Past. area trendPast. area

Crop. area trendCrop. area

LSA 9

0 1 2 3 4

LSA 10

-1.0

-0.5 0.0

0.5

1.0

1.5

2.0

LSA 11

-1.0

-0.5 0.0

0.5

1.0

1.5

LSA 12

-1.0

-0.5 0.0

0.5

1.0

1.5

!  Large%differences%between%realized%and%auainable%yields%

!  Large%producFon%gains%could%be%achieved%if%yields%were%increased%to%only%50%%of%auainable%yields%

Extensive)

cropping)

systems)

Mueller%et%al.,%2012%Václavíc%et%al.%2013%GEC

Page 21: Nachhal&ge)Landnutzung)–)Wie)regional5skalige) Martin ... · 10. Foley,J. A. et al. Global consequences ofland use. Science 309, 570–574 (2005). This paper reviews the global

Outlook)

Global)Change)research...)

!  Needs%to%ground%on%regional%scale%results%!  Use%consistant%global%frameworks%for%

scenarios%and%analysis,%synthesis%!  Support%transferability%of%results%!  Support%outreach%and%products%as%well%as%

link%to%internaFonal%convenFons%and%processes%

Seite 21

www.landYOUs.org

Seppelt%et%al.%(2013,%COSUST)