multitrack power factor correction architectureminjie/files/multitrackpfc_slides.pdf · multitrack...

20
Multitrack Power Factor Correction Architecture Minjie Chen, Sombuddha Chakraborty, David Perreault Princeton University Texas Instruments Massachusetts Institute of Technology 978-1-5386-1180-7/18/$31.00 ©2018 IEEE 1713 1 of 20

Upload: others

Post on 07-Nov-2019

26 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Multitrack Power Factor Correction Architecture

Minjie Chen, Sombuddha Chakraborty, David Perreault

Princeton University

Texas Instruments

Massachusetts Institute of Technology

978-1-5386-1180-7/18/$31.00 ©2018 IEEE 1713 1 of 20

Page 2: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Typical isolated PFC architectures

2 of 20

Design targets:

(1)Higher efficiency

(2)Higher density

(3)Better grid interface

Challenges and opportunities:

(1)Smaller passive component size

(2)Higher frequency

(3)ZVS with universal input

Vgrid

Diode

RectifierPower Factor

Correction

Isolated dc-dc

Converter

RloadLR

n:1

CB

VB

+

Energy

Buffer

Needed in a wide range of applications

Telecom supplies / EV chargers / Adapters / Industry Applications

Page 3: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Existing solutions and design targets

3 of 20

TI UCC25600 PFC DemoConventional “single-target” methods

• Diode loss: bridgeless, totem-pole

• Boost inductor: FCML, Ćuk/SEPIC

• Energy buffer size: active energy buffer

• Isolated dc-dc efficiency: DAB, LLC

• Smaller magnetics: higher frequency

Develop a systems method to create mutual advantages

o New architecture

o 5x - 10x Higher frequency

o 50W/inch3, 92% efficiency

~ 10W/inch3, 200kHz

~ 92% efficiency

5x smaller ?

Page 4: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Multitrack PFC architecture

4 of 20

Deliver power in two or more balanced TRACKs

AC DC

vOUT-DC

DA

SA

DB

SB

S1

S2

S3

S4

CB

vIN-AC

LR

Q1

Q2

Q3

Q4

C1

C2

LM

vIN

Cres1

C3

Switched

Inductor

Switched Capacitor

Rectifier

Multi-winding

Transformer

CIN

COUT

vX

vY

vBUS

Isolation Stage PFC Stage

LM

Lres1

Cres2 Lres2

Rectifier

Page 5: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Advantages of the Multitrack PFC

5 of 20

vOUT-DC

DA

SA

DB

SB

S1

S2

S3

S4

CB

vIN-AC

LR

Q1

Q2

Q3

Q4

C1

C2

W1

W2

vIN

Z1

Z2

C3

W3

Switched

Inductor

Switched Capacitor

Rectifier

Magnetics Isolation

CIN

COUT

vX

vY

vBUS

Reduced inductor size (Multilevel)Reduced device rating

ZVS of switched-cap

ZVS for universal line

Reduced dv/dt

High Performance DCX

Reduced interleaved

winding capacitance

Page 6: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Smaller inductor size and ZVS

6 of 20

DB

SB

DA

SA

CB

Vgrid

D

S

CBVgrid

210 V

420 V 420 VBoost PFC Multitrack PFC

DB

SB

SADB

SB

DA

DB

DA

SA

|Vgrid|<105V 105V<|Vgrid|<210V 210V<|Vgrid|<420V

420V210V 420V

210V

Low Line Mid Line High Line

Hard switching at high line Full range ZVS

Three operation modes

Page 7: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Control function blocks of the Multitrack PFC

7 of 20

110V

220V

330V

1 3

440V

265VAC

85VAC

vTH

2 4 5 1 32 4 5 4 3 21

vIN

vIN

1 3

220VAC

2 21

vIN

4 3

vOUT-DC

DA

SA

DB

SB

S1

S2

S3

S4

CB

vIN-AC

LR

Q1

Q2

Q3

Q4

C1

C2

W1

W2

vIN

Z1

Z2

C3

W3

Switched

Inductor

Switched Capacitor

Rectifier

Magnetics Isolation

CIN

COUT

vX

vY

vBUS

• Voltage Regulation

• Current Modulation

• ZVS Timing

• Mode Selection

DCX ControllerMultitrack PFC Controller

Page 8: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

ZVS valley-detection circuits at MHz

8 of 20

+- +

-

vds

vL

Rd

Cd

Vref

iLvd

Iref

NOR

vgs

Sd

monitor inductor current

(no current sensor)

monitor drain

voltage

• QSW-ZVS at 1-4 MHz

• Implemented as logic gatesDB

SB

DA

SA

CB

Vgrid

ZVS Controller 1

ZVS Controller 2

[S. Lim, J. Ranson, D. M. Otten and D. J. Perreault, “Two-Stage Power Conversion Architecture

Suitable for Wide Range Input Voltage,” IEEE Transactions on Power Electronics, 2015.]

Page 9: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Complete Multitrack PFC controller

9 of 20

Mode

Selection &

Current

modulation

Voltage

Regulation

ZVS #1

ZVS #2 vIN

vY

vX

VGY

VGX

vY

vIN

vX

VGRID

+

-

+

-

+

-

+

-

-

+

-

+

Mode

Selection

ctrlX

disXdisY

disX

ctrlX

ctrlY

disY

onY

ctrlY

onY

DAC

ADC

VREF VBUS/VOUT

ADC

vBUS1

vIN

vBUS1

DAC DAC

VthX VthY

ZVS Loop 1

VBUS regulation

SA

SBDA

DB

LR

ZVS Loop 2

ILR modulation

Multitrack PFC DCX

ZVS Controller #1

ZVS Controller #2

Voltage/Current

DCX Control

TI C2000

MCU

Logic gates

Page 10: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Startup and pre-charge of the Multitrack PFC

10 of 20

vOUT-DC

DA

SA

DB

SB

S1

S2

S3

S4

CB

vIN-AC

LR

Q1

Q2

Q3

Q4

C1

C2

W1

W2

vIN

Z1

Z2

C3

W3

Switched

Inductor

Switched Capacitor

Rectifier

Magnetics Isolation

CIN

COUT

vX

vY

vBUS

Startup Strategy:

• Step 1: Inrush to 210V - keep SC operating, SA off, SB on

until bus voltage reach 210V (50% of 420V).

• Step 2: Boost to 330V - force SA on for a period (e.g., 100ns,

10% duty ratio), keep SB off until bus voltage reach 315V.

• Step 3: PI + Non-ZVS - start PI regulation, non-ZVS.

• Step 4: PI + ZVS - continue PI regulation, maintain ZVS.

85VAC-265VAC

420VDC

210VDC

12VDC

8:1

210V

420V

330V

410V

Time (s)

VBUS

S1 S2 S3 S4

Page 11: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Design of the Multitrack DC transformer

11 of 20

C1

C2

SA

SB

Q3

Q1

Q4

Q2

Cout

Cres1

Lres1

SC

SDCres2

Lres2C3

Rload

2:1 switched cap converter

2-input 1-output LLC converter785 nH

776 nH

0.7 uH

1.9 nH

8:1

8:1

172 pF

63 pF

7 nF

7 nF171 pF

11 uH

11 uH

Extracted magnetics model

Low-Q LLC operation with ZVS

M. Chen, M. Araghchini, K. K. Afridi, J. H. Lang, C. R. Sullivan, and D. J. Perreault, “A Systematic Approach to

Modeling Impedances and Current Distribution in Planar Magnetics,” IEEE Transactions on Power Electronics, 2016.

Page 12: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Ultra-thin prototype

12 of 20

vOUT-DC

DA

SA

DB

SB

S1

S2

S3

S4

CB

vIN-AC

LR

Q1

Q2

Q3

Q4

C1

C2

W1

W2

vIN

Z1

Z2

C3

W3

Switched

Inductor

Switched Capacitor

Rectifier

Magnetics Isolation

CIN

COUT

vX

vY

vBUS

3.5 inch

2.15 inch

0.4 inch

Volume: 3 inch3

Power: 150W

Efficiency target: 92%

Peak loss: 15W

Electrolytic cap

sets the height limit

Page 13: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Steady-state grid interface waveforms

13 of 20

DB

SB

DA

SA

CB

Vgrid

Low Line: 110 VAC, 50 W Mid Line: 220 VAC, 100 W High Line: 250 VAC, 120 W

Multitrack PFCVSW

VSW210V

420V

Page 14: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Soft-switching operation

14 of 20

QSW-ZVS of the Multitrack PFC LLC-ZVS of the Swtched Cap An unique Multitrack ZVS mechanism

VY

VX

iR

Capacitive

divider ZVS

Page 15: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Startup waveforms

15 of 20

Inrush current Boost PI control operation with ZVSAbout 500ms

Startup Strategy:

• Step 1: Inrush to 210V - keep SC operating, SA off, SB on until bus voltage reach 210V.

• Step 2: Boost to 330V - force SA on for a period (e.g., 100ns, 10% duty ratio), keep SB off.

• Step 3: PI + Non-ZVS - start PI regulation, non-ZVS.

• Step 4: PI + ZVS - continue PI regulation, maintain ZVS.

Page 16: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Measured efficiency

16 of 20

• High line efficiency: 92.0%

• Low line efficiency: 90.5%

• Light load: switched-cap loss

• Heavy load: rectifier loss

Page 17: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Summary

• A Multitrack PFC architecture for

single-phase grid-interface.

• Density 50W/inch3.

• 92.0% efficiency with 220V input.

• 90.5% efficiency with 110V input.

• Reduced inductor size.

• Reduced dv/dt on transformer.

• ZVS for MHz grid-interface.

• ZVS on switched capacitor.

• 1MHz-4MHz operation, potential

to operate at higher frequencies.

• A new design concept of

creating mutual advantages.

17 of 20

Power Density (W/inch3)

End-to-end Efficiency (%)

10 20 30 40 50 60

91

92

93

94

95

96

TI 310W 24V

PMP9640

demo board*

This work

150W 12V

MIT 250W 24V

APEC18

MIT 50W 12V

non-universal

Towards high density universal-input low

voltage single-phase Isolated PFCs97

Toronto 400W

200kHz TPEL15*

On-Semi 60W

12V, APEC17*

CoPEC 600W 24V

electrolytic-free

APEC16

CPES 65W

20V APEC16

Stanford 250W

450kHz TPEL18*

*estimated

density

Page 18: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Thermal imaging of the Multitrack PFC

18 of 20

110Vin, ~50W

220Vin, ~50W

110Vin, ~100W

220Vin, ~100W

• System works

in low line

• Switched cap

circuit has high

stress

• System works

in low line

• Rectifier loss

dominating

• System works

in high line

• Switched cap

circuit has

lower stress

• System works

in high line

• Rectifier loss

dominating

• Primary side

is very

efficient

~200LPF forced air flow from left to right

Page 19: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Place your logo here

Multitrack PFC Architecture

Minjie Chen

Sombuddha Chakraborty

David Perreault

Princeton University

Texas Instruments

Massachusetts Institute of Technology

1713978-1-5386-1180-7/18/$31.00 ©2018 IEEE

Thanks + Q&A

Page 20: Multitrack Power Factor Correction Architectureminjie/files/multitrackpfc_slides.pdf · Multitrack PFC Architecture Minjie Chen Sombuddha Chakraborty David Perreault Princeton University

Benchmark references

• [TI Demo Board] TI PMP9640 PFC Demo Board: http://www.ti.com/tool/PMP9640

• [MIT Thesis] S. Lim, “High Frequency Power Conversion Architecture for Grid Interface”, Ph.D. Thesis,

MIT, 2016.

• [CPES APEC16] Y. C. Li, F. C. Lee, Q. Li, X. Huang and Z. Liu, “A novel AC-to-DC adaptor with ultra-

high power density and efficiency,” IEEE Applied Power Electronics Conference and Exposition (APEC),

2016.

• [On-Semi APEC17] S. Moon, B. Chung, G. Koo, J. Guo and L. Balogh, “A conduction band control AC-

DC Buck converter for a high efficiency and high power density adapter,” IEEE Applied Power

Electronics Conference and Exposition (APEC), 2017.

• [MIT APEC18] Juan Santiago-Gonzalez, David Otten, Seungbum Lim, Khurram Afridi, and David

Perreault, “Single Phase Universal Input PFC Converter Operating at HF”, IEEE Applied Power

Electronics Conference and Exposition (APEC), 2018.

• [CoPEC ECCE17] S. Pervaiz, A. Kumar and K. K. Afridi, "GaN-based high-power-density electrolytic-

free universal input LED driver," IEEE Energy Conversion Congress and Exposition (ECCE), 2017.

• [Toronto TPEL15] B. Mahdavikhah and A. Prodić, "Low-Volume PFC Rectifier Based on Nonsymmetric

Multilevel Boost Converter," IEEE Transactions on Power Electronics, 2015.

• [Stanford TPEL18] L. Gu, W. Liang, M. Praglin, S. Chakraborty and J. M. Rivas Davila, "A Wide-Input-

Range High-Efficiency Step-down Power Factor Correction Converter Using Variable Frequency

Multiplier Technique," IEEE Transactions on Power Electronics, 2018.20 of 20