multitrack power factor correction architectureminjie/files/multitrackpfc_slides.pdfmultilevel boost...

20
Multitrack Power Factor Correction Architecture Minjie Chen, Sombuddha Chakraborty, David Perreault Princeton University Texas Instruments Massachusetts Institute of Technology 978-1-5386-1180-7/18/$31.00 ©2018 IEEE 1713 1 of 20

Upload: others

Post on 23-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Multitrack Power Factor Correction Architecture

    Minjie Chen, Sombuddha Chakraborty, David Perreault

    Princeton University

    Texas Instruments

    Massachusetts Institute of Technology

    978-1-5386-1180-7/18/$31.00 ©2018 IEEE 1713 1 of 20

  • Typical isolated PFC architectures

    2 of 20

    Design targets:

    (1)Higher efficiency

    (2)Higher density

    (3)Better grid interface

    Challenges and opportunities:

    (1)Smaller passive component size

    (2)Higher frequency

    (3)ZVS with universal input

    Vgrid

    Diode

    RectifierPower Factor

    Correction

    Isolated dc-dc

    Converter

    RloadLR

    n:1

    CBVB

    +

    Energy

    Buffer

    Needed in a wide range of applications

    Telecom supplies / EV chargers / Adapters / Industry Applications

  • Existing solutions and design targets

    3 of 20

    TI UCC25600 PFC DemoConventional “single-target” methods

    • Diode loss: bridgeless, totem-pole

    • Boost inductor: FCML, Ćuk/SEPIC

    • Energy buffer size: active energy buffer

    • Isolated dc-dc efficiency: DAB, LLC

    • Smaller magnetics: higher frequency

    Develop a systems method to create mutual advantages

    o New architecture

    o 5x - 10x Higher frequency

    o 50W/inch3, 92% efficiency

    ~ 10W/inch3, 200kHz

    ~ 92% efficiency

    5x smaller ?

  • Multitrack PFC architecture

    4 of 20

    Deliver power in two or more balanced TRACKs

    AC DC

    vOUT-DC

    DA

    SA

    DB

    SB

    S1

    S2

    S3

    S4

    CB

    vIN-AC

    LR

    Q1

    Q2

    Q3

    Q4

    C1

    C2

    LM

    vIN

    Cres1

    C3

    Switched

    Inductor

    Switched Capacitor

    Rectifier

    Multi-winding

    Transformer

    CIN

    COUTvX

    vY

    vBUS

    Isolation Stage PFC Stage

    LM

    Lres1

    Cres2 Lres2

    Rectifier

  • Advantages of the Multitrack PFC

    5 of 20

    vOUT-DC

    DA

    SA

    DB

    SB

    S1

    S2

    S3

    S4

    CB

    vIN-AC

    LR

    Q1

    Q2

    Q3

    Q4

    C1

    C2

    W1

    W2

    vIN

    Z1

    Z2

    C3

    W3

    Switched

    Inductor

    Switched Capacitor

    Rectifier

    Magnetics Isolation

    CIN

    COUTvX

    vY

    vBUS

    Reduced inductor size (Multilevel)Reduced device rating

    ZVS of switched-cap

    ZVS for universal line

    Reduced dv/dt

    High Performance DCX

    Reduced interleaved

    winding capacitance

  • Smaller inductor size and ZVS

    6 of 20

    DB

    SB

    DA

    SA

    CB

    Vgrid

    D

    S

    CBVgrid

    210 V

    420 V 420 VBoost PFC Multitrack PFC

    DB

    SB

    SADB

    SB

    DA

    DB

    DA

    SA

    |Vgrid|

  • Control function blocks of the Multitrack PFC

    7 of 20

    110V

    220V

    330V

    1 3

    440V

    265VAC

    85VAC

    vTH

    2 4 5 1 32 4 5 4 3 21

    vIN

    vIN

    1 3

    220VAC

    2 21

    vIN

    4 3

    vOUT-DC

    DA

    SA

    DB

    SB

    S1

    S2

    S3

    S4

    CB

    vIN-AC

    LR

    Q1

    Q2

    Q3

    Q4

    C1

    C2

    W1

    W2

    vIN

    Z1

    Z2

    C3

    W3

    Switched

    Inductor

    Switched Capacitor

    Rectifier

    Magnetics Isolation

    CIN

    COUTvX

    vY

    vBUS

    • Voltage Regulation

    • Current Modulation

    • ZVS Timing

    • Mode Selection

    DCX ControllerMultitrack PFC Controller

  • ZVS valley-detection circuits at MHz

    8 of 20

    +- +-

    vds

    vL

    Rd

    Cd

    Vref

    iLvd

    Iref

    NOR

    vgs

    Sd

    monitor inductor current

    (no current sensor)

    monitor drain

    voltage

    • QSW-ZVS at 1-4 MHz

    • Implemented as logic gatesDB

    SB

    DA

    SA

    CB

    Vgrid

    ZVS Controller 1

    ZVS Controller 2

    [S. Lim, J. Ranson, D. M. Otten and D. J. Perreault, “Two-Stage Power Conversion Architecture

    Suitable for Wide Range Input Voltage,” IEEE Transactions on Power Electronics, 2015.]

  • Complete Multitrack PFC controller

    9 of 20

    Mode

    Selection &

    Current

    modulation

    Voltage

    Regulation

    ZVS #1

    ZVS #2 vIN

    vY

    vX

    VGY

    VGX

    vY

    vIN

    vX

    VGRID

    +

    -

    +

    -

    +

    -

    +

    -

    -

    +

    -

    +

    Mode

    Selection

    ctrlX

    disXdisY

    disX

    ctrlX

    ctrlY

    disY

    onY

    ctrlY

    onY

    DAC

    ADC

    VREF VBUS/VOUT

    ADC

    vBUS1

    vIN

    vBUS1

    DAC DAC

    VthX VthY

    ZVS Loop 1

    VBUS regulation

    SA

    SBDA

    DB

    LRZVS Loop 2

    ILR modulation

    Multitrack PFC DCX

    ZVS Controller #1

    ZVS Controller #2

    Voltage/Current

    DCX Control

    TI C2000

    MCU

    Logic gates

  • Startup and pre-charge of the Multitrack PFC

    10 of 20

    vOUT-DC

    DA

    SA

    DB

    SB

    S1

    S2

    S3

    S4

    CB

    vIN-AC

    LR

    Q1

    Q2

    Q3

    Q4

    C1

    C2

    W1

    W2

    vIN

    Z1

    Z2

    C3

    W3

    Switched

    Inductor

    Switched Capacitor

    Rectifier

    Magnetics Isolation

    CIN

    COUTvX

    vY

    vBUS

    Startup Strategy:

    • Step 1: Inrush to 210V - keep SC operating, SA off, SB on

    until bus voltage reach 210V (50% of 420V).

    • Step 2: Boost to 330V - force SA on for a period (e.g., 100ns,

    10% duty ratio), keep SB off until bus voltage reach 315V.

    • Step 3: PI + Non-ZVS - start PI regulation, non-ZVS.

    • Step 4: PI + ZVS - continue PI regulation, maintain ZVS.

    85VAC-265VAC

    420VDC

    210VDC

    12VDC8:1

    210V

    420V

    330V

    410V

    Time (s)

    VBUS

    S1 S2 S3 S4

  • Design of the Multitrack DC transformer

    11 of 20

    C1

    C2

    SA

    SB

    Q3

    Q1

    Q4

    Q2

    Cout

    Cres1

    Lres1

    SC

    SD Cres2

    Lres2C3

    Rload

    2:1 switched cap converter

    2-input 1-output LLC converter785 nH

    776 nH

    0.7 uH

    1.9 nH

    8:1

    8:1

    172 pF

    63 pF

    7 nF

    7 nF171 pF

    11 uH

    11 uH

    Extracted magnetics model

    Low-Q LLC operation with ZVS

    M. Chen, M. Araghchini, K. K. Afridi, J. H. Lang, C. R. Sullivan, and D. J. Perreault, “A Systematic Approach to

    Modeling Impedances and Current Distribution in Planar Magnetics,” IEEE Transactions on Power Electronics, 2016.

  • Ultra-thin prototype

    12 of 20

    vOUT-DC

    DA

    SA

    DB

    SB

    S1

    S2

    S3

    S4

    CB

    vIN-AC

    LR

    Q1

    Q2

    Q3

    Q4

    C1

    C2

    W1

    W2

    vIN

    Z1

    Z2

    C3

    W3

    Switched

    Inductor

    Switched Capacitor

    Rectifier

    Magnetics Isolation

    CIN

    COUTvX

    vY

    vBUS

    3.5 inch

    2.15 inch

    0.4 inch

    Volume: 3 inch3

    Power: 150W

    Efficiency target: 92%

    Peak loss: 15W

    Electrolytic cap

    sets the height limit

  • Steady-state grid interface waveforms

    13 of 20

    DB

    SB

    DA

    SA

    CB

    Vgrid

    Low Line: 110 VAC, 50 W Mid Line: 220 VAC, 100 W High Line: 250 VAC, 120 W

    Multitrack PFCVSW

    VSW210V

    420V

  • Soft-switching operation

    14 of 20

    QSW-ZVS of the Multitrack PFC LLC-ZVS of the Swtched Cap An unique Multitrack ZVS mechanism

    VY

    VX

    iR

    Capacitive

    divider ZVS

  • Startup waveforms

    15 of 20

    Inrush current Boost PI control operation with ZVSAbout 500ms

    Startup Strategy:

    • Step 1: Inrush to 210V - keep SC operating, SA off, SB on until bus voltage reach 210V.

    • Step 2: Boost to 330V - force SA on for a period (e.g., 100ns, 10% duty ratio), keep SB off.

    • Step 3: PI + Non-ZVS - start PI regulation, non-ZVS.

    • Step 4: PI + ZVS - continue PI regulation, maintain ZVS.

  • Measured efficiency

    16 of 20

    • High line efficiency: 92.0%

    • Low line efficiency: 90.5%

    • Light load: switched-cap loss

    • Heavy load: rectifier loss

  • Summary

    • A Multitrack PFC architecture for

    single-phase grid-interface.

    • Density 50W/inch3.

    • 92.0% efficiency with 220V input.

    • 90.5% efficiency with 110V input.

    • Reduced inductor size.

    • Reduced dv/dt on transformer.

    • ZVS for MHz grid-interface.

    • ZVS on switched capacitor.

    • 1MHz-4MHz operation, potential

    to operate at higher frequencies.

    • A new design concept of

    creating mutual advantages.

    17 of 20

    Power Density (W/inch3)

    End-to-end Efficiency (%)

    10 20 30 40 50 60

    91

    92

    93

    94

    95

    96

    TI 310W 24V

    PMP9640

    demo board*

    This work

    150W 12V

    MIT 250W 24V

    APEC18

    MIT 50W 12V

    non-universal

    Towards high density universal-input low

    voltage single-phase Isolated PFCs97

    Toronto 400W

    200kHz TPEL15*

    On-Semi 60W

    12V, APEC17*

    CoPEC 600W 24V

    electrolytic-free

    APEC16

    CPES 65W

    20V APEC16

    Stanford 250W

    450kHz TPEL18*

    *estimated

    density

  • Thermal imaging of the Multitrack PFC

    18 of 20

    110Vin, ~50W

    220Vin, ~50W

    110Vin, ~100W

    220Vin, ~100W

    • System works

    in low line

    • Switched cap

    circuit has high

    stress

    • System works

    in low line

    • Rectifier loss

    dominating

    • System works

    in high line

    • Switched cap

    circuit has

    lower stress

    • System works

    in high line

    • Rectifier loss

    dominating

    • Primary side

    is very

    efficient

    ~200LPF forced air flow from left to right

  • Place your logo here

    Multitrack PFC Architecture

    Minjie Chen

    Sombuddha Chakraborty

    David Perreault

    Princeton University

    Texas Instruments

    Massachusetts Institute of Technology

    1713978-1-5386-1180-7/18/$31.00 ©2018 IEEE

    Thanks + Q&A

  • Benchmark references

    • [TI Demo Board] TI PMP9640 PFC Demo Board: http://www.ti.com/tool/PMP9640

    • [MIT Thesis] S. Lim, “High Frequency Power Conversion Architecture for Grid Interface”, Ph.D. Thesis,

    MIT, 2016.

    • [CPES APEC16] Y. C. Li, F. C. Lee, Q. Li, X. Huang and Z. Liu, “A novel AC-to-DC adaptor with ultra-

    high power density and efficiency,” IEEE Applied Power Electronics Conference and Exposition (APEC),

    2016.

    • [On-Semi APEC17] S. Moon, B. Chung, G. Koo, J. Guo and L. Balogh, “A conduction band control AC-

    DC Buck converter for a high efficiency and high power density adapter,” IEEE Applied Power

    Electronics Conference and Exposition (APEC), 2017.

    • [MIT APEC18] Juan Santiago-Gonzalez, David Otten, Seungbum Lim, Khurram Afridi, and David

    Perreault, “Single Phase Universal Input PFC Converter Operating at HF”, IEEE Applied Power

    Electronics Conference and Exposition (APEC), 2018.

    • [CoPEC ECCE17] S. Pervaiz, A. Kumar and K. K. Afridi, "GaN-based high-power-density electrolytic-

    free universal input LED driver," IEEE Energy Conversion Congress and Exposition (ECCE), 2017.

    • [Toronto TPEL15] B. Mahdavikhah and A. Prodić, "Low-Volume PFC Rectifier Based on Nonsymmetric

    Multilevel Boost Converter," IEEE Transactions on Power Electronics, 2015.

    • [Stanford TPEL18] L. Gu, W. Liang, M. Praglin, S. Chakraborty and J. M. Rivas Davila, "A Wide-Input-

    Range High-Efficiency Step-down Power Factor Correction Converter Using Variable Frequency

    Multiplier Technique," IEEE Transactions on Power Electronics, 2018.20 of 20